Skip to main content

Error detecting in inductive inference

  • 1 Inductive Inference Theory
  • Chapter
  • First Online:
Book cover Algorithmic Learning for Knowledge-Based Systems

Abstract

Several well-known inductive inference strategies change the actual hypothesis only when they discover that it “provably misclassifies” an example seen so far. This notion is made mathematically precise and its general power is characterized. In spite of its strength it is shown that this approach is not of universal power. Consequently, then hypotheses are considered which “unprovably misclassify” examples and the properties of this approach are studied. Among others it turns out that this type is of the same power as monotonic identification. Then it is shown that universal power can be achieved only when an unbounded number of alternations of these dual types of hypotheses is allowed. Finally, a universal method is presented enabling an inductive inference strategy to verify the incorrectness of any of its incorrect intermediate hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ANGLUIN, D. (1980), Inductive inference of formal languages from positive data, Information and Control 45, 117–135.

    Google Scholar 

  • ANGLUIN, D., and SMITH, C. H. (1983), Inductive inference: Theory and methods, Computing Surveys 15, 237–269.

    Google Scholar 

  • BARZDIN, J. (1971), Complexity and frequency solution of some algorithmically unsolvable problems, Doct. Diss., Novosibirsk State Univ. (Russian).

    Google Scholar 

  • BARZDIN, J. (1974), Inductive inference of automata, functions and programs, in “Proceedings, International Congress of Mathematicians” pp.455–460.

    Google Scholar 

  • BARZDIN, J., and FREIVALDS, R. (1972), On the prediction of general recursive functions, Soviet Math. Dokl. 13, 1224–1228.

    Google Scholar 

  • BARZDIN, J., and FREIVALDS, R. (1974), Prediction and limit synthesis of recursively enumerable function classes, Theory of algorithms and programs, vol. 1, 100–111 (Russian).

    Google Scholar 

  • BLUM, L., and BLUM, M. (1975), Toward a mathematical theory of inductive inference, Information and Control 28, 125–155.

    Google Scholar 

  • CASE, J., and NGO MANGUELLE, S. (1979), Refinements of inductive inference by Popperian machines, Technical Report Nr. 152, Dept. of Computer Science, State Univ. of New York at Buffalo.

    Google Scholar 

  • CASE, J., and SMITH, C. (1983), Comparison of identification criteria for machine inductive inference, Theoretical Computer Science 25, 193–220.

    Google Scholar 

  • FREIVALDS, R., and BARZDIN, J. (1975), Relations between predictability and identifiability in the limit, Theory of algorithms and programs, vol.2, 26–34 (Russian).

    Google Scholar 

  • FREIVALDS, R., KINBER, E. B., and WIEHAGEN, R. (199x), How inductive inference strategies discover their errors, Information and Computation (to appear)

    Google Scholar 

  • FULK, M. A. (1988), Saving the phenomena: Requirements that inductive inference machines not contradict known data, Information and Computation 79, 193–209.

    Google Scholar 

  • FULK, M. A. (1990), Robust separations in inductive inference, in “Proceedings, 31st IEEE Symposium on Foundations of Computer Science” pp.405–410.

    Google Scholar 

  • FULK, M. A. (1991), personal communication to R. Wiehagen.

    Google Scholar 

  • GOLD, E. M. (1967), Language identification in the limit, Information and Control 10, 447–474.

    Google Scholar 

  • JANTKE, K. P. (1991), Monotonic and non-monotonic inductive inference, New Generation Computing 8, 349–360.

    Google Scholar 

  • KLETTE, R., and WIEHAGEN, R. (1980), Research in the theory of inductive inference by GDR mathematicians — a survey, Information Sciences 22, 149–169.

    Google Scholar 

  • KUMMER, M. (1992), personal communication to E. B. Kinber.

    Google Scholar 

  • OSHERSON, D. N., STOB, M., and WEINSTEIN, S. (1986), “Systems that learn: An introduction to learning theory for cognitive and computer scientists”, MIT Press, Cambridge, Mass.

    Google Scholar 

  • PODNIEKS, K. (1974), Comparing various types of limit synthesis and prediction of functions, Theory of algorithms and programs, vol.1, 68–81 (Russian).

    Google Scholar 

  • POPPER, K. (1968), “The logic of scientific discovery”, 2nd ed. Harper Torch, New York.

    Google Scholar 

  • ROGERS, H. (1967), “Theory of recursive functions and effective computability”, McGraw-Hill, New York.

    Google Scholar 

  • “Theory of algorithms and programs”, vol.1, 2, 3 (1974, 1975, 1977), J. Barzdin, Ed., Latvian State Univ., Riga (Russian).

    Google Scholar 

  • WIEHAGEN, R. (1976), Limes-Erkennung rekursiver Funktionen durch spezielle Strategien, Elektronische Informationsverarbeitung und Kybernetik 12, 93–99 (German).

    Google Scholar 

  • WIEHAGEN, R. (1978a), Zur Theorie der algorithmischen Erkennung, Diss. B, Sektion Mathematik, Humboldt-Univ. Berlin (German).

    Google Scholar 

  • WIEHAGEN, R. (1978b) Characterization problems in the theory of inductive inference, in “Proceedings, Int. Coll. on Automata, Languages and Programming”, G. Ausiello, C. Böhm, Eds., Lecture Notes in Computer Science 62, 494–508.

    Google Scholar 

  • WIEHAGEN, R. (1991), A thesis in inductive inference, in “Proceedings, First International Workshop Nonmonotonic and Inductive Logic” 1990, J. Dix, K. P. Jantke, P. Schmitt, Eds., Lecture Notes in Artificial Intelligence 543, 184–207.

    Google Scholar 

  • WIEHAGEN, R., and ZEUGMANN, T. (1994), Ignoring data may be the only way to learn efficiently, Journal of Experimental and Theoretical Artificial Intelligence 6, 131–144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus P. Jantke Steffen Lange

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freivalds, R., Kinber, E.B., Wiehagen, R. (1995). Error detecting in inductive inference. In: Jantke, K.P., Lange, S. (eds) Algorithmic Learning for Knowledge-Based Systems. Lecture Notes in Computer Science, vol 961. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60217-8_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-60217-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60217-0

  • Online ISBN: 978-3-540-44737-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics