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Abstract

While symbolic learning approaches encode the knowledge provided by
the presentation of the cases explicitly into a symbolic representation of
the concept, e.g. formulas, rules, or decision trees, case-based approaches
describe learned concepts implicitly by a pair (CB,d), i.e. by a set CB
of cases and a distance measure d. Given the same information, symbolic
as well as the case-based approach compute a classification when a new
case is presented. This poses the question if there are any differences
concerning the learning power of the two approaches. In this work we will
study the relationship between the case base, the measure of distance,
and the target concept of the learning process. To do so, we transform
a simple symbolic learning algorithm (the version space algorithm) into
an equivalent case-based variant. The achieved results strengthen the
conjecture of the equivalence of the learning power of symbolic and case-
based methods and show the interdependency between the measure used
by a case-based algorithm and the target concept.

1 Introduction

In this paper which is an extended version of (Wess & Globig, 1994) we want
to compare two important learning paradigms — the symbolic (Michalski, Car-
bonell, & Mitchell, 1983) and the case-based approach (Aha, 1991). As a first
step in this direction, Jantke (1992) has already analyzed the common points of
inductive inference and case-based learning. The learning task we study is the
classification of objects (cases). The aim of a classification task is to map the
objects x of a universe U to certain concepts C' C U, i.e. to subsets of the uni-
verse. In the most simple scenario we have to decide the membership problem
of a concept C, i.e. the universe U is separated in two disjoint subsets C' and
-C.

*The presented work was partly supported by the Deutsche Forschungsgemeinschaft, pro-
ject IND-CBL.




We present a simple symbolic learning algorithm (the Version Space (Mit-
chell, 1982)) and transform it into a case-based variant. Based on this example
we will show that for case-based approaches there exists a strong tradeoff bet-
ween the set of representable concepts and the minimal number of cases in the
case base. Thus for our scenario the used bias must have a comparable strength
in both approaches.

The second important component of a case-based learning system is the case
selection strategy, i.e. the method to select appropriate cases for the case base.
We study different types of case selection strategies and elaborate relations
between the corresponding case-based learning types and relate them to Gold-
style language learning (cf. (Gold, 1967)) from positive and both positive and
negative examples.

1.1 Symbolic Learning

Under the term symbolic learning' we subsume approaches, e.g. (Michalski et al.,
1983), that code the knowledge provided by the presentation of the cases into a
symbolic representation of the concept only, e.g. by formulas, rules, or decision
trees. These learning approaches produce after each presentation of a case a
hypothesis formulated in a pregiven (formal) hypothesis language. The aim is
to converge against a hypothesis that fulfills a pregiven criterion of correctness.

We will call the phase while the algorithms build their hypothesis learning
phase and the phase while these hypotheses are used to classify new objects
application phase. The fundamental problem the symbolic and the case-based
approach have to solve during the learning phase is the same. At every moment
the system knows the correct classification of a finite subset of the universe only.
The knowledge that the algorithm is able to use is incomplete and, therefore,
the computed hypothesis needs not to be correct.

Symbolic approaches can be characterized along the following dimensions

(Jantke & Lange, 1989):

Problem class: For the characterization of a certain algorithm it is important
to know the class of problems that it has to solve.

Presented information: The learner may get information of different types.
It is important to specify, how the presented cases are selected. They may
follow an enumeration of all objects or they are drawn according to a given
distribution.

Semantic of the presented information: The relation between the presen-
ted information and the problem class must be specified.

1Case-based systems may also use symbolic knowledge. The use of the term ”symbolic
learning” in this work may therefore be confusing to the reader. But, since the term "symbolic
learning” is also used to contrast a special class of learning approaches to systems which use
neural networks, we think that the use of the term ”symbolic learning” as characterization of
these approaches is appropriate.



Hypothesis space: Like the problem class the class of allowed hypotheses
must be characterized. To represent their hypotheses symbolic algorithms
may for example use a fragment of the predicate logic.

Learning algorithms: For a description of the learning problem the set of
allowed learning algorithms must be given. We will demand that the
algorithms produce a hypothesis after each presentation.

Convergence of the sequence of hypotheses: We have assumed that the
learning algorithm produces a hypothesis after each presentation. It must
be clarified which hypothesis is identified by a given sequence in the limit.

Successful learning: Because of the learning system produces a sequence of
hypotheses, there must be a criterion, whether this sequence is a successful
learning.

It is important to remember that in symbolic learning cases are not used du-
ring the application phase, i.e. to classify new objects. The knowledge provided
by the presentation of the cases during the learning phase is completely coded
in the symbolic representation of the hypothesis. This compilation process may
be seen as a abstraction step.

These terms could also be used to describe case-based algorithms. Howe-
ver, case-based systems have additional characteristical properties that we will
describe in the next section.

2 Case-Based Learning

Case-based learning (Aha, 1991) applies techniques of nearest neighbor clas-
sification (Dasarathy, 1990) in symbolic domains. In case-based learning the
learning phase and the application phase are not strictly separated (Kolodner,
1993). The basic idea is to use the knowledge of the known cases directly to
solve new problems. Direct means that the system does not try to extract the
whole knowledge from the case to operate with the extracted knowledge only.
All cases (or a subset) are stored and interpreted during the solution of new
problems.

Case-based methods solve a given problem in a sequence of steps (Aamodt

& Plaza, 1994):

Retrieve: In a first step the system tries to retrieve the relevant cases from the
case base C'B. From the cases retrieved in the first step the learner has
to select one. We will call this case the reference case.

Reuse: The reference cases is used to solve the new problem. If the case does
not match perfectly the new situation, it has to be adapted. Therefore,
the learner must have knowledge which modifications are allowed. This



knowledge is tightly related to the domain, where the learning takes place.
The complexity of modifications vary from simple parameter changes to
the construction of new solutions for parts of the old solution that cannot
be reused in the new situation.

Revise: If the learner has the ability to evaluate the new solution, a test of the
solution will follow. If there arise some problems, the solution must be
modified again.

Retain: In the learning phase the learner may change its knowledge depending
of the feedback of the user. Learning may change all the components of
the learner. The easiest way of modification relates to the case base. The
new solution can be stored in the case base. If the reference case was not
optimal, the methods for the retrieval may be changed.

The following section describes the basic algorithm we want to use for our
learning problem.

2.1 Basic Algorithm

In the application phase, a case-based system tries to classify a new case with
respect to a set of stored cases, the case base C'B. For simplicity, we consider
cases as tuples (x, class(x)) where x is a description of the case and class(x)
is the classification. Given a new case (y,?) with unknown classification, the
system searches in the case base C'B for the nearest neighbor (x,class(x)) (or
the most similar case) according to a given distance measure d. Then it states
the classification class(x) of the nearest neighbor as the classification of the new
case (y,7), i.e. (y,class(x)). The basic algorithm (Aha, 1991) for a case-based
approach is presented in Figure 1.

From the viewpoint of machine learning, case-based learning may be seen as
a concept formation task (Richter, 1992). This raises the question how the lear-
ned concepts are represented in case-based approaches. Contrary to symbolic
learning systems, which represent a learned concept ezplicitly, e.g. by formu-
las, rules, or decision trees, case-based systems describe a concept C implicitly
(Holte, 1990) by a pair (CB,d). The relationship between the case base and
the measure used for classification may be characterized by the equation:

‘ Concept = Case Base + Distance Measure

In analogy to arithmetic this equation indicates that it is possible to re-
present a given concept C' in multiple ways, i.e. there exist several pairs C' =
(CB1,dy), (CBa2,ds),...,(CBy,dy) for the same concept C'. Furthermore, the
equation gives a hint how a case-based learner can improve its classification
ability. There are in principle two possibilities to improve a case-based system.
The system can



Basic Algorithm for Case-Based Classification
1. Define CB = { } and initialize d
2. A new case (y, class(y)) is presented
3. Find a case (x, class(x)) € C'B so that d(y,x) is minimal.
4. If class(y) is unknown, i.e. (y,?) then

(a) State class(x) as classification of (y,?), i.e.
(v, class(x)).
(b) Ask user for the correct classification class(y) of (y,7).

5. If class(y) = class(x)
then classification := correct
else classification := incorrect

6. Modify d and/or C'B with respect to classification.

7. Go to step 2

Figure 1: Basic Algorithm for a Case-Based Classifier

1. learn by changing the case base,
2. learn by changing the measure.

During the learning phase a case-based system (cf. Figure 1) gets a sequence
of cases X1, Xa,..., X} with X; = (x;, class(x;)) and computes a sequence of
pairs (CBl, dl), (CBQ, dz), ceey (CBk, dk) with CBZ g {Xl,XQ, .. ;Xz} The
aim is to get in the limit a pair (CB,,d,) that needs no further change, i.e.
dn Vm > n (CB,,d,) = (CBp,dy), because it is a correct classifier for the
target concept C.

2.2 Remarks

From the above description of the principle work of case-based and symbolic
algorithms we can draw the following conclusions immediately.

e Both procedures produce a hypothesis when a new case is presented. Gi-
ven only input and the classification behavior from the algorithms and the
hypotheses, it is impossible to distinguish between the approaches.

e The hypotheses the algorithms produce work differently. The symbolic
algorithm builds up its hypothesis by revealing the common characteri-
stics of the examples in a pregiven hypothesis language. The hypothesis



describes the relation between an object and the concept. The main com-
ponent of the hypothesis of a case-based learner is a measure that states
the similarity or distance between objects. The measure defines a relation
between two objects and is therefore independent from the existence of a
concept.

e A main difference between case-based and symbolic algorithms is the re-
presentation of the learned concept. The hypothesis produced by a case-
based algorithm represents the concept only implicitly, while symbolic
procedures build up an explicit representation of the concept. It is often a
non-trivial task to extract a symbolic representation of the concept from
a case-base and a measure. Of course, in finite domains the extension of
the concept can be determined by classifying all objects of the universe.

e If we abandon the modification of the solutions, we must assume that for
all possible solutions a case will be presented and included in the case-
base. Without the possibility to modify solutions the case-based learner
is unable to produce new solutions.

Based on these characteristics a comparison of the algorithms must clarify
the following questions (Globig, 1993).

e How can the hypotheses the different approaches produce be characterized
and what is the relationship between the hypotheses of the approaches?

e Which class of problems is learnable by the algorithms? Are there diffe-
rences in the learning or application phase?

e Are there hints when to prefer an approach?

e How does the algorithms solve typical problems?

The hypotheses the symbolic algorithms build up are predefined by the hy-
pothesis language. We therefore confine ourselves to a characterization of the
hypotheses of case-based learners.

3 Learning by changing the measure

We now transform a well-known symbolic learner — the Version Space (VS)
from (Mitchell, 1982) — in a case-based variant. The Version Space algorithm is
a simple and well-known symbolic learning algorithm. Because of its simplicity
it is easy to show some properties that hold for many other learning algorithms,
for which it would be difficult to prove them.

The case-based variant simulates the symbolic algorithm in the following
sense. If an object is classified by the symbolic algorithm, then it is classified
equally by the case-based variant.



3.1 Symbolic Version Space

The universe U of cases consists of finite vectors over finite value sets W; (U =
Wi x...xW,). We want to decide the membership problem of a certain concept
C'. The concepts to learn fix the value of certain attributes.? These concepts C
can be described as vectors (C1,...,Cp), with C; = * or C; = a;; € W;. A case
((a1,...,an),class(a)) fulfills the concept C| if for all 1 < i < n holds: C; = *
or C; = a;, i.e. C; = * is fulfilled by every x € W;. We further demand that
C; # * for at least one .

A concept C is called consistent with a set of cases, if all positive cases,
i.e. class(x) = +, of the set fulfill the concept and none of the negative, i.e.
class(x) = —, does. A concept C' is called more general (more specific) than
C'if C D C" (C C ). The symbolic version space (Mitchell, 1982) solves the
learning problem by updating two sets S and G of concepts. S contains the
most specific concept that is consistent with the known cases and G includes
the most general concepts consistent with the known cases. The task of the
symbolic algorithm is to change the sets S and G in order to preserve these
properties. Figure 2 shows the algorithm (cf. (Mitchell, 1982)). For simplicity
we assume that at first a positive case a! is given to initialize the sets.

It is important that at every moment all cases subsumed by S are known to
be positive, and all cases that are not subsumed by any concept of G are known
to be negative. If a case is presented that violates this condition, the target
concept is not in the version space. This observation leads to a partial decision
function VS : U — {0, 1} that can be used to classify new cases:

1 ifYC € S[C(x) = 1]
VS(x)={ 0 ifVC e G[O(x) = 0]

7?7  otherwise

As long as S # G holds VS will not classify all cases of the universe. If a
case is covered by S but not by G it may belong to the concept C' or not. So
VS will not return an answer for those cases (this is the semantics of the ”?” in
the decision function).

3.1.1 Example

To illustrate this version space algorithm we present a very simple example. The
universe U is U = shape X size = {Square, Circle} x {big, small}. Figure 3
shows the graph of all learnable concepts.

Let us study the changes of S and G during the learning process. If the first
positive case is ((Cirele, big),+) we have:

S = {(Circle, big)} G = {(*,*)}

2These concepts represent the conjunctions of atomic formulas z; = a;, e.g. shape =
Circle A size = big.



Version Space Algorithm

1.
2.

Initialize G = {(*,...,*)} and S = {a'}.

If the actual case is (a, +)
then remove all concepts from G that do not subsume the positive case.
Search for the most specific concept C of the version space that subsumes

all positive cases and define S = {C}. If there is no such C define S = 0.

. If the actual case is (a, —)

then remove all concepts from S which are fulfilled by a.

For all concepts g € G that subsume a, search for the most general
specializations that do not subsume a but all known positive cases.
Replace g by the found concepts.

. If G or S is empty or there is a concept g in GG that is more specific

than the concept from S, then ERROR: Not a concept of the version
space!

. If S = G then STOP: Concept = S

else go to 2.

Figure 2: Algorithm for the symbolic version space




(*.%)

(S*) (C*) (*, b) (*,9)

(S b (S 9 (C,b) (C,9
Figure 3: Set of the learnable concepts over U

Let the second case be negative ((Square,small),—). This forces the algo-
rithm to specialize the concept in G. Because all concepts that replace (x,*)
must be consistent with the known cases, the most general specialization are

(*,big), (Circle,*). So, S and G change to:
S = {(Circle, big)} G = {(*,big), (Circle,*)}

If the third case ((Square, big), +) is positive we must generalize the concept in
S and specialize the concept in G. The only possible concept consistent with
the cases is (%, big). S and G turn out to be:

S ={(xbig)} G ={(x,big)}

Now S and G are equal and contain only a single concept. The learned concept
C = (*,big) is defined totally, i.e. for every case of the universe it is possible to
decide whether it fulfills the target concept. If we present more cases, the sets
S and G will not change.

3.2 Case-Based Version Space

If we analyze the version space algorithm, it is obvious that the main learning
task is to distinguish between relevant and irrelevant attributes. We will use
this observation to construct a case-based variant VS-CBR of the algorithm of
the previous section. An attribute value is called relevant, if it is part of the



target concept C = (C4,...,Cy) (C; € W; U {*}). For every attribute i, we
define a function f; that maps ¢ € W; to {0, 1} with the following definition:

1 . Ci=«x
fi(x) _{ 0 : otherwise

Note that f; = 0 if C; = *. That means the value of the ith attribute does
not influence the measure of similarity. The functions f; will be combined to
f: U — {0,1}" f((a1,...,an)) = (fi(a1),..., fu(an)). The distance between

two cases a and b is then defined using the city-block metric as follows

dg(a,b) == [fi(ar) = fi(br)| + ... + |fa(an) = fa(bn)]

It is obvious that every change of the functions f1, fa, ..., f, causes a change
of the underlying measure dg. The intended function f; is learnable by the
algorithm in Figure 4. The algorithm expects the first case to be positive.?

Algorithm to Learn f for VS-CBR
1. Initialize f;(x;) =0 for all i, 2; € W;.

2. Let the first positive case be ((a1,...,an),+). Set f;(a;) = 1 for all 7 and
CB = {(a,+)}.
3. Get a new case ((by,...,by),class(b)).

4. If class(b) is negative, store b in the case base CB, i.e. CB := CBU
{(b,—)}.
5. If class(b) is positive and f;(b;) = 0, then let fi(z;) = 0 for all ; € W

(f; maps now every value to zero).

6. If there exist two cases (a, class(a)), (b, class(b)) € CB with dg(a,b) =0
and class(a) # class(b) then ERROR: The target concept C is not
member of the version space.

7. If the concept C' is determined then STOP: The concept is learned. The
classifier (C'B, dy) consists of the case base C'B and the measure dy.

8. Go to step 3.

Figure 4: Algorithm to learn f for VS-CBR

If the concept is learned, the function f and the case base C'B are used for

3If the first case is not positive, the learner may store all negative cases and start the
algorithm, if the first positive case is presented.

10



classification. Given a new case (c,?), the set
F.={xeCB|Yy € CBdgx,c)<dg(y,c)}

is computed. The classification class(x) of the nearest neighbor (x, class(x))
is then used for the classification of the new case (¢,?). If F' contains more
than one case with different classifications then class(c) is determined by a
fixed strategy to solve this conflict. Different strategies are possible and each
strategy will induce its own semantics for VS-CBR.

For example, one conflict solving strategy may state the minimal classifica-
tion according to a given ordering of the concepts. This strategy is used in the
following decision function:

VS-CBR(x) = min{class(y) |y € CB A Yz € CB dg(y,x) < de(z,x)}

To solve the membership problem, we assume that a case (c,?) is classified
as negative if it has the same minimal distance from a positive and a negative
case, i.e. d((a,+),(c,?)) = d((b,—),(¢c,?)) is minimal. To achieve this behavior
of the classifier the ordering of the concepts must be 7 —7 <7 + 7.

3.2.1 Example

Before analyzing the classification ability of VS-CBR in more detail, we illu-
strate the algorithm by the same simple example we have used for the VS (cf.
section 3.1.1). Because the universe has only two dimensions, two functions
f1 : shape — {0,1} and fy : size — {0, 1} are needed. The first positive case
((Circle, big),+) is used to initialize the functions f; and fa.

1 if 2 = Circle
hiz) = {0 otherwise

s = {1 Tyt

0 otherwise

CB = {((Circle,big),+)}

The next case of our sequence is ((Square, small), —). This new case is stored
in the case base.

1 if 2 = Circle
hiz) = { 0 otherwise
1 ify=big
P(y) = { 0 otherwise
CB = {((Circle,big),+), ((Square, small), —)}

Now (C'B, dg) classifies ((Circle, big), +) as positive only, because every other ca-
se has a distance > 1 from ((Circle, big),+) and < 1 from ((Square, small), —).

11



As third case assume ((Square, big),+). Because fi(Square) = 0 holds f; is
defined to be zero for all values. The new case is not stored in the case base.

fie) = 0
Foly) = {1 if y = big

0 otherwise

CB = {((Circle,big),+), ((Square, small), —)}

We may now test the elements of the universe U. They are all correctly classified.
However, it is not obvious from the algorithm why the learning process can be
stopped at this point.

3.3 Analysis

Now let us analyze VS-CBR’s way of classification in more detail. Positive and
negative cases are used differently in VS-CBR during the learning phase:

e Positive cases are used to change f, i.e. to adapt the distance measure dy.
They will not be stored in the case base (with the exception of the very
first positive case).

o Negative cases are stored in the case base C'B but do not change the
distance measure.

The information that is used by VS to change S and G is used by VS-CBR
to change the case base or the distance measure.

It is easy to show that all cases which are classified by the symbolic VS
will also be classified correctly by the case-based one. The difference is that
the case-based variant VS-CBR computes a classification for every case of the
universe (because the distance measure is total) while the symbolic VS classifies
only if the proposed classification can be proven to be correct. Otherwise (i.e.
the case fulfills a concept from G but not the concept in S) it will not produce
any classification at all. If we add a test whether the classification of the nearest
neighbor is correct to VS-CBR, we can force VS-CBR to produce only certain
classifications, too. But this test would more or less be a variant of the original
VS algorithm.

We have shown that it is possible to reformulate the Version Space algorithm
in a case-based manner so that the case-based variant simulates the symbolic
algorithm. As we have seen a case-based learning system consists of two main
parts: the case base and the distance measure. Therefore, we want to analyze
the implications of the choice of the distance measure and the strategy to select
cases for the case base.

12



3.4 Comparing different measures

In this section consequences of the choice of d are drawn. For the rest of section
3 we assume the following scenario:

1. The universe U of cases is finite.
2. We have to decide the membership problem of a certain concept C'.

3. The distance measure d is total and satisfies the following condition:

Va,b,x € Uld(a,a) =0 A (d(a,b) = 0 = d(x,a) = d(x,b))].

Condition 3 has two important consequences: First, the relation ~ C U x U
defined by x ~ y < d(x,y) = 0 is an equivalence relation. Second, all mem-
bers of the equivalence relation must have the same classification because there
cannot exist any case to separate them. |U/ ~ | is the number of equivalence
classes that are induced by ~. So we can state that d is able to represent exactly
those concepts C' that satisfy d(x,y) = 0 = C(x) = C(y), i.e. the members of
an equivalence class must have the same classification.

The measure d is able to distinguish between 2!Y/~| different concepts C;.
Each concept can be represented by almost |U/ ~ | (appropriate) cases. In
other words, in a case-based classifier (C'B,d) the measure d defines the set of
the learnable concepts and the case base CB selects a concept from this set.

During the learning process the case-based system alters. On one hand,
case-based systems (CB,d) use the cases in the case base C'B to fill up the
equivalence classes induced by the measure d. On the other hand, they use
the cases to lower the number of equivalence classes by changing the measure
d. Thereby, the target concept C' may be identified by fewer cases. But, a
lower number of equivalence classes means that the modified measure d’ can
distinguish between fewer concepts.

Having this in mind, we can compare case-based systems with respect to
two dimensions: minimality and universality. The first dimension relates to the
implicit knowledge that is coded into the used measure d. Because we are not
able to measure this implicit knowledge directly, we have to look at the size of
the case base instead. More knowledge coded in the used measure d will result
in a smaller (minimal) size of the case base C'B within the classifier (C'B, d).

Definition 1 The measure dy is called better informed about a concept C than
a measure do if*

AC B, Crin U VC B, Crin U
[(CBl,dl) =C= (CBQ,CZQ) = |CBl| < |CB2|]

A Cjin B denotes that A is a finite subset of B

13



The second dimension relates to the set of representable concepts. We must
distinguish between the representability and the learnability of a concept. A
concept C' is called representable by a measure d, if there ezists a finite case
base C'B such that (CB,d) is a classifier for C. A concept C'is called learnable
by a measure d, if there exists a strategy to build a finite case base C'B such
that in the limit (C'B, d) is a classifier for the concept.

Definition 2 A measure di is called more universal than a measure ds iff the
set of concepts that are representable by ds is a proper subset of the set of
concepts that are representable by d.

Using an universal measure conflicts the minimality of the case base. Re-
ducing the size of the case base, which means to code more knowledge into the
measure, usually results in a less universal measure. We can distinguish two
extreme situations:

All knowledge is coded into the case base: The measure is minimalif and
only if the compared cases are identical, i.e.

1 ifx#y
dep(x,y) = { 0 if otherwise

The measure dep is universal because it is able to learn every binary
concept C; in the given universe U. But to do so, it needs the whole
universe as a case base, i.e. CB := U. Thus, the resulting system (U, d¢p)
is universal but not minimal.

All knowledge is coded into the measure: The measure is minimal if and
only if the classification of the compared cases is identical, i.e. the measure
d¢ knows the definition of the target concept C.

do(x,y) = { 1 if (C(x) # C(y))

0 1if otherwise

Nearly the whole knowledge about the concept is then coded into the
measure dc. The case base contains almost one positive case ¢t and one
negative case ¢~ and is used only to choose between some trivial variations.
The measure d¢ can only distinguish between four concepts (C', =C, True
— i.e. all cases are positive, False — i.e. all cases are negative). Thus, the
resulting system ({c*,c™},d¢) is minimal but not universal.

We illustrate the contrasting nature of these two aims in Figure 5 by an
example. This figure shows different measures d in relation to the minimal size
of the case base C'B to learn a certain concept C in the relation to the total
number of learnable concepts. For the table, we use a universe U of cases that
consist of four attributes. Each attribute can take one value out of 16. So, the

14



Used measure | Minimal size of CB | # Represent. concepts
dcn 65536 = 164 965536
dj 16 65536 = 21°
d; 4 16 = 24
de 2 92

Figure 5: Comparing different measures

size of the universe U is 65536. The concept the measures try to learn, fix two
attributes out of four.

The universal measure d¢ g is able to represent all binary concepts, while the
minimal measure d¢ needs only two cases to represent the learned concept. The
other measures in the Figure 5 are between these two extremes. The measures
d} and d;} are neither maximally universal nor able to represent the concept
with a minimal case base. dl is the distance measure computed for VS-CBR
after the first case has been presented. In every dimension exactly one value
is mapped to 1. The universe U is therefore mapped onto the vertices of a
four dimensional cube. d;} is the measure used when VS-CBR has learned the
concept. It distinguishes only between the two relevant values of the concept
and consequently builds up only four equivalence classes.

We can draw the following conclusions from these observations.

e Changing the used measure by coding more knowledge into it means tra-
ding universality against minimality.

e In a case-based learner, two processes — reducing the set of the represen-
table concepts (hypothesis space) and increasing the size of the case base
— should be performed.

e The last measure in Figure 5 indicates a simple way to reformulate any
symbolic algorithm in a case-based manner, i.e. use the actual symbolic
hypothesis to construct such a measure and store one positive and one
negative case in the case base.

3.5 Using extended measures

We have shown that under the assumptions of this section a concept C' is re-
presentable if and only if d(x,y) = 0 = C(x) = C(y). Whether a concept
C is representable by a given distance measure d, therefore, depends on the
definition of the identity, i.e. the distance d(x,y) = 0, only. If the concept C

15



Figure 6: Graphical representation of concept C' (cf. page 16)

is representable by d, all other distances may be mapped to any value greater
than zero. This poses the question if it does make any sense to use a distance
measure d that maps distances between cases to a greater set of values than
{0, 1}.

The only reason to use a more complex distance measure (in our simple
scenario; cf. (Wess, 1993)) is the hope to get more reliable hypotheses before
the concept C' is learned, i.e. when not all equivalence classes of the measure

are filled.

3.5.1 Example

To illustrate this, we compare two measures that can learn the same concepts.
Let the universe consist of cases with four attributes. The values for each
attribute are {0,...,15}. So the universe is U = {0,...,15}* The concept to
learn is C(x), x := (21,...,24) (cf. Figure 6).

C(X)I1<:>(I228/\I4<8)\/(l‘428/\l‘2<8)

and the distance measures are:

0 : a=b
di(a,b) {1 : otherwise

do(a,b) = Y la; — bl
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Figure 7: Classification rate in percent for d; and ds with cases bases of different
size

Obviously both measures are able to represent the same concepts in the uni-
verse U, because d;(a,b) = 0 <& a = b. Figure 7 shows the classification rates
for the given concept C(x) with case bases of different sizes. To classify more
than 90% correctly with the measure d; more than 52000 cases, are required.

The portion of correctly classified cases grows with the measure dy while it is
nearly constant with measure dy, i.e. d2 of (C'Bg,d5) is a much better informed
measure than the dy of (CBy,d;). The difference between the measures d; and
ds is the significance of the distance value. If d; measures a distance greater
than 0 there is no hint whether the classification of the cases is identical or not.
On the other hand, a small distance measured by d» indicates a high probability
that the cases can be equally classified.

This result does not imply that ds is the best choice for all concepts (Globig
& Wess, 1994). It is possible to define concepts where a small distance between
cases implies a high probability for different classification. An example is the
following concept (cf. Figure 8):

Cy(x)=1 < ((x2 mod 2 =0)A (24 mod 2 =1))V
((x4 mod 2 =0) A (22 mod 2 =1))

The rate of correct classifications for ds and concept Cy will be nearly the
same as the rate of dy in Figure 7.

4 Learning by changing the case base

In the last section we analyzed some aspects of the choice of the distance mea-
sure. In this section we want discuss the influence of the choice of the case
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Figure 8: Graphical representation of concept Cy (cf. page 17)

selection strategy on the set of the learnable concepts. The example systems
of the last section store all presented cases. In this section the measure of si-
milarity is fixed. In (Jantke, 1992) Jantke has already shown that a case-based
system can simulate an inductive learning algorithm if the similarity measure
can be changed arbitrarily.

We have done this comparisons in the area of learning indexed families of
formal languages (cf. (Angluin, 1980)). This comparison was done by one of
the authors together with Steffen Lange. A more detailed description of theses
results including the proofs of the theorems can be found in (Globig & Lange,
1994).

The definitions of this section are adapted from the Inductive Inference li-
terature (cf. (Angluin, 1980)). Our target objects are (formal) languages over
a finite alphabet A. By AT we denote the set of all non-empty strings over the
alphabet A. Any subset L of At is called a language. We set L = AT\ L.

By IN = {1,2,...} we denote the set of all natural numbers. We use Q1]
to denote the set of all rational numbers between 0 and 1. Furthermore, by
card(B) we denote the cardinality of set B. We write B#C if B, and C are
incomparable with respect to inclusion.

There are two basic ways to present information about a language to a
learner. We can present positive data only or positive and negative data. These
presentations are called texzt and informant, respectively. A tezt for a language L
is an infinite sequence ¢ = (s1,b1), (52, b2), ... with (s;,b;) € AT x {+} such that
{sj | j € N} = L. Let t[k] be the initial sequence (s1,b1), (s2,b2), ..., (s, bx) of
t. We set tT[k] = {s; | j < k}. Let text(L) denote the set of all texts of L. An
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informant for a language L is an infinite sequence ¢ = (s1,b1), (s2,b2),... with
(s5,b;) € A*x{+,—}suchthat {s; | j €N, bj =+} = Land{s; | j €N, b; =
—} = A*\L. Let i[k] be the initial sequence (s1,b1),(s2,b2),...,(sk,bx) of i.
Furthermore, we set it[k] = {s; | j <k, b =+} and i"[k] = {s; | j <k, b; =
—}. By informant(L) we denote the set of all informants of L. Without loss of
generality we assume that ¢[k] (i[k]) is coded as a natural number that represents
the initial segment of the text (resp. informant).

We restrict ourselves to investigate the learnability of indexed families of
recursive languages over A (cf. (Angluin, 1980)). A sequence £ = Ly, Lo, ... is
said to be an indexzed family if all L; are non-empty and there is a recursive
function f such that for all indices j and all strings w € At holds

f(j,w)z{ el

0 otherwise

So given an indexed family £ the membership problem is uniformly decidable
for all languages in £ by a single function.

IF denotes the set of all indexed families.

The following definition is adapted from (Angluin, 1980). We use f(z) | to

denote that a function f is defined on input .

Definition 3 Let £ € TF.

Then we say L is learnable from text (resp. learnable from informant)
uf

dM e P VYL e LVt € text(L) (resp. Vi € informant(L))

(1) VneIN M(t[n]) | (resp. Yn € IN M(i[n]) |),
(2) nlingo M(t[n]) = a exists (resp. nh—rnolo M(i[n]) = a exists),
(3) Lo=1L.

LIM.TXT (LIM.INF ) is the set of all indezed families that are learnable from
text (informant).

P denotes the set of the unary computable functions.

In order to formalize case-based learnability we have to define the underlying
similarity measures. o : AT x AT — Qqo,17 1s called a measure of similarity. X
denotes the set of all totally defined and computable similarity measures.

To define case-based learnability in this setting, we use the so called standard
semantics L (cf. (Jantke & Lange, 1993)).

Definition 4 Let CB Cy;, AT x {+,—} and ¢ € ¥ a similarity measure.
Furthermore, let CBY := {s | (s,+) € CB}, CB™ :={s | (s,—) € CB}. Then
we say CB and o describe the language Lyy(CB,o) = Ly (CBY ,CB™,0) :=
{we At |3ec € CB* (o(c,w) >0AV € CB o(c,w) > o(c',w))}.
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Definition 5 Let L € IF and o € X.

Then, £L € REPRY () iff for every L € L there is a OBt Cyi L such that
Ly (CB*,0,0) = L. Moreover, L € REPRi(J) iff for every L € L there are
CB*Y C4in L and CB™ Cyip L such that Ly (CB*,CB~,0)=L.

Let REPR' :=J, . REPR"(¢) and REPR* := J, ., REPR*(0).

So £ € REPRY (L ¢ REPRi) means that there is a o such that £ €
REPR*(0) (£ € REPR*(0)).

Based on the classical definitions we define case-based learnability with re-
spect to a certain case selection strategy.

Definition 6 An indexed family L is said to be case-based learnable from text
by the case selection strategy S : IN — Pot(AT x {+}) iff
Jdoe L VL e L Vte text(L)

(1) VneN CBy = S(tln]) |, and S(n]) € t*n] x {4},
(2) CB = lim CB, ezxists and CB is finite,

n—oo

(3)  Lu(CB,o)=TL.

Definition 7 An indexzed family L is said to be case-based learnable from in-
formant by the case selection strategy S : IN — Pot(AY x {+,—}) iff
do e X VL € L Vi € informant(L)

(1) VneN CBy = S(ln]) I, and SGln]) C (] x {+1) U (™[] x {~1),
(2) CB = lim CB, exists and CB is finite,

n—00

(3)  Lu(CB,o)=L.

Here the learner is not allowed to change the measure of similarity during
the learning process. Therefore, the learning capability depends on the case
selection strategy only.

In the sequel we want to analyze the influence of two dimensions — access to
case history and deleting cases form the case base.

Access to case history: Is the case selection strategy allowed to store any
case that is already presented or has the strategy access to the last one
only?

Deleting cases from the case base: Is the case selection strategy allowed to
delete cases from the case base or does the case base grow monotonically?

With respect to these dimensions we can define types of case selection stra-
tegies. Let C'By be the case base constructed when a learner has seen an initial
sequence of length k.
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Definition 8 Let S be a case selection strategy. Then S is said to be of type®
MO-LC, MO-RA, DE-LC, and DE-RA, respectively, iff the corresponding
condition holds for allk € IN (CBg :=0).

MO-LC iff CBr_1 CCBr CCBr_1 U {(Sk,bk)}
MO-RA iﬁCBk_l gCBk g {(51;b1),~~~;(5k,bk)}
DE-LC iff OB, CCBr_1 U {(Sk, bk)}

DE-RA ZﬁCBk g {(Sl;bl);-~~;(5k;bk)}

We use these abbreviations as prefixes to CBL.TXT and CBL.INF. For
example, £ € DE-RA-CBL.TXT means that there is a case selection strategy
S € DE-RA such that £ can be learned by S in the sense of Definition 6.

Strategies of type MO-RA and DE-RA, respectively, may store multiple
cases in a single learning step. If we demand that strategies of both types store
at most a single case in every learning step their learning capabilities will not
change.

Because many existing systems simply collect all presented cases, we model
this approach, too. A case selection strategy S is said to be of type® CA, if
CBy ={(sj,b;) | j <k} forall ke IN.

It is possible that a CA-CBL.TXT-strategy leads to a case base of infinite
size, for instance, if the language that is described by a text is infinite. So we
have to define what it means that such a strategy learns successfully.

Definition 9 Let £ be an indexed family. We say L € CA-CBL.TXT iff
doe X VL e L VteE text(L)

(1) VYn €N CB, =t*[n] x {+},
(2) 3j €N Ly (CBg,0) =L for all k > j.

CA-CBL.INF is defined analogously.

We say £ € CA-CBL.TXT if for all texts of L, (Ls(CBn,0)),cn con-
verges semantically. This is somehow comparable to the notion of convergence
underlying the identification type BC in Inductive Inference of recursive functi-
ons (Angluin & Smith, 1983). All other case-based learning types demand that
the sequence (C'Bp)nen itself has to converge.

4.1 Learning from Text

The two main results concerning case-based learning from text are contained in

the following theorem (cf. (Globig & Lange, 1994)).

5MO stands for “monotonically”, DE for “delete”, RA for “random access” and LC for
“last case”
6 CA stands for “collect all”
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Theorem 1
LIM.TXT # REPR*
LIM.TXT N REPR' = DE-RA-CBL.TXT

The first part says, that neither all representable indexed families are lear-
nable nor all learnable families representable. So the lack of learning power of
case-based learning from text is due to the lack of representability of indexed
families with positive cases. Problems arise when the indexed family contains
both finite and infinite languages. Indexed Families that are representable with
positive cases only are learnable form text with the most flexible case selection
strategy.

LIM.TXT

DE-RA-CBL.TXT

DE-LC-CBL.TXT H# MO-RA-CBL.TXT

MO-LC-CBL.TXT

CA-CBL.TXT

Figure 9: Relationships between the learning types

Figure 9 shows the relationships between the defined case-based learning
types. If there is a path from T3 to 75, 17 is a proper subset of T5. The figure
indicates that both random access to the already presented cases and the ability
to delete cases from the actual case base increase the learning power of a case-
based learning system. But neither subsumes the other. Note that even if we
allow random access to the presented cases and deleting cases from the case
base the full learning power is not reached.

Collecting all cases results not only in a slow system (because of the size of
the case base) but also reduces the learning power. This reveals the power of
selecting appropriate cases. The more flexible the case selection strategy is, the
more classes can be learned.
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4.2 Learning from Informant

Learning form informant is more powerful than learning from text. It is well
known that every indexed family is learnable from informant. The following
theorems show that this result is valid for case-based learnability, too.

Theorem 2

(1) MO-LC-CBL.INF C IF
(2) MO-RA-CBL.INF =IF
(3) DE-LC-CBL.INF =1IF

Corollary 1 DE-RA-CBL.INF =1IF

It is not only remarkable that all indexed families are case-based learnable
but by comparatively simple selection strategies. While in the text-case even
the most flexible case selection strategies were unable to learn all classes in
LIM-TXT in the informant-case random access or deleting from the case base
are enough.

The proof of third equation of Theorem 2 is based on a similarity measure
that allows to represent every language of an indexed family using at most two
cases.

5 Discussion

The symbolic as well as the case-based approach compute a classification when
a new case is presented. If only the input and the output of the algorithms are
known, we will not be able to distinguish between the symbolic and the case-
based approach. The symbolic algorithm builds up its hypothesis by revealing
the common characteristics of the cases in a predefined hypothesis language.
The hypothesis describes the relation between a case and the concept. One
component of a case-based learner is a measure that states the similarity or the
distance between cases.

A main difference between case-based and symbolic classification algorithms
is the representation of the learned concept (cf. section 2.1). A case-based
classifier (C'B,d) consists of a case base C'B and a measure of similarity d. Tt is
possible to represent the same concept C'in multiple ways, i.e. by different tuples
(CB;, d;). But, neither the case base C'B nor the measure sim is sufficient to
build a classifier for C'. The knowledge about the concept C' is spread to both.
Thus, the hypothesis produced by a case-based algorithm represents the concept
only implicitly, while symbolic procedures build up an ezplicit representation of
the learned concept. Often it is a non-trivial task to extract an explicit symbolic
representation of the concept from a case base and a measure.

We have shown a method (cf. section 3.4) to reformulate a symbolic learning
approach into an equivalent case-based variant. If the problems and the power
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of case-based and symbolic approaches are similar (Jantke, 1992) as we have
seen for our simple scenario (cf. section 3.2), the question arises whether the
two approaches can be interchanged in all situations. We assume that we want
to get a classifier only and not an explicit description of the concept. In the
second case, a case-based system cannot be the appropriate choice. Within this
perspective, the symbolic and the case-based approach seem to be interchange-
able in the described context. The symbolic approach corresponds to a kind of
compilation process whereas the case-based approach can be seen as a kind of
wnterpretation during run time. Which approach should be used in a concrete
situation is a question of an adequate representation of the previous knowledge.
If previous knowledge contains a concept of neighborhood that leads to appro-
priate hypotheses (like in section 3.5.1), a case-based approach is a good choice.
In this scenario we are able to code the neighborhood principle into the used
measure. The case-based approach will then produce good hypotheses before
the concept is learned, i.e. when not all equivalence classes of the measure are
filled.

We have analyzed (cf. section 3.4) the relationship between the measure of
similarity, the case base, and the target concept in the described scenario of clas-
sification tasks (Globig, 1993). The learning algorithm needs strong assumptions
about the target concept in order to solve its task with an acceptable number of
cases. Assumptions exclude certain concepts from the hypothesis space. Sym-
bolic learners use these assumptions to restrict the language to represent their
hypotheses. A case-based learner has to code this assumptions into the mea-
sure of similarity. These restrictions of the hypothesis space are called bias.
(Rendell, 1986) divides the abstraction done by a learning system in two parts:
the bias (to describe the amount of assumptions), and the power of the lear-
ner. We have characterized (cf. section 3.4) case-based systems by the number
of learnable concepts and the number of cases they need to identify a target
concept. Case-based algorithms use the cases of the case base to fill equivalence
classes induced by the measure used. On the other hand, they use the know-
ledge from the cases to lower the number of equivalence classes by changing the
measure. Thereby, the target concept may be identified by fewer cases. The
used measure defines the set of the learnable concepts and the cases in the case
base select a concept from this set. The bias relates to the restriction of the
set of learnable concepts induced by the measure of similarity and is therefore
comparable to the degree of universality. The minimal size of the case base
reflects the information the learner needs to come to a correct hypothesis, i.e.
the power of the learner (Rendell, 1986). Using an universal similarity measure
conflicts the minimality of the case base. Reducing the size of the case base,
which means to code more knowledge into the measure, usually results in a less
universal similarity measure. In section 4 we have seen that if we use a fixed
measure of similarity we need advanced case selection strategies to improve the
learning power. The knowledge how to select the appropriate cases is of course
knowledge about the class of target concepts.
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We have stressed that the measure (respectively the way to modify the mea-
sure) is the bias of case-based reasoning. Without any bias inductive learning
is impossible with an acceptable amount of time. Without restrictions of the
hypothesis space, neither symbolic nor case-based systems are able to learn even
in a finite universe. Because case-based systems are based on a bias that cannot
be deduced from the cases, we reject the thesis that case-based classification is
more appropriate in situations with a low amount of previous knowledge.

In the last section we studied different types of case-based learning of indexed
families from positive data and both positive and negative data with respect to
an arbitrary fixed similarity measure. Thereby, we focused our attention on the
problem of how the underlying case selection strategies influence the capabilities
of case-based learners. As it turns out, the choice of the case selection strategy
is of particular importance, if case-based learning from text is investigated. If
both positive and negative data are provided, even quite simple case selection
strategies are sufficient in order to exhaust the full power of case-based learning.

We conclude that for classification tasks there is no fundamental advantage
in the learning power of case-based systems. As we have seen (cf. section 3.5.1)
the intelligibleness of the classifications of a case-based system depends on the
intelligibleness of the measure of similarity and is therefore not a property of
the case-based approach itself. Since the number of cases an algorithm needs
to learn a concept is directly related to the size of the hypothesis space, the
used bias must have a comparable strength in both approaches. While symbolic
approaches use this extra evidential knowledge to restrict the language to re-
present their hypotheses, the case-based algorithms need it to get appropriate
measures of similarity.
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