Skip to main content

Intrinsic theories and computational complexity

  • Conference paper
  • First Online:
Logic and Computational Complexity (LCC 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 960))

Included in the following conference series:

Abstract

We introduce a new proof theoretic approach to computational complexity. With each free algebra \(\mathbb{A}\)we associate a first order “intrinsic theory for \(\mathbb{A}\)”, IT (\(\mathbb{A}\)), with no initial functions other than the constructors of \(\mathbb{A}\), and no axioms for them other than the generative and inductive axioms, which delineate \(\mathbb{A}\). The case most relevant to traditional proof theory is \(\mathbb{A}\)=ℕ (the unary natural numbers), and the case most relevant to computer science is \(\mathbb{A}\)=\(\mathbb{W}\)={0,1}. An algorithm is provable if it provably maps inputs in \(\mathbb{A}\)to values in \(\mathbb{A}\), and a function is provable if it has a provable algorithm. We show that the provable functions of IT(N) are exactly the provably recursive functions of Peano Arithmetic.

We further show that function provability is equivalent to computational complexity for the following pairs theory/complexity-class: (1) A ramified variant RT(\(\mathbb{A}\)) of IT (\(\mathbb{A}\)) and elementary functions. (2) N(\(\mathbb{W}\)) with quantifier-free induction and poly-time; (3) RT(N) with quantifier-free induction and linear space (on register machines).

Intrinsic theories combine lean axiomatics with expressive flexibility, since they permit explicit (uncoded) reference to arbitrary computable functions. Thus, the characterizations above provide user-friendly formalisms for feasible mathematics, in which non-feasible algorithms can be mentioned freely. Moreover, natural deduction calculi for these formalisms correspond directly, via formula-as-type homomorphisms, to applicative programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the poly-time functions, 1992.

    Google Scholar 

  2. Michael Beeson. Foundations of Constructive Mathematics. Springer-Verlag, Berlin, 1985.

    Google Scholar 

  3. Roland Chuaqui and Patrick Suppes. Free-variable axiomatic foundations of infinitesimal analysis: a fragment with finitary consistency proof. Journal of Symbolic Logic, 60:122–159, 1995.

    Google Scholar 

  4. Solomon Feferman. Definedness, 1995. Preprint.

    Google Scholar 

  5. H. Friedman. Classically and intuitionistically provable recursive functions. In G. H. Muller and D. S. Scott, editors, Higher Set Theory, pages 21–28. North-Holland, Amsterdam, 1978.

    Google Scholar 

  6. Kurt Gödel. Über eine bisher noch nicht benutzte erweiterung des finiten standpunktes. Dialectica, 12:280–287, 1958.

    Google Scholar 

  7. J.van Heijenoort. From Frege to Gödel, A Source Book in Mathematical Logic, 1879–1931. Harvard University Press, Cambridge, MA, 1967.

    Google Scholar 

  8. W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 479–490. Academic Press, New York, 1980. Preliminary manuscript: 1969.

    Google Scholar 

  9. K. Lambert. Introduction. In K. Lambert, editor, Philosophical applications of free logic, Oxford and New York, 1991. Oxford University Press.

    Google Scholar 

  10. Daniel Leivant. Reasoning about functional programs and complexity classes associated with type disciplines. In Proceedings of the Twenty Fourth Annual Symposium on the Foundations of Computer Science, pages 460–469, Washington, 1983. IEEE Computer Society.

    Google Scholar 

  11. Daniel Leivant. Syntactic translations and provably recursive functions. Journal of Symbolic Logic, 50:682–688, 1985.

    Google Scholar 

  12. Daniel Leivant. Contracting proofs to programs. In P. Odifreddi, editor, Logic and Computer Science, pages 279–327. Academic Press, London, 1990.

    Google Scholar 

  13. Daniel Leivant. Subrecursion and lambda representation over free algebras. In Samuel Buss and Philip Scott, editors, Feasible Mathematics, Perspectives in Computer Science, pages 281–291. Birkhauser-Boston, New York, 1990.

    Google Scholar 

  14. Daniel Leivant. Semantic characterization of number theories. In Y. Moschovakis, editor, Logic from Computer Science, pages 295–318. Springer-Verlag, New York, 1991.

    Google Scholar 

  15. D. Leivant. Predicative recurrence in finite type. In A. Nerode and Yu.V. Matiyasevich, editors, Logical Foundations of Computer Science (Third International Symposium), LNCS, pages 227–239, Berlin, 1994. Springer-Verlag.

    Google Scholar 

  16. Daniel Leivant. A foundational delineation of poly-time. Information and Computation, 110:391–420, 1994. (Special issue of selected papers from LICS'91, edited by G. Kahn). Preminary report: A foundational delineation of computational feasibility, in Proceedings of the Sixth IEEE Conference on Logic in Computer Science, IEEE Computer Society Press, 1991.

    Article  Google Scholar 

  17. Daniel Leivant. Ramified recurrence and computational complexity I: Word recurrence and poly-time. In Peter Clote and Jeffrey Remmel, editors, Feasible Mathematics II, Perspectives in Computer Science, pages 320–343. Birkhauser-Boston, New York, 1994.

    Google Scholar 

  18. Edward Nelson. Predicative Arithmetic. Princeton University Press, Princeton, 1986.

    Google Scholar 

  19. Charles Parsons. On a number-theoretic choice schema and its relation to induction. In A. Kino, J. Myhill, and R. Vesley, editors, Intuitionism and Proof Theory, pages 459–473. North-Holland, Amsterdam, 1977.

    Google Scholar 

  20. Giuseppe Peano. Arithmetices principia, novo methodo exposita. Torino, 1889. English translation in [Hei67], 83–97.

    Google Scholar 

  21. Dag Prawitz. Ideas and results in proof theory. In J. E. Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, pages 235–307, Amsterdam, 1971. North-Holland.

    Google Scholar 

  22. M. Presburger. Ueber die Vollständigkeit eines gewissen systems der arithmetik ganzer zahlen in welchem die addition als einzige operation hervortritt. In Comptes Rendues, Ier Congrè des Mathématiques des Pays Salves, pages 192–201, 395, Warsaw, 1929.

    Google Scholar 

  23. M. Schönfinkel. Über die Bausteine der mathematischen Logik. Mathematische Annalen, 92:305–316, 1924. English translation: On the building blocks of mathematical logic, in [Hei67], 355–366.

    Article  Google Scholar 

  24. Dana Scott. Existence and description in formal logic. In Bertrand Russell: Philosopher of the Century, pages 28–48. Little, Brown and Co., Boston, 1967.

    Google Scholar 

  25. Dana Scott. Identity and existence in formal logic. In Applications of sheaves, LNM 753, pages 660–669. Springer-Verlag, Berlin, 1979.

    Google Scholar 

  26. Harold Simmons. The realm of primitive recursion. Archive for Mathematical Logic, 27:177–188, 1988.

    Google Scholar 

  27. Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics, an Introduction. North-Holland, Amsterdam, 1988. Two volumes.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Daniel Leivant

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leivant, D. (1995). Intrinsic theories and computational complexity. In: Leivant, D. (eds) Logic and Computational Complexity. LCC 1994. Lecture Notes in Computer Science, vol 960. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60178-3_84

Download citation

  • DOI: https://doi.org/10.1007/3-540-60178-3_84

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60178-4

  • Online ISBN: 978-3-540-44720-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics