
Verification of a Distributed Summation Algorithm

Frits W. Vaandrager
CW/

P. 0. Box 94079, 1090 GB Amsterdam. The Netherlands

fritsv©cYi.nl
University of Amsterdam

Programming Research Group

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

1 INTRODUCTION

Reasoning about distrib11ted algorithms appears to be intrinsically difficult and
will probably always require a great deal of ingenuity. Nevertheless, research
on formal verification has provided a whole ra11ge of well-established concepts
and techniques that may help us to tackle problems in this area. It seems that
by now the basic principles for reasoning about distributed algorithms have
been discovered and that the main issue that remains is the problem of scale:
we know how to analyze small algorithms but are still lacking methods and
tools to manage the complexity of the the bigger ones (in this context we can
take ''small'' to mean ''fits on one or two pages'').

Not everybody agrees with this view, however, and frequently one can hear
claims that existing approaches cannot deal (or cannot deal in a natural way)
with certain types of distributed algorithms. A new approach is then proposed
to address this problem. A recent example of this is a paper by Chou [3], who
offers a rather pessimistic view on the state-of-the-art, in formal verification:

At present, reasoning about distributed algorithms is still an ad
hoe, trial-and-error process that needs a great deal of ingenuity.
What is lacking is a practical method that supports, on the one
hand, an intuitive way to think about and understand distributed
algorithms and, on the other hand, a formal technique for reasoning
about distributed algorithms using that intuitive understanding.

To illustrate the shor·tcoming of the assertional methods of [2, 5, 6, 7, 8, 10,
13], Chou discusses a variant of Segall's PIF (Propagation of Information with
Feedback) protocol [18]. A complex and messy classical proof of this algorithm
is contrasted with a slightly simpler but definitely n1ore structured proof based
on the new method advocated by the author.

I think tl1at Chou 's view of existing assertional methods is much too pes­
simistic. First of all these methods are not ad-hoe, but provide significant
guidance and structure to verifications. After one has described both the al­
gorithm and its specification as abstract programs, it is usually not so difficult

593

to come up with a first guess of a simulation relation from the state space of
the algorithm to the state space of the specification. In order to state this
simulation it is sometimes necessary to add auxiliary history and prophecy
variables to the low-level program. By just starting to prove that the guessed
simulation relation is indeed a si1nulation, i.e., that for each execution of the
low-level program there exists a corresponding execution of the high-level pro­
gram, one discovers the need for certain invariants, properties that are valid for
all reachable states of the programs. To prove these invariant properties it is
sometimes convenient or even necessary to introduce auxiliary state variables.
Frequently one also has to prove other auxiliar)r invariants first. The existence
of a simulation relation guarantees that the algorithn1 is safe with respect to
the specification: all the finite behaviors of the algorithm are allowed by the
specification. The concepts of invariants, history and prophecy variables, and
simulation relations are so powerful that in most cases they allow one to for­
malize the intuitive reasoning about safety properties of distributed algorithms.
When a simulation relation (and thereby the safety properties) has been estab­
lished, this relation often provides guidance in the subsequent proof that the
algorithm satisfies the required liveness properties: typically one proves that
the simulation relates each fair execution of the low-level program to a fair
execution of the high-level program. Here modalities from temporal logic such
as ''eventually'' and ''leads to'' often 1nake it quite easy to formalize intuitions
about the liveness properties of the algorithm.

As an illustration of the use of ''classical'' assertional methods, I present in
this paper a verification of the algorithm discussed by Chou [3]. Altogether, it
took me about two hours to come up with a detailed sketch of the proof (during
a train ride from Leiden to Eindhoven), and less than two weeks to work it out
and write this paper. The proof is completely routine, except for a few nice
invariants and the idea to use a prophecy variable. Unlike history variables,
which date back to the sixties [9], prophecy variables have been introduced only
recently [1], and there are not that many examples of their use. My proof is
not particularly short, but it does formalize in a direct way my own intuitions
about the behavior of this algorithm.

It might very well be the case that for more complex distributed algorithms,
such as [17], new methods will pay off and lead to shorter proofs that are closer
to intuition. This paper shows that, unlike what is claimed by Chou [3], the
old methods still work very well for a variant of Segall's PIF protocol.

2 LABELED TRANSITION SYSTEMS AND SIMULATIONS

In this paper we use a very simple and well-known transition system model.
The model is a simplified version of the I/ 0 automata model [10, 11]: it does not
deal with fairness or other forms of liveness and there is no distinction between
input and output actions. In this section we review some basic definitions
and results concerning automata and simulation proof techniques. For a more
extensive introduction we refer to [12].

594

DEFINITION 1 A labeled transition system or automaton A consists of four com­
ponents:

• A (finite or infinite) set states (A) of states.

• A nonempty set start(A) C states(A) of start states.

• A pair (ext (A), int (A)) of disjoi11t sets of external and internal actions,
respectively. The derived set acts (A) of actions is defined as the union of
ext(A) and int(A).

• A set steps(A) C states(A) x acts(A) x states(A) of steps.

We let s, s', u, u' , .. range over states, and a, .. over actions. We write s a A s',
or just s a> s' if A is clear from the context, as a shorthand for (s', a, s) E

steps(A).
An execution fragment of an automaton A is a finite or infinite alternating

sequence, a = s0 a1s 1a2 s2 · • ·, of states and actions of A, begir1ning with a
state, and if it, is finite also ending with a state, such that for all i, Si ai,;i Si+l ·

The function first gives the first state of an execution fragrr1ent and, for finite
execution fragments, the function last gives the final state. An execution, of
A is an execution fragn1ent that begins with a start state. A state s of A is
reachable if s == last (a) for some fir1ite execution a of A.

The trace of an execution fragment a, written trace (a), is tl1e sequence of
external actions occurri11g in a. A sequence /3 of actions is a trace of autornaton
A if there is an execution a of A with /3 == trace (a). The set of t,races of A
is denoted by traces(A). Suppose s and s' are states of A, and /3 is a finite
sequence of external actions of· A. We write s ~As', or just s' ==? s, if A has a
finite execution fragment a with first(a) == s, trace(a) == /3 and last(a) == s'.

DEFINITION 2 Let A and B be auto111ata with the same external actio11s.

1. A refinement fron1 A to B is a function r from states of A to states of B
that satisfies the following two conditions:

(a) If s is a start state of A then r (s) is a start state of B.

(b) If s a A s' and both s and r(s) are reachable, then r(s) ~ Br(s'),
where /3 == trace((s, a, s')).

2. A forward simulation from A to B is a relation between states of A and
states of B that satisfies the following two conditions:

(a) Ifs is a start state of A then there exists a start state u of B with
(s,u)Ef.

(b) If s a A s', (s, u) E f and s and u are reachable, then there exists
a state u' of B such that u ::::::=; nu' and (s', u') E f, where /3
trace((s, a, s')).

595

3. A history relation from A to B is a forward simulation from A to B whose
inverse is a refinement from B to A.

4. A backward simulation from A to B is a relation between states of A and
states of B that satisfies the following three conditions:

(a) Ifs is a start state of A and u is a reachable state of B with (s, u) E b,
then u is a start state of B.

(b) If s a A s', (s', u') E b and s and u' are reachable, then there exists
a reachable state u of B such that u ~ Bu' and (s, u) E b, where
/3 = trace((s, a, s')).

(c) If s is a reachable state of A then there exists a reachable state u of
B with (s, u) E b.

5. A prophecy relation from A to B is a backward simulation from A to B
whose inverse is a refinement from B to A.

A refinement, forward simulation, etc. is called strong if in each case where
one automaton is required to simulate a step from the other automaton, this
is possible with an execution fragment consisting of exactly one step. 1

A relation R over S1 and S2 is image-finite if for all elements s1 of S1 there
are only finitely many elements s2 of S2 such that (s1, s2) E R.

THEOREM 1 Let A and B be automata with the same external actions.

1. If there is a refinement from A to B then traces (A) C traces (B) .

2. If there is a forward simulation from A to B then traces(A) C traces(B).

3. If there is a history relation from A to B then traces(A) = traces(B).

4. If there is an image-finite backward simulation from A to B then traces (A)
C traces(B).

5. If there is an image-finite prophecy relation from A to B then traces(A) =
traces(B).

3 DESCRIPTION OF THE ALGORITHM

Consider a graph G = (V, E), where Vis a nonempty, finite collection of nodes
and E C V x V is a collection of links. We assume that graph G is undirected,
i.e., (v, w) E E {=} (w, v) E E, and also strongly connected. To each node
v in the graph a value weight(v) is associated, taken from some set M. We
assume that M contains an element unit and that there is a binary operator o

1 Here we use the word ''strong'' in the sense of [14]. Actually, the notions of simulation
that we consider here are weak in the sense of [12] since their definitions include reachability
conditions.

596

on M, such that (M, o, unit) is an Abelian monoid (so o is commutative and
associative and has unit element unit).

Nodes of G represent autonomous processors and links represent communi­
cation channels via which these processors can send messages to each other.
We assume that the communication channels are reliable and that messages are
received in the same order as they are sent. We discuss a simple distributed
algorithm to compute the sum of the weights of all the nodes in the network.
The algorithm is a minor rephrasing of an algorithm described by Chou [3],
which in turn is a variant of Segall 's PIF (Propagation of Information with
Feedback) protocol (18].

The onl)r messages that are required by the algorithm are eleme11ts from M.
A node in t.he network enters the protocol when it receives a first message from
one of its neighbors. Initially, tl1e communication channels for all the links are
empty, except the channel associated to the link e0 from a fixed root node vo
to itself, which contai11s a si11gle message. 2 When an arbitrary node v receives
a first message, it marks the node w from which this message was received.
It then sends a unit message to all its neighbors, except w. Upon receiving
subsequent messages, the values of these messages are added to the weight of
v. As soon as, for a non-root node, the total number of received messages
equals the total number of neighbors, the value that l1as been computed is
sent back to the node from which the first message was received. When, for
root node vo, the total number of received messages equals the total number
of neighbors, the value that has been computed by v0 is produced as the final
outcome of the algorithm.

In Figure 1, the algorithm is specified as an automaton SUM using the
standard precondition/effect style of the I/O automata model [10, 11, 4]. A
minor subtlety is the occurrence of the variable v in the definition of the step
relation, which is neither a state variable nor a formal parameter of the actions.
Semantically, the meaning of this v is determined by an implicit existential
quantification: an action a is enabled in a state s if there exists a valuation c;
of all the variables (including v) that agrees with s on the state variables and
with a on the parameters of the actions, such that the precondition of a holds
under c;. If action a is enabled in s under c; then the effect part of a together
with c; determine the resulting state s'.

For each link e=:::: (v, w), the source v is denoted source(e), the target w is
denoted target(e), and the reverse link (w, v) is denoted e-1 . For each node v,
from(v) gives the set of links with source v and to(v) gives the set of links with
target v, so eEfrom(v) <=> source(e)=v and eEto(v) <=> target(e)==v. All the other
data types and operation symbols used in the specification have the obvious
meaning. The states of SUM are interpretations of five state variables in their
domains. The first four of these variables represent the values of prograrn
variables at each node:

2The assumption that eo = (vo, Vo) E E is not required, but allows for a more uniform
description of the algorithm for each node.

597

Internal: MSG
REPORT

External: RESULT

State Variables: busy E V > Bool
parentE V > E
total E V) M
cnt E V ➔ Int
mq EE ► M*

Init: /\
11

-,busy[v]
Ae mq[e] == if e=eo then append(unit, empty) else empty

MSG(e: E,m: M)
Precondition:

v = target(e) /\ m = head(mq[e])
Effect:

mq[e] := tail(mq(e])
if -,busy[v] then busy[v] : · true

parent[v] := e
total[v] := weight(v)
cnt[v] :== size(from(v)) - 1
for f E from(v)/{e- 1

} do mq[J] := append(unit, mq[J])
else total[v] := total[v] o m

REPORT(e: E, m: M)
Precondition:

cnt[v] := cnt[v] - 1

v = source(e) i= vo /\ busy[v] I\ cnt[v] = 0 I\ e- 1 = parent[v] I\ m = total[v]
Effect:

busy[v] := false
mq[e] := append(m, mq[e])

RESULT(m : M)
Precondition:

busy[vo] I\ cnt[vo] = 0 I\ m = total[vo]
Effect:

busy[vo] := false

FIGURE 1. Automaton SUM.

598

•

• busy tells for each node whether or not it is currently participating in the
protocol; initially busy[v] equals false for each 'V;

• parent is used to remember the link via which a node has been activated;

• total records the sum of the values seen by a node during a run of the
protocol;

• cnt gives the number of values that a node still wants to see before it will
terminate.

State variable mq, finally, represe11ts the contents of the 1nessage queue for each
link. Initially, mq[e] is empty for each link e except e0 .

Automaton SUM has three types of actions: an action MSG, which describes
the receipt and processing of a message, an action REPORT, by which a non
root node sends the final value that it has computed to its parent, and an action
RESULT, which is the last action of the algorithm, used by the root nocle to
output the final result of the computation.

4 CORRECTNESS PROOF

The correctness property 4> of SUM that we want to establish is that each
maximal execution of the automaton consists of a finite number· of interr1al
actions followed by the single output action RESULT(~vEV weight(v)).

Intuitively, propagation of messages occurs in two phases. First unit messages
are sent from node vo into the network, and then partial sums flow back from
the network to vo. In the first phase a spanning tree is constructed with root
vo and this spanning tree is used to accumulate values in the second phase.

4.1 Adding a History Variable

A first important observation about the algorithm is that in each run at most
one message travels on each link. In order to state this property formally as
an invariant, we add a so-called ''history variable'' sent to automaton SUM

. '

that records for each. link e how many messages have been sent on e. Figure 2
describes the automaton SUMh obtained in this way. Variable ~c,ent is an aux­
iliary /history variable in the sense of Owicki and Gries [16] because it does not
occur in conditions nor at the right-hand-side of assign1nents to other variables.
Clearly, adding sent does not change the behavior of automaton SUM. This
can be formalized via the following trivial lemma, which in turn in1plies that
SUM satisfies correctness property 4) if and only if SUMh does.

LEMMA 2 The inverse of the pr·ojection function that maps states from SUMh
to states of SUM is a strong history relation from SUM to SUMh.

Invariant 1 below gives a basic sa11ity property of SUMh: at any time the
number of messages i11 a link is at most equal to tl1e nurnber of messages that
have been sent 011 that link.

599

Internal: MSG
REPORT

External: RESULT

State Variables: busy E V --+) Bool
parentE V ► E
total E V > M

Init: Av -,busy[v]

cnt E V > Int
mq EE > M*
sent EE > lnt

Ae mq[eJ = if e=eo then append(unit, empty) else empty
/\e sent[e] = if e=eo then 1 else 0

MSG(e: E,m: M)
Precondition:

v = target(e) /\ m = head(mq(e])
Effect:

mq[e] : tail(mq[e])
if -ibusy[v] then busy[v] := true

parent[v] := e
total[v] := weight(v)
cnt[v] := size(from(v)) - 1
for f E from(v)/{e- 1 } do mq[f] := append(unit, mq[J])

sent[/] := sent[/] + 1
else total[v] : · · total[v] o m

cnt[v] := tnt[v] - 1

REPORT(e: E,m: M)
Precondition:

v = source(e)-:/; v0 /\ busy[v] I\ cnt[v] = 0 I\ e-1 = parent[v] I\ m = total[v] .
Effect:

busy[v] := false
mq[e] := append(m, mq[e])
sent[e] := sent[e] + 1

RESULT(m: M)
Precondition:

busy[vo] I\ cnt[vo] = 0 I\ m = total[vo]
Effect:

busy[vo] : · false

FIGURE 2. Automaton SUMh obtained from SUM by adding history variable
sent.

600

INVARIANT 1 For all reachable states of SUMh and for all e:

len(mq[e]) < sent[e]

At first sight, Invariant 2 below may look a bit complicated. It is however
easy to give intuition for it. The key part of the invariant is the first conjunct,
which states that at most one message travels on each link. The other conjuncts
are only needed to get the induction to work in the invariant proof. The second
and third conjunct imply that if in a MSG step a value is sent into some channel,
this channels must have been empty in the start state of that step. The fourth
conjunct allows to prove a similar property for REPORT steps. The routine
proof of Invariant 2, which has been omitted here, uses Invariant 1.

lNVARIANri 2 For all reachable states of SUMh and for all v and e:

/\ sent[e} < 1
/\ len(mq[eo])=l .. ➔ (V/Efrom(vo)/{eo}: sent[f]=O)
/\ v=/=-v0 I\ 1busy[v] /\ eEto(v) /\ len(mq[e])=l ► (V/Efrom(v): sent[f]=O)
/\ v=/=-vo /\ busy[v] /\ e = parent[v] ➔ sent [e-1]=0

Invariant 2 is quite powerful and implies in particular that the algorithm will
always terminate.

COROLLARY 3 Automaton SUMh has no infinite executions.

PROOF: Define the state function Norm as follows:

Norm 2.sent[e] - len(mq[e])
eEE

Since both sending and receiving a value increases Norm, each step of SUMh
with label MSC or REPORT increases Norm. By Invariant 2, Norm can be at
most 2.size(E), for any reachable state. Therefore there can be at most finitely
many steps labeled by an internal actions in any execution of SUMh. Since
each RESULT step changes the value of busy[v0] from true to false, there can
be at most one RESULT step after the last internal step. D

A next property that we will established is that each node can be activated
only once in any run of the algorithm. We say that node v is activated in a
step if busy[v] changes from false to true in that step. This implies that v has
been activated iff it has received at least one message. The number of messages
received by a node v equals the number of messages that have been sent to v
minus the number of messages still in transit, and is therefore given by the
state function:

Received (v)
A

sent[e] - len(mq[e])
eEtO(v)

The following Invariant 3 gives a characterization of the value of Received (v)
for reachable states. The proof is straightforward and uses Invariant 2.

601

INVARIANT 3 For all reachabl~ state.5 of SUMh and for all v:

I\ busy[v]
I\ abusy[v]

· ➔ Received(v) = size(to(v)) - cnt[v] > 0
-> Received(v) 0 V Received(v) = size(to(v))

Invariants 2 and 3 together imply that each node is activated at most once in
each, execution. Because suppos,e that in some reachable state some node v is
both inactive and activated. This means -.. ,busy[v] I\ Received(v) > 0. Then
Invariant 3 gives Received(.v) = size(to(v)). But this implies that no J..1S G
action can be enabled-, because this would violate Invariant 2.

We conclude this subsection with two simple invariants that we will use later
on.

INVARIANT 4 For all reachable states of SUMh and for all v:

Received(v) > O· -> v = target(parent[v])

INVARIAN-T 5 For all reachable states of SUMh and for all e:

e =/. eo /\ mq[e] =f. empty -~ Received (source(e)) > 0

4.2 Adding a Prophecy Variable

Intuitively, in the first phase of the algorithm a spanning tree is constructed
with root v0 , and this spanning tree is used t.o accumulate values in the sec­
ond phase. When the algorithn1 sta1·ts, it not clear how the spanni11g tree is
going to look like and in fact any spanning tree is still possible. While the
algorithm proceeds, the spanning tree is constructed step by step. The choice
whether an arbitrary link will: be part of the spanning tree depends on the
relative speeds of the processors, and is entirely no11detern1inistic. Sucl1 un­
predictable, nondeterministic behavior is typical for distributed computation
but often. complicates analysis. Fortunately, tl1e concept of prophecy variables
of Abadi and Lamport [l] allows us to dr·astically reduc:e the nondeterminism
of the algorithm or, more precisely, to· push nondeterminism backwards to- the
initial state. We add to SUMh a new variable tree, which records an initial
guess of the full spanning tree and is used to enforce that the actual tree that
is constructed during execution is equal to this initial guess. Figure 3. describes
the automaton. SUMhP obtained in this way. In Figure 3, tree is the function
that tells for each set of links whether or not it is a tree.. More formally, for
T C E. and E = {sou rce(e), targ~t(e) I e E T}, tree(T) = t·rue iff either T = (/J

or there· exists a nocle v E E such: that for all1 vf · E E there is a unique path of
links· in T lead-ing· from v· to, v'.

In order to show that tree is a prophecy variable in the sense of [.1·, 12],
we establish. a· prophecy relation from. SUMh to SUMhP. For this, we need.
three more invariants. The pr.oof of Invariant 6 uses Inv:ariants 3·, 4· and 5~
Invariants 7 and 8 are· c0mpletely tri:vial~

602'

Internal: MSG
REPORT

External: RESULT

State Variables: busy E V ► Bool
parentE V ► E
total E V ► M

Init: Av -,busy[v]

cnt E V ► Int
mq EE ➔ M*
sent EE ➔ Int
tree EV >E

Ae mq[e] = if e · eo then append(unit, empty) else empty
Ae sent[e] = if e=eo then 1 else 0
Av tree[vo] = eo /\.v = target(tree[v]) /\tree({tree[v] v E V/{vo}})

MSG(e: E,m: M)
Precondition:

v == target(e) A. m = head(mq[e]) /\ (,busy[v] ; e == tree[v])
Effect:

mq[e] := tail(mq(e])
if ,busy[v] then busy[v] :== true

parent[v] := e
total[v] := weight(v)

else

REPORT(e: E, m: M)
Precondition:

cnt[v] :== size(from(v)) - 1
for f E from(v)/{e- 1 } do mq[f] := append(unit, mq[f])

sent [f] : sent [f] + 1
total [v] := total [v] o m
cnt[v] : cnt[v] - 1

v = source(e) i- vo /\ busy[v] I\. cnt[v] == 0 I\ e- 1 == parent[v] I\ m =·total[v]
Effect:

busy[v] := false
mq[e] :== append(m, mq[e])
sent[e] := sent[e] + 1

RESULT(m : M)
Precondition:

busy[vo] I\. cnt[vo] = 0 I\ m == total[vo]
Effect:

busy[vo] := false

FIGURE 3. Automaton SUMhP obtained fron1. SUMh by adding prophecy
variable tree.

603

INVARIANT 6 Let T be the state function defined by

T {parent[v] I v -:f. vo /\ Received(v) > O}

Then tree(T) holds for all reachable states of SUMh.

INVARIANT 7 For all' reachable states of SUMhP and for all· v:

•

Received (v) > 0 --!,,) parent [v] == tree [v]

INVARIANT 8 For all reachable states of SUMhP and for all v:

tree[vo] = eo /\ v = target(tree [v]) /\ tree({ tree [v] I v E V / { vo}})

LEMMA 4 The inverse of the projection function 1r that maps states of SUMhP
to states of SUMh is a strong image-finite prophecy relation from· SUMh to
SUMhp.

PROOF: Mappin_g rr is trivially a strong refinement from SUMhP to SUMh.
Since the domain of variable tree is finite, 1r-1 is image-finite. We prove that
rr- 1 satisfies the three conditions of a backward simulation (condition (b) in
the strong sense).

For condition (a), suppose that sis a start state of SUMh and u is a reachable
state of SUMhP with 1r(u) == s. Then it follows by Invariant 8 that u is a start
state of SUMhP.

To prove that 1r- 1 satisfies conditions (b) and (c) we need the following
claim: a state u of SUMhP is reachable iff rr(u) is reachable and u satisfies
the properties of Invariants 7 and 8. Direction ''⇒'' of this claim follows by
induction· on the length of the shortest execution to u, and uses tl1e fact that 1r

is a strong· refinement together witB. Invariants 7 and 8. Direction ''<='' of the
claim follows by induction on the length of the shortest execution to 1r(u).

Using the clain1, it is routine to prove condition (b). Condition (c) follows
from the claim together with Invariant 6. D

Note that as a direct corollary of Lemma 4 all invariants of SUMh are also
invariants of SUMhP.

4-3 A Refinement
I·n this subsection we will, prove that there exists a refinement from automaton
SUMhp to the automaton S defined in Figure 4. Automaton S is extremely
simple. It lias only two states: an initial state where done.=false and a final
state where done=true. There is one step, which. starts in- the initial· state, has
label; RESULT(~vE v weight(v))·, and ends in. the final- state.

Define state functions lnit and Done by

Init(v)

Done(v)

__,,busy[v] /\ Receivede(v) == 0

--., busy [-u] /\ Received (v) = size(to(v))

604'

•

External: RESULT

State Variables: done E Bool

Init: -.done

RESULT(m: M)
Precondition:

,done I\ m == I:veV weight(v)
Effect:

done :== true

FIGURE 4. Automaton S .
•

As a consequence of Invariant 3, each reachable state of SUMhP satisfies, for
each v, either Init(v) or busy[v] or Done(v). In order to establish a refinement
from SUMhP to S, we again need two extra invariants. Invariant 9 states that,
until the moment where computation has finished, there is a conservation of
weight in the network. Invariant 10 allows us to prove that in a state where
RESULT is enabled, Done(v) holds for all nodes except v0 .

INVARIANT 9 For all reachable states of SUMhP:

-,Done(vo) > weight(v)
{ vE V!Received(v)=O}

+ __ total[v]

{ vE V1 busy[v]}

+ head(mq[e])

INVARIANT 10 For all reachable states of SUMhP and for all v and e:

v =I= vo /\ e = tree[v] I\ sent[e- 1] = 1 -➔ Done(v)

LEMMA 5 The function r from states of SUMhP to states of S given by

r(s) F done

is a refinement from SUMhP to S.

4-4 Absence of Deadlock

s p= Done(vo)

The existence of a refinement mapping from SUMhp to S does not guarantee
that automaton SUMhP will produce any output: the aut.omaton still may

605

have an infinite loop of internfl.l, actions or get into a state of deadlock before
an output step has been done. We can easily prove the absence of infinite loops
by using the result of Corollary· 3 that SUM 1' has no infinite executions and
the fact that there is a. strong prophecy relation from SUMh to SUM lip. The
p:roof that SUM:hP has no; premature deadlocks is more involved· and requires
three additonal; invariants.

INVARIANT 11. For al.l reacha/Jle states of SlJMhp, sent[eo] = 1.

!:NV.AR.IA.NT 1:2 For all reachabl.e states of SYM'hp and for all v and e:

e = tree[v]:/\ Init(v) I\ mq_{e] = empty ->· lnit(source(e))

DNvkRI:ANT 13-: For al.l: reaaha.ble states of SUM•hP an.dfor all v and-e:

,[nit(v)·./\ S(i)Urce(e): = v I\ e-1: =/: tree[v] -~ sent[e] = l

LEMMA 6~ A, 'ri€Mh.ahle stta.te · of S,U M:hP has no ou.tgoing, steps if and. only if
•

l])bne(~oJ- holds.. in th.at state ..

F;ROOF: (Sketch)
''{='' If Done(v0) holds- then, we can prove using Invariant 1,0 that Done(v)

holds for all'. nodes v. Then Invariants 2 and; 3, tog~ther imply that no message
is: in, tnansit. Consequently, no- step, of STJMhP is enabled·.

''=>'' Suppose that some gi:ven, state is deadlocked. Then no message ean be
in, tra.nsit on: the- spanning:, tree, otharwise a MSG step- would be enabled;.. 'Ilhis
implies, by Inv:aviants 11 and~ 13, tha.t 1lnit:(v) holds for all· nodes v. This
in turn, implies that no message· can. be in transit on any link it the network
(,othe:twise a MS·G action1 wouldt be·enabledi):. Next we use Invariant r3 to-infer
that exactfy.· 0ne message, has, been sent on: each link .. in the network, except
those· on the reversed: spanning, tx:ee. Finally, we prove- for all nodes v of the
networik, starting" with the·leaves.of the tr-ee,, that v has received, a message over
all'. incoming links; since no R;EPOR·T or RESULT action is enabled· in v this
implies~ Done.(v)~ D

THEOREM· 7· Au;tomaton S,fJM: satisfies pvoperty. 4?,.

FROOE':· Follows. fu0m the fact that S-UMhp. satisfies <fl and the existence· of a.
strong. histoi:y :cela:tion: fuom SUM: to, STJMh and; a strong p1"opheGy relation
from; SliJM:h. to, S-TffMthP. ·_. □

5; <CON<Cl1I!TDIN.©; ~EM!A\IDKS:

1f1ie· venifi~ation.! <Dfl thls ~wpe:n has: not y,:et 'beeni p,i:00£..Gbeclredi by G@filP.U.:ben,.
hut 1 expect t~t this- will: 1-E>e· cl,\ Iontin.e exercise, building\ on· ea£lier w.Grk on:
me~hanic&l.1 eheaking on!/©:·, automatlli pn00fs. [:li9~ 4\ t5] :_. Altthoug)J.1 :n haV,e· ea.tr.iedi
out the verification: using- 8.1 simple· versien, of the 1/ 0: &ut0m.a-tG>n, model~ it. is.
pr0bably t.rivial; tro: translate· this &t@vy tG·1 @the11 state· based: mocl.~ls, sttehi as.
Lampor-t's 'Femporal' Log:ie 0£ ActioD.s [8]~

REFERENCES

1. M. Abadi and L. Lamport. The existence of refinement mappings. Theo­
retical Computer Science, 82(2):253-284, 1991.

2. K.M. Chandy and J. Misra. Parallel Program Design. A Foundation.
Addison-Wesley, 1988.

3. C. Chou. Practical use of the notions of events and causality in reasoning
about distributed algorithms. CS Report #940035, UCLA, October 1994.

4. L. Helmink, M.P.A. Sellink, and F.W. Vaandrager. Proof-checking a data
link protocol. In H. Bare11dregt and T. Nipkow, editors, Proceedings In­
ternational Workshop TYPES'93, Nijmegen, The Netherlands, May 1993,
volume 806 of Lecture Notes in Computer Science, pages 127-165. Springer­
Verlag, 1994. Full version available as Report CS-R9420, CWI, Amsterdam,
March 1994.

5. B. Jonsson. Compositional specification and verification of distributed
systems. ACM Transactions on Programming Languages and Systems,
16(2):259-303, March 1994.

6. S.S. Lam and A.U. Shankar. Protocol verification via projections. IEEE
Transactions on Software Engineering, 10(4):325-342, July 1984.

7. L. Lamport. Specifying concurrent program modules. ACM Transactions
on Programming Languages and Systems, 5(2):190-222, 1983.

8. L. Lamport. The temporal logic of actions. ACM Transactions on Pro­
gramming Languages and Systems, 16(3):872-923, March 1994.

9. P. Lucas. Two constructive realizations of the block concept and their
equivalence. Technical Report 25.085, IBM Laboratory, Vienna, June 1968.

10. N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In Proceedings of the 6th Annual ACM Symposium on Princi­
ples of Distributed Computing, pages 137-151, August 1987. A full version
is available as MIT Technical Report MIT /LCS /TR-387.

11. N.A. Lynch and M.R. Tuttle. An introduction to input/output automata.
CWI Quarterly, 2(3):219-246, September 1989.

12. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations
· - part I: Untimed systems. Report CS-R9313, CWI, Amsterdam, March
1993. Also, MIT /LCS/TM-486.b, Laboratory for Computer Science, Mas­
sachusetts Institute of Technology, Cambridge, MA. To appear in Informa­
tion and Computation.

13. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, 1992.

14. R. Milner. Communication and Concurrency. Prentice-Hall International,
Englewood Cliffs, 1989.

15. T. Nipkow and K. Slind. I/O auton1ata in Isabelle/HOL, 1994. Draft paper.
16. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs.

Acta lnformatica, 6(4):319-340, 1976.
17. P. Humblet R. Gallager and P. Spira. A distributed algorithm for minimum­

weight spanning trees. A CM Transactions on Programming Languages and
Systems, 5(1):66-77, January 1983.

607

18~ A. Segall. Distributed network protocols. IEEE Transactions on Informa­
tion 'J:heory, IT-29(2):23-:-35, January 1983.

19~ J:. 8(,i1gaar.d;.An.dersen, S. Garland~ J. Guttag, N .A. Lynch,. and
A. Pogosyants. Computer-assisted simulation proofs. In C. Courcoubetis,
editor, Pr-oceedings of the 5th Internati .. onal· Conference on. Computer A.ided
Verifi,cation, Elounda, Greece, volume 697 of Lecture Notes in Com'f!uter
Sci.ence, pages 305-3.19~ Springer-Verlag, 1·993 .

•

•

