
Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 170 (1996) 4 7·-81

Abstract

Fundamental Study

Confluence for process verification

J.F. Groote\ M.P.A. Sellink h.•

acw1, P 0. Box 94079, 1090 GB Amsterdam, Netherlands

bUniversitr of' Amsterdam, Proyramminy Research Group, Kruislaan 403, /()98 SJ

Amsterdam, Netherlands

Received September 1995; revised July 1996
Communicated by M. Nivut

We provide several notions for confluence in processes and we show how these relate to
r-inertness, i.e. ifs __:_-c. s', then s and s' are equivalent. Using clustered linear processes we

show how these notions can conveniently be used to reduce the size of state spaces and simplify
the structure of processes while preserving equivalence.

Contents

Introduction
2 Preliminary definitions

Confluence and <-inertness
3.1 Strong confluence
3.2 Weak confluence
3.3 Weak bisimulation confluence

4 Other graph equivalences
4.1 Two definitions generalised
4.2 Strong bisimulation
4.3 Branching bisimulation
4.4 Finite trace equivalence
Transition systems that are not r-well-foundcd
5.1 Progressing and non-progressing r-steps

5.2 Progressing confluence
6 Confluence of linear processes

6.1 Linear processes
6.2 A condition for strong confluence
6.3 A condition for weak progressing confluence

7 State space reduction
8 Two examples

8.1 Concatenation of two queues
8.2 The alternating bit protocol

Acknowledgements
References

* Corresponding author. E-mail: alex@twi.uva.nl or jfg@cwi.ni.

0304-3975/96/$15.00 © 1996 Published by Elsevier Science B.V. All rights reserved

Plf 50304-3975(96)00175-2

48
49
50
51
52
54
58
58
59
59
60
60
61
61
66
66
67
68
69
73
74
75
80
81

48 J.F. Groote, M.P.A. Se/link I Theorelical Computer Science 170 (1996) 47-81

1. Introduction

In his seminal book [16] Milner devotes a chapter to the notions strong and observa
tion confluence in process theory. Many other authors have confirmed the importance
of confluence. For example, in [17, 13, 8] the notion is used for on the fly reduction
of finite state spaces and in [16, 19] it has been used for the verification of protocols.

We feel that a more general treatment of the notion of confluence is in order. The
first reason for this is that the treatment of confluence has always been somewhat ad
hoe in the setting of process theory. This strongly contrasts with for instance term
rewriting [14], where confluence is one of the major topics. In particular, we want to
clarify the relation with r-inertness, which says that ifs ~ s', then s and s' are
equivalent in some sense.

The second reason is that we want to develop systematic ways to prove distributed
systems correct in a precise and formal fashion. In this way we want to provide
techniques to construct fault free distributed systems. For this purpose the language
µCRL is designed, being process algebra extended with data [10]. In [9] a proof
theory has been developed and in [18] it has been shown how correctness proofs
can be checked using proof checkers, giving us the means to deliver descriptions of
distributed systems with the highest thinkable level of correctness. In order to show
the applicability of the techniques several protocols have been verified [15, 12, 6], both
from theoretical and practical perspectives. Experience with these protocols gave rise
to the development of new and the adaption of existing techniques to make systematic
verification possible [7, 6]. Employing confluence also belongs to these techniques. It
appears to enable easier verification of distributed systems, which in essence boils down
to the application of -r-inertness.

In the first part of the paper we address the relationship between confluence and
r-inertness. The notions proposed in [16] all imply r-inertness. We come up with a
more general notion, namely weak "'-confluence where rv is some equivalence. For
several notions of equivalence we show that weak rv-confluence and -r-inertness with
respect to "' coincide (especially for weak and branching bisimulation), provided the
process is r-well-founded (there are no infinite r-paths).

However, there are many protocols, where there are infinite -r-paths, for instance
communication protocols over unreliable channels. Therefore, we introduce the distinc
tion between progressing and non-progressing r's and show that weakly progressing
confluence is enough to guarantee T-inertness. Contrary to what one would expect,
weakly "'-progressing confluence does not imply r-inertness.

In the second part of this paper we direct our attention to establishing confluence. It
hardly makes sense to establish confluence directly on transition systems, because these
are generally far too large to be represented. Therefore, we try to establish confluence
on Linear Processes [7] which represent large transition systems symbolically in a
compact way.

In the third part we show how we can use r-inertness to reduce state spaces and
carry out verifications on linear processes. We provide two examples illustrating that

J.F Groote. M.P.A. Se!linkl Theoretical Computer Science 170 (1996) 47-81 49

the application of confluence often reduces the size of state spaces considerably and

simplifies the structure of distributed systems, while preserving branching bisimula

tion. This is in general a very profitable preprocessing step before analysis, testing or
simulation of a distributed system.

2. Preliminary definitions

Let S and S' be sets. A binary relation R on S and S' is a subset of S x S'. We

write xRy for (x, y) ER. If S = S' we say that R is a binary relation on S. We write

xRyRz for xRy /\ yRz and R* for the reflexive, transitive closure of R. The symmetric

closure of R is denoted by R0 . We write R"' for (R 0)*. This relation is an equivalence

relation, since symmetry is preserved 1 by (-)*. Finally, we write LJR for the diagonal

relation on R, i.e. 11R = {(x,x)JxER}.

Definition 2.1. A binary relation R on S is called well-founded iff there is no infinite

sequence {s;}:0 such that si+1Rs; for all iE N.

Let ACT be an arbitrary set of actions, containing a distinguished element T. Through

out this paper we fix this set of actions, except that in Section 5 and further we

distinguish progressing r-steps (denoted by T >) and non-progressing r-steps (denoted

by r <).

Definition 2.2. A trans1t10n system is a pair (S,---!>) with S a set of states and

--t> ~ S x ACT x S. We write s ~ t instead of ---!> (s, a, t).

Note that this definition implies that we exclude transition systems that have more

than one a-step from s to s'.

Convention 2.3. We introduce the following notations (a E Acr, O" E Acr*):
•

• s ~ t means s = u 1 ~···~Un= t for some u1, ... ,Un with n~ 1,

• s ~ t means s ~ u ~ t for some u,
* * a r a r 1· • s ====t> t means s --l> u1 --t> u2 --t:; t or some u1, u2.

• s ~ t means s ~ t V (a = r /\ s ~ t).

Definition 2.4. A relation R ~ S x S' is called a weak bisimulation on (S, --t>) and

(S',----.) iff

{
s ~ t ==? 3t'. s' ~ t' /\ tRt'

sRs' ==?
s' ~ t' ==? 3t. s ~ t /\ tRt'

for all s E S and for all s' E S'.

1 The converse does not hold, (R*)0 is not necessarily transitive.

50 J.F Groo/e, M.P.A. Sellinkl Theoretical Computer Science 170 (1996) 47-81

We say that R is a weak bisimulation on (S, --t>) iff R is a weak bisimulation on

(S, --l>) and (S,----!>).

Let {R; },E, be a collection of weak bisimulations on (S, --1>) and (S', ~), then

LJiEI R; is also a weak bisimulation on (S, --1>) and (S', ~). Consequently there

exists a maximal weak bisimulation on (S, --1>) and (S', ~), namely the union of

all weak bisimulations on (S, --1>) and (S', ~). This maximal weak bisimulation

is denoted as '.:::':w. If s ,__.,w t then we say that s and t are weakly bisimilar. ,__..w is an

equivalence relation.

Definition 2.5. A transition system (S,--1>) is a-well-founded iff {(s,t)\t ~ s}
is a well-founded relation on S, i.e. there is no infinite sequence of the form

a a a
SJ ----!> S2 ----!> S3 --[> ' · ' · · ·

Let f be the class of ordinals.

Definition 2.6. Let R c;;;_ S x S be a well-founded relation on S. We define a mapping d R :

S --+ (J as follows:

dR(t) =sup{!+ dR(s) \sRt}.

If R = { (x, y) I y ~ x} then we write d0 instead of d R· d 0 (t) is the length of the

longest chain of a-steps starting from t.

3. Confluence and r-inertness

In this section we introduce three different notions of confluence, namely strong

confluence, weak confluence and weak '.:::':w-confluence. We investigate whether or not

the different notions of confluence are sufficiently strong to serve as a condition for

r
S ---t> t ==? S '.::::':w t (1)

to hold. It is obvious that (1) is not valid in general. A simple counterexample is

s ---------r> s'

·l
(2)

where a is not a r-step. Transition systems that satisfy (1) are called r-inert with
respect to ,__..w.

J.F. Groote, M.P.A. Sellink!Theoretica/ Computer Science 170 (1996) 47--81 51

3.1. Strong confluence

In this subsection we prove that strongly confluent transition systems are r-inert with
respect to ~w· Although this is actually a well-known result we work out the proof in
full detail because it nicely illustrates the technique that is used throughout this paper,
namely to define a relation R satisfying { (x, y) Ix ~ y} <;;; R and show that R is a
weak bisimulation. Using this technique leads - in our opinion - to elegant proofs that
are easy to understand. Many of the results of this work can also be proved, however,
by applying (an extension of) the work of Arnold and Dicky [2].

Definition 3.1. A transition system (S, --t>) is called strongly confluent for a iff for
each pair s ~ t and s ~ s' of different steps there exists a state t' such that
t ~ t' and s' ~ t'. In a diagram:

s ----------r.:. s'

·l "i
- - - - - - - - _r - - - - - - - -r> t'

A transition system (S, --t>) is called strongly confluent iff it is strongly confluent for

a, for all a E Acr.

Omitting the word "different" in Definition 3.1 would give a stronger notion:

s----------e>

is strongly confluent, but would not be strongly confluent if the word "different" was

omitted.

Theorem 3.2. Strongly confluent transition systems are r-inert with respect to ~w.

Proof. Let (S,---{>) be a strongly confluent transition system. Consider

R = {(x,y)lx ~ y} U L1s.

It suffices to prove that R is a weak bisimulation on (S, --1>), as in that case, by
definition, R <;;; ~w- So s ~ t ==> sRt ==> s ~wt. Assume sRs'. We have to prove:

(i) s ~ t ==> 3t'. s' ~ t' /\ tRt'

(ii) s' ~ t' ==> 3t. s ~ t /\ tRt'

If s = s' then we are trivially done. So assume s ~ s'.

52 J. F Groote, M. P.A. Se/link I Theoretical Computer Science 170 (1996) 47~1

Proof of (i): Assumes -'-'-I> t. The situation is now as follows:

s ----------1> s'

If these two transitions are different, then there exists a state t' such that s' ~ t'
and t ~ t', by the definition of strong confluence. If t ~ t' then tRt' so (i) is
satisfied. If these two transitions s ~ t and s ~ s' are identical, we have t = s'
and a = r, so tRs' by b.s <;;; R. Again, (i) is satisfied.

Proof 4 (ii): Assume s' -'-'-I> t'. The situation is then as follows:

s ----------t> s'

·1
t'

Now take t = t'. This does the job, since s ~ t' and t' Rt' since b.s ~ R. D

The converse of Theorem 3.2 is obviously not valid. A transition system that is
r-inert with respect to +-+w is not necessarily strongly confluent. As a counterexample
one can take (2) with a = r. This counterexample means that strong confluence is
actually a stronger notion than we need since we are primarily interested in r-inertness
(w.r.t. ::2w). Hence we introduce a weaker notion of confluence, which differs from
strong confluence in that we allow r-steps in the paths from t to t' and from s' to t'.

3.2. J,Veak confluence

Definition 3.3. A transition system (S, --f>) is called weakly confluent for a iff for
each pair s ~ t and s ~ s' of different steps there exists a state t' such that
s' ~ t' and t ~ t'. In a diagram:

s ----------1> s'

1 Ill
Ill
Ill

a a Ill
Ill

r* ~
- - - - - - - - - - - - - - - - -[> t'

A transition system (S, --t>) is called weakly confluent iff it is weakly confluent for
a, for all a E AcT.

J.F Groote, M.P.A. Sellink/ Theoretical Computer Science 170 (!9'16) 47-JJI 53

The following example (due to Roland Bol) shows that weak confluence is too weak

to serve as a condition for (1) to hold, i.e. weak confluent transition systems are not
necessarily r-inert with respect to <-711.,

(3)

t'

This transition system is weakly confluent but s' ~ t' does not connect bisimilar

states if a =/= r. Note that (3) is not r-well-founded. In Theorem 3.5 we prove that

r-well-founded, weakly confluent transition systems are T-inert with respect to <::::'.w. This

means that we cannot replace (3) by a r-well-founded counterexample.
The following lemma is very useful and frequently used in the remaining of the

paper.

Lemma 3.4. Let (S, --1>) be r-well-founded and weakly confluent for T. Lets~
s' and s ~ t, then there exists .a t' such that s' ~ t' and t ~ t'. In a

diagram:

I
S------------t>S

,·l r:
• \J

- - - - - - - - ~ - - - - - - - - l> t'

Proof. We use induction on d,(s). Note that the lemma is trivial ifs= s' or s = t.
(In particular, the lemma is trivial for. d,(s) = 0.) Suppose that s "=fa s' and s =/= t,

says~ u ~ t and s ~ u' ~ s'. Assume that the lemma holds for all x

satisfying d ,(x) < d ,(s). We distinguish two cases:
• s ~ u and s ~ u' are identical. We can draw the following picture:

r
s ----------t> u = u' ---------v s'

t ~ t' and s' ~ t' exist because the lemma holds (by induction) in u.

54 J. F. Groo1e. M. P.A. Sellink I Theoretical Computer Science 170 (1996) 47-81

e s ~ u and s ~ u' are different. Now we can draw the following picture:

r*
s ---------__,> u' ----------t> s'

'l .. ,. l ..
u ---------~> u" ---------1> s"

,·l ,.l ,.l
r* r*

-----------<> t" ---------v s'

The upper-left part of the diagram is given by weak confluence for r. The other
parts are given by induction hypotheses for u, u' and u". 0

We cannot omit "r-well-foundedness" as a condition in Lemma 3.4. As a counter
example take (3) with a= r.

The following relations form the core of all our remaining "confluence implies r
inertness" proofs.

! ~ {(x,y)lx ~ y}

Bw ~ {(x,y)lx ~)' V x:=w y}.

Theorem 3.5. Let (S, ---1>) be r-ivell-founded. If (S, ---1>) is weakly confluent then
(S, ---1>) is r-inert with respect to f-+w·

Proof. This theorem can be proved directly by showing that t* is a weak bisimulation
on (S, --1>). We omit this proof here because the result also follows from Theorem
3 .9. The interested reader can find the proof in [11]. D

In Section 3. I we mentioned that r-inertness with respect to f-+w does not imply
strong confluence. The same (r-well-founded) counterexample - Diagram (2) with
a = r - illustrates that r-inertness with respect to :=w does not even imply weak
confluence. So weak confluence and r-inertness with respect to f-+w are independent
notions. If we restrict ourselves to the r-well-founded transition systems we have strict
inclusion of the weakly confluent transition systems into the transition systems that are
r-inert with respect to :=w.

3.3. Weak bisimulation confluence

In the definition below we introduce yet another notion of confluence. This third
notion is optimal in the sense that it is equivalent with r-inertness with respect to f-+w

for r-well-founded systems.

J.F Groote, M.P.A. Se/link/Theoretical Computer Science 170 (1996) 47-81 55

Definition 3.6. A transition system (S, --r>) is called weakly ~w-confluent for a iff
for each pair s ~ t and s ~ s' of different steps there exist states u and u' such
h / / a / d t • t at u +-?w u , s ====i> u an t --!> u. In a diagram:

s ----------o s'

1 Ill
Ill
Ill

a a Ill
Ill

t• ~
- - - - - - - - - - - - -I> u ~w u'

A transition system (S,--!>) is called weakly ~w-confluent iff it is weakly ~w
confluent for a, for all a E Acr.

We want to prove that in r-well-founded transition systems "weak ~w-confluence"
implies "r-inertness with respect to +-?w"- Clearly, this immediately implies Theorem
3.5. In [l l], however, we proved Theorem 3.5 directly by showing that T* is a weak
bisimulation on weakly confluent transition systems. Since !* is not necessarily a weak
bi simulation on weakly ~w-confluent transition systems - as example (4) below shows
- we cannot use !* to prove Theorem 3.9.

s ---------{> t

,1 (4)

s' t'

Here r* {(s,s),(s',s'),(s,t),(t,t),(t',t')} is not a weak bisimulation although the
transition system is weakly ~w-confluent since s' ~ s' ~w t'. The diagram above
is also an example of a transition system that is weakly ~w-confluent but not weakly
confluent.

The following lemma is used in the proof of Lemma 3.8.

Lemma 3.7. Let (S,--!>) be r-well-founded and weakly ~w-conjluent. Lets~ s'
and s ~ t. There exists a state t' such that tB! t' and s' ~ t'. In a diagram:

t•
s ----------1> s'

111

~
Ill
Ill

a Ill

t - - - - - - - - - B~ - - - - - - - - - ~
Proof. We use induction on dt(s). Ifs = s' (and in particular if dt(s) = 0) then the
lemma is trivial. Suppose that s ~ s" ~ s' and assume that the lemma holds

56 J.F. Groole. M.P.A. Sellink/Theoretica/ Computer Science 170 (1996) 47-81

for all states x such that d,(x) < d,(s). If a = r then t' = s' satisfies the required
,, r* r I d I --L- I b fl . . f T properties, namely tB~t' since! <r-- s --r> ~ an s = t y re ex1v1ty o ===t>.

Assume that a '=f. r. Says~ v ~ u ~ t. We distinguish two cases:
• l' = s. We can draw the following picture:

r*
s ----------i> s" ----------t> s'

r*
u --------f> u" <--+w u' ----B~---- t'

The left part of the diagram is given by weak <--+w-confluence and the right part of
the diagram follows from applying the induction hypothesis on s", which is allowed
since d,(s") < dr(s). Now tB~t' and s' ~ t' sot' satisfies the required properties.

• v '=f. s. We are in the following situation:

s ----------i> s'

r*

,· 1
v ----------1> v'

----B~---- t'

The upper part of the diagram follows directly from Lemma 3.4 and the lower part
of the diagram is given by application of the induction hypothesis on v, which is
allowed since dr(v) < dr(s). We are done because tB!t' and s' ~ t'. D

Lemma 3.8. Let (S, --f>) be r-well-founded and weakly <--+w-confiuent, then the equiv
alence relation B!, defined in Section 3.2, is a weak bisimulation on (S, --r>).

Proof. As sB: s', we may assume that there exists an n ;::; O such that

J.F. Groote, M.P.A. Se/link/Theoretical Computer Science 170 (1996) 47--81 57

We have to show:
(i) s ~ t ===> :Jt'.s' ~ t1 /\ tB!t'
(ii) s' ~ t' ===> :Jt .s ~ t /\ tB!t'

Since B~ is symmetric we have (i) ~ (ii). We prove (i).
Proof of (i): We prove the following slightly stronger result by induction to n:

s ~ t ===> :Jt'.s' ~ t' /\ tB:t'. (i')

For n = 0 the validity of (i') is trivial. Let n > 0 and assume that the lemma holds
for n - l. Consider the following diagram:

Xo ----B~---- Xn-1 ----Bw 0---- Xn

·~ ·~
----B!---- u

u is given by the induction hypothesis. We distinguish three cases for Xn- l B~xn:

Xo ----B!----Xn-1 ----------c>Xn

·~ ·~
----B:---- u

Applying Lemma 3.7 gives a state t1 satisfying the right properties. If Xn-I +-+w Xn

then use the definition of weak bisimulation and if Xn- I ~ Xn then simply take
t' =: u. D

Theorem 3.9. Let (S, --t>) be r-well-founded. Then (S,---!>) is weakly ':::::!w-con.fiuent
iff (S, ----t>) is -r:-inert with respect to +-+w.

Proof. Let (S, ---t>) be r-well-founded.
(===>) By Lemma 3.8, the equivalence relation B!, defined in Section 3.2, is a weak

bisimulation. Since +-+w is the union of all weak bisimulations, we have B! <;;: +-+w. Now
T B® +-+ S --t> t ===> S wt===> S -wt.

({::::=:) Let s ~ t and s ~ s'. Then s ':::::!w s' since (S,--!>) satisfies (1).
Now, by definition, there exists a state t' such that s' ~ t' and t ':::::!wt', so we are
done. D

Note that we need the r-well-foundedness of (S, --t>) only in the proof from left
to right (it allows us to apply Lemma 3.8).

58 J.F Groote, M.P.A. Sel/ink/Theoretical Computer Science 170 (1996) 47-81

r-well-founded

weakly tlw -confluent

weakly confluent

r-inert with respect to tlw

strongly confluent

Fig. I . The transition systems in a diagram.

We conclude this section with an overview of the results, which have been depicted
in Fig. l. Below the horizontal line we have the t-well-founded transition systems. We
see that strong confluence always implies t-inertness with respect to ::::w. The other
two notions of confluence do not imply t-inertness with respect to w. However, the
counterexamples are all t-non-well-founded (above the horizontal line). Finally, we
see that weak :::w-confl.uence and t-inertness with respect to :::w coincide for t-well
founded transition systems (below the horizontal line).

4. Other graph equivalences

In this section we study the consequences of replacing ._.w in Section 3 by other
process equivalences. From the large variety of equivalences, that have been proposed
to capture the behavioural aspects of processes (see e.g. [20]), we choose strong bisim
ulation, branching bisimulation and finite trace equivalence. This choice is motivated
by the fact that these three equivalences are frequently used in the field of process
theory.

4.1. Two definitions generalised

We generalise those notions of Section 3 that assume an equivalence relation on S.

Definition 4.1. Let,....., <;;, S xS be an equivalence relation. A transition system (S, --c>)
is called a-inert with respect to ,....., iff

s ~ t ==} s,...., t for all s,t ES

Definition 4.2. A transition system (S, ---t>) is called weakly "-'-confluent for a iff for
each pair s ~ t and s ~ s' of different steps there exist states u and u' such that

J.F Groote, M.P.A. Se/link! Theoretical Computer Science 170 (191)6) 47-~l 59

a r*
u rv u', s' ===t> u' and t --1> u. In a diagram:

s ------------{> s'

t -------

Ill
111

Iii
a II'

II·

\'.!
r' I
- - - - -C> U rv U

A transition system (S,--!>) is called weakly rv-confluent iff it is weakly "'-confluent

for a, for all a E ACT.

4.2. Strong bisimulation

About the state of affairs, in case we replace ':::?w in Section 3 by<:::? (strong hisimu

lation 2), we can be short. None of the notions of confluence, presented in this section,

is sufficiently strong to imply t-inertness with respect to <:::?. This follows immediately

from the (trivial) fact that even a strongly confluent transition system is not necessarily

t-inert with respect to <:::?, e.g.

a s _________ ____,>
-----------l>U

with a 1'- t, is strongly confluent but not t-inert with respect to -.

4. 3. Branching bisimulation

In the previous subsection we explained that none of the notions of confluence

implies t-inertness with respect to -. Even stronger graph equivalences than ,..._. of

course give the same result and are therefore not interesting for us to analyse here.

Branching bisimulation, which we study in this subsection, however, is weaker than

strong bi simulation (and stronger than weak bisimulation).

Definition 4.3. A relation R i:;:; S x S' is called a branching bisimulation on (S,--!>)

and (S',---+) iff

l s _!!___p, t

sRs' ==:::;..
s'~t'

==:::;.. [a= t /\ tRs'] V

[:Ju, u' . s' ~ u ~ u' /\ sRu /\ tRu']

==:::;.. [a = t /\ sRt'] V
I r* a I I I I

[:Ju, u . s --!> u --!> u /\ s Ru /\ t Ru]

for all s ES and for all s' ES'.

We say that R is a branching bisimulation on (S, --1>) iff R is a weak bisimulation

on (S, --1>) and (S,--!>). The union of all branching bisimulations is denoted as ,_.b·

2 The definition for strong bisimulation can immediately be obtained from Definition 2.4 by replacing all

triple arrows by single ones.

60 J.F Groote, M.P.A. Se/link/Theoretical ComputerScience170 (1996) 47-81

We provide the same theorems as for the weak bisimulation case. The proofs are
analogous to the corresponding weak bisimulation versions of those theorems. Only a
number of extra conditions must be checked. We omit those proofs.

Theorem 4.4. Strongly confluent transition systems are r-inert with respect to f--7b·

Theorem 4.5. Weakly confluent, r-well-founded transition systems are T-inert with
respect to ':::h.

Theorem 4.6. Let (S,---!>) be r-well-founded, then (S,---!>) is weakly "::::b-conjluent
iff (S,---!>) is r-inert with re.1pect to ':::h.

4.4. Finite trace equivalence

In this subsection we summarize the consequences of replacing ~w in Section 3
by finite trace equivalence, which is denoted as ~ in this paper. A more elaborate
presentation of the results of this subsection can be found in [11].

Let TRACEs(s) denote the set of finite traces starting ins.

Definition 4.7. Let s,s' ES, then s ~ s' iff TRAcEs(s) = TRACES(s').

It is a well-known fact that f-7w S: :::::; so statements like

weakly/strongly-confluent systems are r-inert with respect to :::::;

are trivial consequences of Theorems 3.2 and 3.5. However, a :::::; -version of Theorem
3.9 (from left to right) is not trivially implied by Theorem 3.9, since the equivalence
~ also appears in the notion of confluence. So not only the proof obligation but also
the premise is weakened.

Theorem 4.8. r-well-founded, weakly ~-confluent transition systems are r-inert with
respect to :::::;.

Proof. See [1 1]. D

5. Transition systems that are not -r-well-founded

Most of the results in Sections 3 and 4 rely on r-well-foundedness of the transi
tion system in question. However, many realistic examples of protocol specifications
correspond to transition systems that are not r-well-founded. As soon as a protocol
internally consists of some kind of correction mechanism (e.g. retransmissions in a
data link protocol) the specification of that protocol will contain a T-loop. In Section
8.2 we see an example of this phenomenon.

Since we feel applicability to realistic examples is important, we considered the
requirement that the transition system has to be r-well-founded a serious drawback.

J.F Groote, M.P.A. Sellink I Theoretical Computer Science 170 (1996) 47-JJJ 61

Therefore, we distinguish what we will call progressing r-steps and non-progressing

r-steps. This enables us to formulate a slightly more subtle notion of confluence, which

is sufficiently strong for our purposes and only relies on well-foundedness of the pro
gressing r-steps.

5.1. Progressing and non-progressing r-steps

Convention 5.1. We use the following notations:
(i) s ~ t for a progressing r-step from s to t,

(ii) s ~ t for a non-progressing r-step from s to t,

(iii) s ~ t for s ~ t or s ~ t,
* *

(iv) s ~ t for s ~ s' ~ t' ~ t,

(v) s ~ t for s ~ t v (a = T /\ s ~ t).

Transition systems where the r-steps are labelled with > or with < are called r

labelled transition systems. Instead of r-inertness with respect to "', we try to prove

'>-inertness with respect to "'· In a formula:

S ~ f ===} S rv t (5)

Definition 2.4 of "weak bisimulation" remains unchanged for r-labelled transition sys

tems. Combined with Convention 5.1 (iii) this means that the T-steps mentioned in

Definition 2.4 may either be progressing or not.

5.2. Progressing confluence

For each notion of confluence introduced in Section 3, as well as each notion intro

duced in Section 4, we can define a progressing version. Those progressing versions

are given below in Definitions 5.2-5.4. As we will see, only the first two notions (Def

initions 5.2 and 5.3) are useful to us. The notion of confluence, defined in Definition

5.4, does not imply r >-inertness and is therefore not interesting. A counterexample is

given in Proposition 5.9.

Definition 5.2. A r-labelled transition system (S, ---t>) is called strongly >-confluent

(pronounce: strongly progressing confluent) iff for each pair s ~ s' and s ~ t
of different steps there exists a state t' such that t ~ t' and s' ~ t'. In a

diagram:

s -----' ' ____ __,,. s'

"l "l
- - - - - - - - ~ > - - - - - - - -[> t'

62 J.F. Groote, M.P.A. Se!link/Theoretica/ Computer Science 170 (1996) 47-81

Definition 5.3. A r-labelled transition system (S, --1>) is called weakly >-confluent
(pronounce: weakly progressing confluent) iff for each pair s ~ s' and s ~ t
of different steps there exists a state t' such that t ~ t' and s' ~ t'. In a
diagram:

h
s ----------<> s'

. r,

Ill
Ill
Ill

alll
Ill

~
t - - - - - - - - - - - - - - - - -t> t'

Definition 5.4. A r-labelled transition system (S,--{>) is called weakly >-"-'-confluent
(pronounce: weakly progressing ""-confluent) iff for each pairs~ s' and s ~ t
of different steps there exist states u and u' such that t ~ u, s' ~ u' and u "' u'.
In a diagram:

r,
s' s

"1

111
111
Ill

alll
Ill

. ~ r,
I t - - - - - - - - - - - - -t> u"' u

Theorems 3.2 and 3.5 have a progressing counterpart, stating that the progressing
version of the confluence notion in question implies r>-inertness with respect to ""·

Theorem 5.5. Strongly >-confluent transition systems are r >-inert with respect to
"',for,..., E {~w,~.~}.

Proof. Analogous to the corresponding proofs in Sections 3 and 4. D

Lemma 5.6. Let iS, --1:>) be r >-well-founded and weakly >-confluent for r >- Let
r* I d T • r* i-* s -Lt> s an s ~ t, then there exzsts a t' such that s' ~ t' and t ~ t'. In a

diagram:

<
s ----------o s'

t* I >,
I

r* \J
> I

- - - - - - - - - - - - - - - - -t> t

Proof. Analogously to the proof of Lemma 3.4. D

J.F Groote. M.P.A. Se/link/ Theoretical Computer Science 170 (1996) 47-81 63

Lemma 5.7. Let (S, ---1>) be r>-well-founded and weakly >-confluent, then

t> = {(x,y)lx ~ y}

is a weak bisimulation.

Proof. Let st;s', i.e. s ~ s', then we have to show:
(i) s ~ t ====? ::3t'. s' =k> t' /\ tT;t 1

(ii) s' ~ t' =? ::3t. s =k> t /\ tt;t'
(ii) is easy, take t = t' then s =k> t since s ~ s' ~ t'. Furthermore, rt; t' holds
by reflexivity of t;.

By induction to d,, (s) we show that (i) holds. If s = s' (and, in particular, if

d r, (s) = 0) the lemma is trivial: take, t1 = t. Assume that (i) holds for all states x

with d,,(x) < d"(s). Lets~ s" ~ s'. We are in the following situation:

L

s"
r_,

s' s

·1
In case a = r > then we apply Lemma 5.6. If a = r < then there exists (by weak
>-confluence) a state t' such that t ~ t' and s' ~ t'. If s' ~ t' then we can
draw the following diagram:

!>

s

« 1
T>

s"

"1
t"

r:
---------~>s'

,, 1
r:.

---------......;> t'

The right part of the diagram is given by Lemma 5.6.
The case s' ~ u ~ u' ~ t' is treated like the general case a -:;/. r.

If a :;i: r then we can draw the diagram as in Fig. 2. The left part of the diagram is

given by weak >-confluence. The upper-right part is given by Lemma 5.6. The middle
right part is given by applying the induction hypothesis on ul:; v and u ~ u', using

that d r> (u) < dr, (s). Finally, the lower-right part of the diagram is given by applying

Lemma 5.6 again. We are done because tt;t1 and s1 ~ t'. D

Theorem 5.8. Weakly >-confluent, r >-well-founded transition systems are -r; >-inert
with respect to rv,for rvE{:::2w,+-+b,~}.

Proof. t> s:;;+-+w by Lemma 5.7. Now s ~ t =? sl:>t ====? s +-+wt, which proves

the theorem for ,.__, =: '.::2w (and hence also for "'=: ~). In order to prove the theorem

for rv = +-+b some extra conditions have to be checked. D

64 J.F Groote. M.P.A. Se/link/Theoretical Computer Science 170 (1996) 47-81

r> s" r; s" s

"1 r~

,, 1
u v

a

"1 "~
r'

u' > v'

''l ,. ''l r~
t" t'

Fig. 2.

Proposition 5.9. Let (S, --t>) be weakly <-rv-confluent and r> -well-founded, then
(S, --t>) is not necessarily r >-inert with respect to '""• for '"" E { !::!w, +-+b, ~ }.

Proof. Let a =f. r. The following transition system is not r >-inert with respect to ,.._,
since s4 ~ s6 and s4 f s6 • However, weak <-"'-confluence holds.

r •'. r>
S) s2 S3 <1 [> S4

"l

T< ,, l
S5 S6

Suppose R <;;_ S x S is defined by s1RssRs6 and s2Rs3Rs4, then one easily verifies that R®
is a branching bisimulation on S. Now (S,--t>) is weakly >-+-+b-confluent because

r>
S3 S4 S4

'l ': l and «l
!':>

S2 S2 +-+b S4 S3

Since !::!b <;;_ !::!w <;;_ ~ we know that the transition system is also weakly >-+-+w-confluent
and weakly >-~-confluent so we are done. D

J.F Groote, M.P.A. Se/link/Theoretical Computer Science 170 (1996) 47-81 65

So far, we showed that weak >-confluence is useful to us and weak >-"-'-confluence
is not. One might wonder whether there are other ways to relax the notion of weak
>-confluence. The obvious way to do this is to allow non-progressing r-steps in either
the path t ~ t' or the path s' ~ t'. We show that the notions of confluence,
thus obtained (weak >-confluence 1 and weak > -confluence2), both do not imply T > -
inertness and are therefore not useful to us.

Definition 5.10. A system (S, ---1>) is called weakly > -confluent1 iff for each pair
s ~ t and s ~ s' of different steps there exists a state t' such that t ~ t' and
s' ==3:> t'. In a diagram:

r>
s' s

·1

Ill
Ill
Ill

a Ill
II!

r* ~
-----------------~ t'

Now the following transition system is weakly >-confluent1 but not T>-inert with
respect to rv, for rv E { =:w, +-+b, ~}.

a
s'

b
s" s

' 1 «1 (6)

a
t' t

s i'.w t although they are connected by a progressing r-step. It is essential in this ex
ample that the r-step from s' to t' is non-progressing. It relieves us from the obligation
to add a state t" satisfying t' ~ t" and s" ~ t". Note that (6) is not weakly
>-confluent since the T-step from s' to t' is non-progressing.

Definition 5.11. A system (S, ---t>) is called weakly >-confluent2 iff for each pair
r* s ~ t and s ~ s' of different steps there exists a state t' such that t --2---c> t' and

s' ~ t'. In a diagram:

r>
s' s

·1

Ill
Ill
Ill

a Ill
Ill

r> ~
-----------------~ t'

66 J.F. Groote, M.P.A. Sel/ink I Theoretical Computer Science 170 (1996) 47--81

The following transition system is weakly >-confluent2 but not r >-inert with respect
to "', for "'E {!::!w,!:::'.h, >=:o }.

r-,,
I> s'

r
re

' 1 (7)

t'

The progressing !-step from s' to t' does not connect weakly bisimilar states. Dia
gram (7) is weakly > -confluent2 because the following properties hold:

r-,
I s s

"l r:, "[
6. Confluence of linear processes

s'

"1 s
r:

~~~~~~~~~--j> t' 

We want to use the notion confluence to verify the correctness of processes. In order 
to do so, we must be able to determine whether a transition system is confluent. This is 
in general not possible, because the transition systems belonging to distributed systems 
are often too large to be handled as plain objects. In order to manipulate with large 
state spaces (Clustered) Linear Process ((C-)LPs) [7] can be used as in these C-LPs 
the state space is compactly encoded using data parameters. Moreover, processes that 
are described using the common process algebra operators, including parallelism, can 
straightforwardly be transformed to a C-LP, maintaining strong bisimulation. 

In this section we describe how a C-LP can be shown to be confluent. In the next 
section we show how confluence is used to reduce the size of state spaces. 

6.1. Linear processes 

Definition 6.1. Let Act i;:;; AcT be a finite set of actions, contammg a special action 6 
representing deadlock or inaction (see [5, 4]). A clustered 3 linear process equation is 
an expression of the form 

p(d) = 2= 2:: a(j~(d,ea)) · p(ga(d,ea)) <I ba(d,ea) I> b 
aEAct ea:Ea 

3 In earlier works these processes are sometimes called "deterministic", referring to the fact that the summand 
is determined by the action. This name is unfortunate however, because determinism of the process in 
question is usually not the case. 



J.F Groote, M.P.A. Sel!inkl Theoretical Computer Science 170 (1996) 47-81 67 

for data sorts D. Ea and Fa and functions fa : D x Ea --> Fa, ga : D x Ea --+ D and 

ba : D x Ea _____. IEB where IEB is the predefined sort of booleans. We assume that the 

internal action "C ( r > and r < if progressing and non-progressing r' s are distinguished) 

has no data parameter. 

In [7] summands without a recursive call are also allowed in the definition of a 

linear process. We omit these summands here. 

It is straightforward to see how a linear process equation determines a trans1t10n 

system. The process p( d) can perform an action a(Ji d, ea)) for every a E A et and 

every data element ea of sort Ea, provided the condition ba(d, ea) holds. The process 

then continues as p(ga(d, ea)). Hence, the notions defined in the previous sections carry 

over directly. 
A linear process is called convergent iff the corresponding transition system is T

well-founded. If we distinguish progressing and non-progressing r's, we use the notion 

convergence with respect to the progressing T's (i.e. r> ). 

Definition 6.2. A linear process as defined in Definition 6.1 is called >-convergent 

iff there is a well-founded ordering < on D such that for all d: D and er, : Dr> if 

br. (d, er>), then gr> (d, er,) <d. 

The > symbol in ">-convergent" refers to "progressing" and not to the ordering 

on D. However, the ordering on D and the labelling on r-steps are closely related. 

Typically, the -r-steps that are labelled with > are precisely those T-steps p(d) ~ 
p( d') satisfying d' < d. So after each progressing T-step one is moved towards a state 

with a value that is strictly smaller with respect to some well-founded ordering. Thus, 

the progressing r-steps express progression in the sense that progression is made in the 

execution of internal activity. 

6.2. A condition for strong confluence 

We provide sufficient criteria for p to be strongly confluent. Let p be a clustered 

linear process as defined in Definition 6.1. The criteria can best be understood via the 

following diagram. 

p(d) --------0 p(gr(d,er)) 

"'""'·"l p(ga(d,ea)) 

a(j;(g,(d,e, ),e:, )) 1 

\J 

r p(gr(ga(d, ea), e~)) = 
------------C> 

p(ga(9r(d, er), e~)) 

Note that in this diagram p(ga(d,ea)) and p(gr(d,er)) are supposed to be different if 

a = "C. We summarise the conditions in the following theorem. 



68 J.F Groote, M.P.A. Se/link/ Theoretical Computer Science 170 ( 1996) 47--81 

Theorem 6.3. The process p as defined in Definition 6.1 is strongly confluent if for 
all aEAct, e1 :Ea, e2:ET such that 

(i) a= r ==> 9a(d,ei) I- gr(d,e2) 
(ii) ba(d,e1) I\ br(d,e2) 

the following property holds: 

6.3. A condition for weak progressing confluence 

In this section we derive a condition to establish that a C-LP is weakly confluent. 
This is more involved, because we must now speak about sequences of transitions. 

In order to keep the notation compact, we introduce some convenient abbreviations. 
Let O', a',.. . range over lists of pairs (a, ea) with a E Act and ea : Ea. We define <;§ d( O') 
with d ED by induction over the length of O": 

Each O" determines an execution fragment: 

determined by CJ 

is the execution fragment determined by O"( a, ea). This execution fragment is al
lowed for p(d) iff the conjunction f?4d(O') of all conditions associated to the actions 
in O" evaluates to T. The boolean f?4d(a) is also defined by induction to the length 
of O": 

We write n 1 (a) for the sequence of actions that is obtained from O" by applying the 
first projection to all its elements. 

n1(A.) =A. 

rc1(0"(a,ea)) = n1(a)a 

The diagram for weak >-confluence can be redrawn instantiated for C-LPs as shown 
below. The actions in the (possibly empty) sequences a 1, 0"2 and a3 must all be 



J.F Groote, M.P.A. Se/link/ Theoretical Computer Science 170 (1996) 47--81 69 

progressing r-steps, that is n: 1(0";) = r; for all i = 1,2,3. 

We summarise this diagram in the following theorem. Due to its generality the theorem 

looks rather complex. However, in those applications that we considered, the lists that 
are existentially quantified were mainly empty, which trivialises major parts of the 
theorem. 

Theorem 6.4. The process p as defined in Definition 6.1 is weakly >-confluent if p 
is >-convergent and for all e 1 : Ea, e2 : £,> such that 

(i) a= r> ~ ga(d,e1)-=;':- g,>(d,e2) 
(ii) ba(d, e1) /\ b,, (d, e2) 

the following property holds: 

where (J = a1 (a, e3 ) (J2 , or a = r and (J = a1 a2. 

7. State space reduction 

Here we employ the results about confluence and r-inertness that we have obtained 
thus far to achieve state space reductions and to simplify the behaviour of processes. In 
this section we work in the setting of branching bisimulation. Contrary to the situation 

in Section 4 this immediately implies that the results apply to weak bisimulation as 

well. First we present the results on transition systems in general, and then on linear 
processes. This is done because for transition systems the results are easier to under

stand. However, as argued in the previous section, the results can be applied more 

conveniently in the setting of linear processes. 

Definition 7.1. Let T1 = (S, --1>) and T2 = (S,---+) be r-labelled transition systems. 

We call T2 a r-Prioritised-reduction (TP-reduction) of T1 iff 
(i) ~ <:;;;--1>, 

(ii) for all s,s' ES ifs~ s' then s _::__. s' ors~ s" for some s". 



70 .!.F Ciroo1e. M.P.A. Sellink/Theoretical Computer Science 170 ( 1996) 47--81 

Clearly, T2 can be obtained from T1 by iteratively removing transitions from states 

as long as these keep at least one outgoing progressing r-step. It goes without saying 

that this may considerably reduce the state space of T1, especially because large parts 

may become unreachable. 

The following theorem states that if T1 is r >-inert with respect to +:2b, then a TP

reduction maintains weak bisimulation. As confluence implies T-inertness, this theorem 

explains how confluence can be used to reduce the size of transition systems. 

Theorem 7.2. Let T1 = (S, ---t>) and T2 = (S, ___.)be T-labelled transition systems. 

Let *:::".b be the maximal branching bisimulation on T1 and T2. If T1 is r >-inert with 

respect to *:::".b and T2 is a r-well founded TP-reduction of T1 then s +-->b s for each 

states ES. 

Proof. Let R denote the union of all branching bi simulations on T1• Since T1 is 

r > -inert with respect to ~ we have (by definition) that 

s ~ s' ==} sRs' (8) 

holds. We prove that R is a branching bisimulation on T1 and h Then, by definition, 

R <;;;*:::".band the theorem follows immediately since sRs for alls ES. 

Let sRs'. We have to prove: 

(i) s ~ t ===;. [a= r /\ tRs'] V [3u,u' .s' ~ u ~ u' /\ sRu /\ tRu'] 

(ii) s' ~ t' ===;. [a= r /\ sRt'] V [3u, u' .s ~ u ~ u' /\ s'Ru /\ t' Ru'] 

We first prove (i). Supposes~ t. We are in one of the following situations: 

s -----R----- s' 

s ----...,R----- s' ,.1 
or s -----R----- u 

-----R'------ u' 

"1 
-----R·----- u' 

The existence of u and u' as depicted above is given by the definition of R. If all 

transitions of s' ---£>!> u' occur in T2 (and in particular ifs' = u') then we are done. 

To settle (i) in the other case - i.e. the case that not all transitions of s' --!>!> 

u' occur in T2 (and in particular s' -=/=- u') - we prove that the following property 

holds: 



J.F. Groote, M. P.A. Se/link I Theoretical Computer Science 170 (1996) 47-81 71 

s R s' s R s' 

,-1 r• I 

I 

... 
s R u s --------- R--------- y 

·l ·l ·l a' 
I 

I ... 
R u' t - - - - - - - - - R - - - - - - - - - y' 

We use induction on dr(s'). Here, d, is defined with respect to T2, i.e. d,(x) equals 
the number of ~-steps that can be executed from x. 

Let v and v' be those states occurring in the path s' ~ u ~ u' of T1, such 
that s' ~ v --f+ v'. That is, v --!> v' is the first transition of s' ~ u ~ u' 
that does not occur in T2. We can draw the diagram as in Fig. 3. If s' = v then 
v --!> v' is the first transition of s' ~ u ~ u', if v = u then v --!> v' is the last 
transition of s' ~ u ~ u' and otherwise v --!> v' is an intennediate transition 
ofs'~u~u'. 

The transition v ~ z exists because T2 is a TP-reduction of T1. Since -----+ c;;;; ---t> 

we can conclude vRz, using ( 8 ). Furthermore, sRz (by transitivity of R) and d r(z) < 
d,(s'). Since R is a branching bisimulation on T1 there exist states x and x' as depicted 
in Fig. 4. Now, by the induction hypothesis, there exist states y and y' as shown in 
Fig. 5, and we are done because y and y' satisfy the required properties. 

s R s' 

"l r, s R v z 

"l 
s R u 

·l ·l 
R u' 

Fig. 3. 



72 J.F Groote, M.P.A. Sellinkl Theoretical Computer Science 170 ( 1996) 47-81 

s R v r, z 

r•l 
u 

r• 

s----------R---------- x 

----------R----------x' 

Fig. 4. 

s R v r, z 

r•l 
u 

,. 

s----------R----------y 

·l ·l 
----------R----------y' 

Fig. 5. 

The validity of (ii) is easy. Suppose s' ~ t'. We are in the following situation: 

s -----R----- s' 

t' 



J.F. Groote, M.P.A. Se/link/ Theoretical Computer Science 170 ( 1996) 47-81 73 

Since ----. ~ ----f> we have that s' ~ t'. Now there exist states u and u' as depicted 
below since R is a branching bisimulation on T1• 

s -----R---- s' 

·· 1 
u -----R'----- s' 

·l ·l 
u' ----.....,R'------ t' 

so we are done. D 

Below we reformulate the notion of a TP-reduction on linear processes. We assume 
that p is a linear process according to Definition 6.1 and that the data sort E, is 
ordered by some total ordering -<, which assigns priority among -r-actions in the TP
reduction. 

Definition 7 .3. The TP-reduction of p is the linear process 

p,(d) = I: I:; a(f~(d,ea)) p,(ga(d, ea)) <I ba(d,ea) /\ Ca(d,ea) [> b 
aEAct ea:E" 

where 

Note that, for the sake of conciseness, we use :J in the condition Ca( d, ea), which 
actually does not adhere to the formal definition of µCRL. 

Theorem 7.4. If the linear process p is >-convergent and weakly >-confluent, and 

if Pr is convergent, then for all d :D 

p(d) +-+b Pr(d) 

Once again we remark that the results of this section Theorems (7 .2 and 7.4) also hold 
for weak bisimulation. 

8. Two examples 

We illustrate how we apply the theory by means of two examples, where the structure 
of the processes is considerably simplified by a confluence argument. 



74 J.F. Groote, M.P.A. Sellink/Theoretical Computer Science 170 (1996) 47-81 

8.1. Concatenation of two queues 

Consider the following linear process Q(q) describing a queue q: 

Q(q) = I: r(e,) · Q(in(e,, q)) + s(toe(q)) · Q(untoe(q)) <1 ne(q) 'i> i5 
e7 :E, 

The boolean expression ne(q) evaluates to T iff q is not empty. The function in is 
used to insert an element to a queue and the function untoe is used to remove that 
element of a queue which has been inserted first. The function toe returns this first 
element. Now the following linear process QC (qi, qi)) describes the concatenation of 
two queues q1 and q2: 

Q((q1,q2)) = Le,:E,r(e,) · Q((in(e,,q,),q2)) <I T 'i> i5 + 
r · Q((untoe(q1),in(toe(q1),q2))) <I ne(q1) 'i> i5 + 

s(toe(q2)) · Q((qi,untoe(q2))) <1 ne(q2) 'i> i5 

As we can see, the process Q( ( q1, qz)) can always read a datum and insert it in q1. 

If q2 is not empty then the "toe" of q2 can be sent. The internal action r removes the 
first element of q1 and inserts it in q2. 

~-'(_ .. )~~·~' ~q-1~,:-~~-+1•~[ ~q-2~~~-5 <~··>~+ 

Using Theorem 6.3 we can straightforwardly prove that Q( ( q1, q2 )) is strongly con
fluent. For the read action r we find the condition that for all queues q1,q2 and e,:Er 

ne(qi) => 3e~ :E, e, = e~ /\ ne(in(d,q1 ))/\ 

(in(e~, untoe(q1 )), in(toe(q1 ), q2 )) = ( untoe(in(e,, q1) ), in(toe(in(e,, q1) ), q1) ). 

Similarly, we can formulate the following conditions for the action s. For all queues 
qi,qz 

toe(q2) = toe(in(toe(q1 ),q2)) /\ 

ne( in(toe( q1 ), qz)) /\ ne(q1) /\ 

( untoe(q1 ), untoe(in(toe(q1 ),q2))) = ( untoe(q1 ), in(toe(q1 ), untoe(q2)) ). 

With the appropriate axioms for queues, the validity of these facts is easily verified. 
For the a= r we find that the precondition a='!:=> 9a(d,e1) # gt(d, e2 ) is instantiated 

tor= r => (untoe(qi),in(toe(qi),q2)) # (untoe(q1),in(toe(q1),q2)), which is a trivial 
contradiction. 



J.F Groote, MP.A. Sellinkl Theoretical Computer Science 170 ( 1996) 47--81 75 

K 

s R 4 

5 
6 

L 

Fig. 6. 

Now, by Theorem 7.4, the following TP-reduced version (see Definition 7,3) of 

Q( ( q1, q1 ! ) is branching bisimilar to Q( ( q 1, q2 / ). 

Qr((q1,q2/) = 

<! TI\ empty(q1 ) 

ne(qi) 

C> 6 + 
C> 6 + 

<! ne(q2 ) I\ empty(qi) C> 6 

Note that after the TP-reduction q1 never contains more than one element! 

8.2. The alternating bit protocol 

The alternating bit protocol (ABP) consists of a sender S, a receiver R and two un

reliable channels K and L (see [3, p. 108] ). All these components can straightforwardly 

be described by a linear process (see Fig. 6 ). 

The sender 
The variables ds, bs and ns are the data parameter, the bit and the state of the sender. 

If n.1. = 0 then S can read a fresh datum r 1 (x ). If ns = 1, it wants to send data to 

channel K and if ns = 2 then S is waiting for an acknowledgement 

S(ds:D,bs:IR,ns:N) = Zxo r1(x)·S(x,bs,l) <lns=OC> fJ + 

s2(ds,bs), S(d"bs,2) <! ns = 1 C> fJ + 
rb(-•bs) · S(ds, bs, 1) <! ns = 2 C> b + 

r6(ce) · S(ds, bs, 1) <! ns = 2 C> b + 
r6(bs), S(ds, -.bs, 0) <! ns = 2 e> () 

Note that this linear process is not clustered because the last three summands of this 

linear process equation all perform the same action r6( .. ). 

The channels 
We provide linear process equations for the channels K and L. Again, the processes 

are not clustered, Analogously to the sender, dk. bk and nk are the data parameter, the 



76 J.F Groote. M.P.A. Sellink I Theoretical Computer Science 170 ( 1996) 47-81 

bit and the state of channel K. If nk = 0 then K can read a datum. If nk = 1 then K 
can choose to deliver the datum correctly (nk := 2) or to lose the datum and report a 
checksum error ce ( nk := 3 ). After delivery of either message, K can read again. 

K(dk:D, bk:IB\, nk:N) = LxD Ly:B r2(x, y) · K(x, y, 1) <J nk = 0 I> 13 + 
i·K(dk,bk,2) <Jnk = 11> 13 + 
i·K(dk,bk,3) <Jnk = 11> 13 + 

s3(dkobk) · K(dk,bk,0) <J nk = 2 I> 13 + 

s3(ce) · K(dk.bk.O) <J nk = 3 1> 13 

The linear process equation for channel L is almost identical to the linear process 
equation for channel K we just gave. The only difference lies in the fact that channel 
L does not transport any data but only an acknowledging bit. 

L(b1:IEB,n1:N) = Ly:srs(y)·L(y,1) <Jnt =01> 13 + 
i·L(bt,2) <Jnt = l 1> (J + 

i ·L(bt,3) <J n1 = 11> 13 + 
s6(b1)·L(b1,0) <Jn; =21> 13 + 

s6(ce) · L(b1, 0) <J nr = 3 I> b 

The meaning of the parameters of L is exactly the same as the meaning of the corre
sponding parameters of K. 

The receiver 
The parameters dr, br and n,. are the data, bit and state of the receiver, respectively. 
If n,. = 0 then R is waiting for data to arrive via channel K. If nr = 1 then R wants 
to send an acknowledgement via channel L and if nr = 2 then R is ready to execute 
action s4(dr ), i.e. deliver a datum. 

R(dr:D,br:IEB,n,.:N) = 

The parallel composition 

Lx:D r3(x, br) · R(x, b,., 1) <J nr = 0 I> 13 + 
r3(ce)·R(dnbr,l) <1 n,.=0 I> b + 

Lx:D r3(x, --.b,.) · R(x, •b,., 2) <J nr = 0 I> 13 + 
Ss(br)·R(d,.,b,.,O) <1nr=1I>13 + 
s4(d,.) · R(d,.,b,., 1) <1 nr = 2 I> b 

The parallel composition a{r;"'' I i=2,3,s,6}(S II K II L II R) can then be described by the fol
lowing linear process, which is easily calculated from the four components S, K, L and 
R. In order to improve the readability we write X[%] for the process that is obtained 
from X( .. ) by replacing b by a. For example, in the linear process equation for the 
sender we could have written S[~nJ instead of S(d5 , b5 , 2) and so on. 



J.F Groote, M.P.A. Se/link I Theoretical Computer Science 170 ( 1996) 47-81 77 

Lx D r1 (x) · X[/dJ[1/nJ 

C2(ds, bs) · X[2/nJ[d'/d,][b'/b, ][1/,,,J 

c6(bt) · X[0/,,J[0/n, ][~b'/bJ 

C6(bt) . X[ 1/,,J[°!n,] 

c6( ce) · X[ 1/,,J [0/n,] 

<I n_,. =0 t> b + 
<I ns = 1 /\ nk = 0 t> c) + 

<I bt = b_,. /\ n.1. = 2 /\ n1 = 2 t> b + 

<I bt f- bs /\ ns = 2 /\ n; = 2 t> b + 
<I n,. = 2 /\ n1 = 3 t> (j + 

C3(dk,bk) ·X[d'!J,][1/n,][0/nJ <I bk=br/\nr=O/\nk=2 t> b + 

c3(dk, bk) · X[d'/J, ][2/,,,][0/nJ[~b,/b,] <I bk f- br /\ nr = 0 /\ nk = 2 t> b + 

c3( ce) · X[ 1/n,][0/n,] 

cs(br) · X[0/n,][b'/b1 ][1/n 1 ] 

S4(dr) · X[1/n,J 

i · x[21nk J 

i . x[31nJ 

i · X[2/n,] 

i · X[3/n,] 

<I 

<I 

<I 

<I 

<I 

<I 

<I 

nk = 3 /\ nr = 0 t> (j + 
nr = 1 /\ n1 = 0 t> (j + 

nr = 2 t> (j + 

nk = 1 t> (j + 

nk = 1 t> (j + 

nr = 1 t> (j + 
n1 = 1 t> (j 

We assume that initially the alternating bits of Sand K are equal and unequal to the 

alternating bits of L and R. Furthermore we assume that initially all data parameters 

are equal and that all state parameters are 0. So all initial states are of the form 

(d,b,O,d,b,0,-,b,O,d,-,b,O). In the sequel we abbreviate this state by init(d,b). 

Let I= {c2 ,c3,c5,c6,i} then T1(X(init(d,b))) is not r-well-founded. For instance, 

r1(X) 

X(init(d,b)) -------<o.X(x,b, 1,d,b,O,,b,O,d,-,b,O) 

''"b)l 
c2(x,b) 

X(x,b, l,x,b,0,-,b,O,d,-,b,0) -----<>X(x,b,2,x,b, l,-ib,O,d,-,b,O) 

'·'"'I '1 
X(x, b, 2,x, b, 0, -,b, 3, d, -,b, 0) X(x,b,2,x, b, 3, -ib, O,d, -ib, 0) 

c,k•)l 
Cs(~b) 

X(x,b,2,x,b, 0, -.b, l,d, -ib,0) <1----- X(x,b,2,x, b,O, -,b,O,d, -ib, 1) 



78 J.F Groote, M.P. A. Sellink I Theoretical Computer Science 170 (1996) 47-81 

will. after hiding, result in a r-loop. This means that we cannot use Theorem 3.5 
or Lemma 3.8 in order to derive property (1 ). Theorem 3.2 is also useless since 
7:1(X(init(d,b))) is obviously not strongly confluent. However, if we divide the r-steps 
of 'L'1(X) in progressing and non-progressing ones, such that the result is r>-well
founded, then we can apply Theorem 6.4. Let Y be the process obtained from 'L'1(X) 
by labelling those r-steps that set nk or n1 to 3, with < and all the other r-steps with >. 

LxD r1(x) · Y[x!d,][1/nJ <l n.,. = 0 I> h+ 

T> Y[2/n, ][d'b, ][b'/b, ][ 1/n,] <l n, = 1 A nk = 0 I> h+ 

T> Y[°/n, l [(~11 l [~b'/b,] <l b1 = bs A n, = 2 A nr = 2 I> h+ 

'> Y [1J,,, H0/n, ] <l b1 =f- bs Ans = 2 A nr = 2 I> h+ 

'> · Y[1/n,H°ln1l <l ns = 2 A n1 = 3 I> b + 

'> Y[d'/d, ][ 1;,,, ][o/n,] <l bk = b, A nr = 0 A nk = 2 I> b + 
T> Y[d'h,] [2/n, ][0/n,] [~b,/b,] <l bk =f- b, An,. = 0 A nk = 2 I> b + 

'> Y [1/n, ][0/nJ <l nk = 3 An,.= 0 I> () + 

T> Y[0/,,, ] [h, fh, ] [ 1/n1 ] <l nr = 1 A n1 = 0 I> b + 
S4(dr) · Y[ 1/n,] <l n, = 2 I> h+ 

'> · Y[2/nJ <l nk =I I> b + 

'< Y[3/n,] <l nk =I I> h+ 

'> Y[2/n1 J <l n1 = 1 I> b + 

'< · Y[3/n1 ] <l n1 = l I> b 

In order to proceed we need the following lemma: 

Lemma 8.1. The j(Jl/owing invariant properties hold in every state of Y(init(d,b)). 
(i) nk7~0-:;.. (ns=2Ads=dkAb,=bk) 

(ii) n1 =f- 0 --:;.. (ns = 2 A nr = 0 A nk = 0 A br = br) 
(iii) nr =/- 0--:;.. (nk = 0 Ans= 2) 
(iv) n,.=0-:;.. br=b1 
(v) bs = b,. _:;;,.. (ds = dr Ans=/- 0) 

Proof. Straightforward induction. D 

Next we show that Y(init(d, b)) is weakly >-confluent. Since we formulated the 
conditions for weak >-confluence for clustered linear processes (Theorem 6.4) we 



J.F Groote, M.P.A. Sellink/Theoretical Computer Science 170 (1996) 47--81 79 

Table I 

r> 1 x 0 x 0 • x x 
r>2 x 0 0 x x • x 
r>3 x 0 0 x x x • 
r>4 x 0 0 x x x x 
r>5 0 x x 0 x 0 0 

r>6 0 x x 0 x 0 0 

r> 7 0 x x 0 x 0 0 

r>8 0 x 0 x 0 x x 
r> 9 0 0 0 x 0 0 

r> 10 0 0 0 0 x x 

first formulate a clustered version Y' of Y. 

I:x:D r1(x) · Y' [xkJ.][1,4,,] 

s4(dr) · Y' [1/,,,.] 

" r . Y' {[3/nk] if n = I 
wn:l\I < r3/n1 ] if n = 2 

[2,;,,][d'/dk][b'/bk][ 1/nk] if n=I 
[°;n,][0/., ][~b,ih,] if n=2 
[ 1/,,J[°fn,l . if n=3 

[ 1/n,][0/,,,] if n=4 

I: •.. •• <> . y' [~kfd,J[{n1 ][t1] b if n=S 
.. [ 1/d,][/.,.][fr.,r 'fi,,] if n=6 

[ 1/n,][0/.1 ] if n=7 
[0/n, ][b'/b, ][1fr,1 ] if n=8 

[2;.k l if n=9 
[2/.,] if n=IO 

x 
x 
x 

• 
0 

0 

0 

x 
0 

x 

<I 

<I 

<I 

<I 

x x x 0 

0 0 0 x 
0 0 0 x 

0 0 0 x 

• x x x 
x • x x 
x x • x 
x x x • 
x x x 0 

0 0 0 x 

ns = 0 

n, = 2 

[ 
(nk = I f\ n = I )V] 
(n; = I /\ n = 2) 

x 
0 

0 

0 

x 
x 
x 
0 

• 
0 

(ns=l f\nk=Of\n=l)V 
(bt=bs /\ n,,=2 /\ nt=2 f\ n=2)V 
(brfb, /\ n,,=2 /\ nt=2 /\ n=3 )V 

(ns=2 /\ nt=3 f\ n=4 )V 
(bk=br /\ n,=0 /\ nk=2 /\ n=S)V 
(bk'fbr /\ n,=0 /\ nk=2 f\ n=6)V 

(nk=3 /\ n,=0 /\ n=7)V 
(nr= I /\ nt=O /\ n=8)V 

(nk= l f\ n=9)V 
(nt=1 /\n=IO) 

Lemma 8.2. Y'(init(d,b)) is weakly >-confluent. 

0 

x 
x 
x 
0 

0 

0 

x 
0 

• 

C> " + 

C> " + 

C> {J + 

C> fJ 

Proof. Confluence must be checked for all a E Act and e1 : Ea, with respect to all e2: 
E,,. We do this by a straightforward application of Theorem 6.4. We have distinguished 
140 cases that have been listed in Table I. For 68 cases, marked with a x in the table 
the condition ba(d, ei) /\ bh (d, e2) does not hold. In 10 cases, marked with a •, the 
condition a = r> => ga(d,ei) :f. g,,(d,e2 ) is violated. In 60 of the remaining 62 
confluence is immediately clear from the fact that the substitutions do not affect each 
other (i.e. they are commutative). These cases are marked with a o in the table. 

So, there are 2 cases left. Each case corresponds to the choice of a channel to corrupt 
the datum or not. We only treat the case r< 1 and r> 9. 

We take (jz empty and (j = (}'1 using that a= r <. So, e3 is irrelevant. We distinguish 
the following two cases: 



80 J.F Groote, M.P.A. Se/link/Theoretical Computer Science 170 (1996) 47--81 

o Assume b,. = bs. We take for a 1 = (t»5) and CT3 = (t>, 7). We must now check 
the three requirements 

;~ g"\d.ei)( CT3 ), Jaa,, (d,e2 )( O') and r§ g"(d,ei)( CT3) = r§ g,> (d,e2 )( (J) 

These boil down to the following three proof obligations, where the trivial ones 
have been omitted. All obligations follow from the invariant in Lemma 8.1 m a 
straightforward fashion as we know that nk = 1. 

n,. = 0, bk = b,. /\ n,. = 0 and dk = d,.. 

• In the case that b,. =f b,,., we take CT 1 empty and CT3 = (t>, 7) (t» 8) (t» 10) (t>, 3) 
( r » 1) ( r >, 9). The three requirements now become 

n,. = 0 /\ n1 = 0 /\ b,. i= b5 /\ ns = 2, true and 

n, = 2 /\ b,. = b1 /\ nr = 0 /\ n,. = 0 /\ ds = dk /\ bs =bk. 

These also follow from the invariant and the fact that nk = 1. D 

The TP-reduction now prescribes that in all states where there is a progressing 
r-step all other actions can be removed. In the cases where nk = 1 or n1 = 1 this is 
applicable; we can remove the non-progressing r-steps. By removing all transitions that 
have become unreachable in this way, we obtain the following simple process of which 
each state has only one outgoing transition. In particular, the channels have become 
reliable. One easily verifies that this process is convergent. For example, the natural 
number 3 · (( -n,) mod 3 )+ 3 · ( (n,. - 2) mod 3 )- nk - n1 +4 decreases after each t-step. 
By Theorem 7.4 this reduced process is branching (and hence also weakly) bisimilar 
to the alternating bit protocol. 

Acknowledgements 

n.,. = 0 

n, = 2 

(ns= 1 I\ nk=O I\ n= 1 )V 
(hr=bs I\ n,=2 I\ n1 =2 I\ n=2 )V 
(bkoJb, I\ n,.=0 I\ nk=2 I\ n=6)V 

(n,=l /\ n1=0 I\ n=8)V 
(nk=l I\ n=9)V 
(nr=l I\ n=lO) 

I> ,) + 

I> 6 + 

I> cl 

We thank Marc Bezem for discussion in an early phase of the project and Frits 
Vaandrager for demonstrating the importance of confluence in the verification of a 
leader election protocol. Furthermore, we thank Jaco van de Pol and Wan Fokkink for 
comments on a draft version of this paper and Anne Dicky for her valuable suggestions 
on improvement of the presentation. 



J.F Groote, M.P.A. Sellink/Theoretical Computer Science 170 ( 1996) 47-81 81 

References 

[l] DJ. Andrews, J.F. Groote and C.A. Middelburg, eds. Proc. Internal. Workshop on Semantics of 
Specification Languages, Utrecht, Netherlands, Workshops in Computing (Springer, Berlin, 1993 ). 

[2] A. Arnold and A. Dicky, An algebraic characterization of transition system equivalences, Inform. and 
Comput. 82 (1989) 198-229. 

[3] J.C.M. Baeten and J.W. Klop, eds., Proc. Ist Conf on Theories of Concurrency, CONCUR '90, 
Amsterdam, The Netherlands, August 1990, Lecture Notes in Computer Science, Vol. 458 (Springer, 
Berlin, 1990). 

[4] J.C.M. Baeten and W.P. Weijland, Process Algebra, Cambridge Tracts in Theoretical Computer Science, 
Vol. 18 (Cambridge University Press, Cambridge, 1990). 

[5] J.A. Bergstra and J.W. Klop, The algebra of recursively defined processes and the algebra of regular 
processes, in: Proc. llth ICALP, Antwerp, Lecture Notes in Computer Science, Vol. 172 (Springer, 
Berlin, 1984) 82-95. 

[6] M.A. Bezem and J.F. Groote, A correctness proof of a one-bit sliding window protocol in µCRL, 
Comput. J. 37 (1994) 289-307. 

[7] M.A. Bezem and J.F. Groote, Invariants in process algebra with data, in: B. Jonsson and J. Parrow, 
eds., Proc. 5th Conf on Theories of Concurrency, CONCUR '94, Uppsala, Sweden, August 1994, 
Lecture Notes in Computer Science, Vol. 836 (Springer, Berlin, 1994) 401-416. 

[8] R. Gerth, R. Kuiper, D. Peled and W. Penczek. A partial order approach to branching time logic 
model checking. Computer Science Report 94/53, Department of Mathematics and Computer Science, 
Eindhoven University of Technology, December 1994. 

[9] J.F. Groote and A. Pense, Proof theory for µCRL: a language for processes with data, in Andrews et al. 
[I, pp. 231-250]. 

[10] J.F. Groote and A. Ponse, The syntax and semantics of µCRL, in: A. Ponse, C. Verhoef and S.F.M. van 
Vlijmen, eds., Proc. lst Workshop in the Algebra of Communicating Processes, ACP '94, Utrecht, 
Netherlands, July 1994 (Springer, Berlin, 1994) 26--62. 

[11] J.F. Groote and M.P.A. Sellink, Confluence for process verification, Tech. Report 137, Logic Group 
Preprint Series, Utrecht University, June 1995. 

[12] J.F. Groote and J.C. van de Pol, A bounded retransmission protocol for large data packets. A case study 
in computer checked verification, Tech. Report 100, Logic Group Preprint Series, Utrecht University, 
October 1993. 

[13] G.J. Holzmann and D. Peled, An improvement in formal verification, in: Proc. FORTE 1994 Conf, 
Bern, Switzerland, 1994. 

[14] J.W. Klop, Term rewriting systems, in: S. Abramsky, D.M. Gabbay and T.S.E. Maibaum, eds., 
Handbook of Logic in Computer Science, Vol. 2 (Oxford Science Publications, 1992) 1-116. 

[15] H. Korver and J. Springintveld, A computer-checked verification of Milner's scheduler, in: M. Hagiya 
and J.C. Mitchel, eds., Proc. 2nd Internal. Symp. on Theoretical Aspects of Computer Software, 
TACS '94, Sendai, Japan, Lecture Notes in Computer Science, Vol. 789 (Springer, Berlin, 1994) 161-

178. 
[16] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vol. 92 

(Springer, Berlin, 1980). 
[17] H. Qin, Efficient verification of determinate processes, in: J.C.M. Baeten and J.F. Groote, eds., Proc. 

2nd Conf on Theories of Concurrency, CONCUR '91, Amsterdam, Netherlands, August 1991, Lecture 
Notes in Computer Science, Vol. 527 (Springer, Berlin, 1991) 471-494. 

[18] M.P.A. Sellink, Verifying process algebra proofs in type theory, in Andrews et al. [1, pp. 315-339]. 
[19] F.W. Vaandrager, Uitwerking Tentamen Protocolverificatie, unpublished manuscript, 1994. 
[20] R.J. van Glabbeek, The linear time - branching time spectrum, in Baeten and Klop [3, pp. 278-297]. 


