
I J 9 9 8 I 32 -.

Scheduling Jobs That Arrive Over Time
(Extended Abstract)

Cynthia Phillips* Clifford Steint Joel Wein *
April 6, 1995

Abstract
A natural and basic problem in scheduling theory is to provide good average quality
of service to a stream of jobs that arrive over time. In this paper we consider the
problem of scheduling n jobs that are released over time in order t o minimize the
average completion time of the set of jobs. In contrast to the problem of minimizing
average completion time when ad jobs are available at time 0, ad the problems that
we consider are NP-hard, and essentially nothing was known about constructing good
approximations in polynonid time.
We give the first constant-factor approximation algorithms for several variants of the
single and parallel machine model. Many of the algorithms are based on interesting
algorithmic and structural relationships between preemptive and nonpreemptive sched-
ules and linear programming relaxations of both. Many of the algorithms generalize to
the minimization of average weighted completion time as well.

1 Introduction
Two important characteristics of many real-world scheduling problems are that (1) the tasks to be
scheduled arrive over time and (2) the goal is to optimize some function of average performance or
satisfaction. In this pa& we study several scheduling models that include both of these character-
istics; in particular we study the minimization of the average (weighted) completion time of a set of
jobs with release dates. In most of these models polynomial-time algorithms were known to mini-
mize average completion time when all the jobs were available at time 0; the introduction of release
dates makes these problems NP-hard and little was known about approximation algorithms.

Our major contribution is to give the first constant-factor approximation algorithms for the
minimization of average completion time in these models. Our performance bounds come from
the combination of two different types of results. First, we prove structural theorems about the
relative quality of preemptive versus nonpreemptive schedules, and give algorithms to convert from

'caphill@cs. sandia.gov. Sandia National Labs, Albuquerque, NM. This work was performed under U.S. De-
partment of Energy contract number DE-AC0476AL85000.

' c l i f f @cs . dartmouth. edu. Department of Computer Science, Sudikoff Laboratory, Dartmouth College, Ranover,
NH. Research partly supported by NSF Award CCR-9308701, a Walter Burke Research Initiation Award and a
Dartmouth College Research Initiation Award.

neinBmem. poly. edu. Department of Computer Science, Polytechnic University, Brooklyn, NY, 11201. Research
partially supported by NSF Research Initiation Award CCR-9211494 and a grant from the New York State Science -
and Technology Foundation, through its Center for Advanced Technology in Telecommunications.

1

http://sandia.gov

I

the former to the latter with only a small degradation in schedule quality. Second, we give the
first constant-approximation algorithms for preemptively scheduling parallel machines with release
dates. When the machines are identical, we give a combinatorial algorithm which yields a two
approximation. For unrelated machines, we give a new integer programming formulation. We then
solve the linear programming relaxation and give methods to round the fractional solution to valid
preemptive schedules; it is possible that these methods mill be of use in other settings.

Models: We are given n jobs J1:. . . . J , where job J; has associated processing time p j , and a
release date r j y before which it can not be processed on any machine. We will also be given m
machines M I y . . . , M,. We will focus both on the one machine (m = 1) environment and two fun-
damental variants of parallel machine scheduling. In the identical parallel machine environment ,
job Jj runs in time pj on every machine [8]. In the unrelated parallel machine scheduling environ-
ment, we are given speeds sij wEch characterize how fast job Jj runs on machine Mj, and pjj, the
processing time of job Jj on machine Mi, is defined to be pjj = P j / S j j and thus depends on both
the machine and the job [8]. Throughout this paper, unless specified otherwise, it is assumed that
all jobs have release dates,

We will give algorithms for both preemptive and nonpreemptive scheduling. In nonpreemptive
scheduling, once a job begins running on a machine, it must run uninterruptedly to completion,
while in preemptive scheduling, a job that is running can be preempted and continued later on any
machine. At any point in time a job may be running on at most one machine.

We will use the notation Cj to denote the completion time of jo5 J j in some schedule, and will
often add a superscript to specify a particular schedule. Our basic octimization criterion is the
average completion time of the set of jobs, t C j Cj. At times we will associate with Jj a weight
wj and seek to minimize the average weighted completion time, Cj wjCj. These optimality
criteria are fundamental ones in scheduling theory and accordingly have received much attention,
e.g. [2, 3, 5, 6, 7, 9, 10, 11, 131.

We distinguish between off-Zine and on-line algorithms. In an off-line algorithm, all the input
data associated with jobs (r j and p j) is known in advance, and the scheduler wishes to compute
an optimal schedule. In an on-line algorithm, at time t, the scheduler only knows about jobs with
release dates rj 5 t , and must decide what job (if any) to be scheduling at that time, with no
knowledge of what jobs will arrive in the future. In this paper, unless we explicitly state that an
algorithm is on-line, it can be assumed to be off-line.

We define a p-approximation algorithm to be one which, in polynomial time, produces a schedule
whose value is guaranteed to be at most p times the minimum possible value.

New Results: The results of this paper are as follows. We first focus on the problem of nonpre-
emptively scheduling jobs on one machine so as to minimize their average completion time. This
problem is NP-hard [9]; we give a simple 2-approximation algorithm for it, which works by trans-
forming the optimum preemptive schedule for the problem, which can be found in polynomial time
[l]. The best previous approximation algorithm for this problem was an O(log2 n)-approximation
algorithm [12]. Our proof demonstrates that for any set of jobs with release dates, the minimum
average completion time of a preemptive one-machine schedule for these jobs is at most a fac-
tor of 2 smaller than the corresponding minimum average completion time of the nonpreemptive
one-machine schedule.

Our algorithm can be modified slightly to be on-line; we show as well that it is close to an
optimal on-line scheduler, by showing that any on-line scheduling algorithm for the problem must
be at least a $-approximation algorithm.

We then turn to parallel identical machines, and give a technique that converts preemptive

' P

2

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

I

- Environment Nonpreempt. Cj Nonpreempt. wjCj Preempt. Cj Preempt. WjCj
One machine 2 1 6 + ~ 1 PI 16f-c
Identical 6 2 4 + ~ 2 1 6 + ~
unrelated O(1Og" n)[121 o(i0g" n)[121 24+€ . 3 2 + ~ -

parallel machine schedules to nonpreemptive schedules while at most tripling the completion time
of any job. This technique applies even when the preemptive schedule is fractional (fractional
parts of different jobs are assigned simultaneously to one machine) which proves useful in rounding
linear program solutions to obtain valid schedules. This technique, however, does not by itself yield
nonpreemptive approximation algorithms since the preemptive problems are NP-hard. As a result,
we next consider the preemptive scheduling of parallel machines.

When the release date of each job is 0 and the machines are identical, McNaughton [lo] showed
that no preemptions are needed in order to minimize the average completion time; therefore the
polynomial-time algorithm for the nonpreemptive version of this problem [2, 51 solves it directly.
When release dates are introduced, however, even the two machine problem becomes NP-hard [3].
When one attempts, in addition, to minimize the average weighted completion time even the one
machine version of the problem becomes NP-hard [7]. To the best of our knowledge, nothing was
known about approximation algorithms for any version of these problems.

We give a combhatorial 2-approximatior. algorithm for the problem of scheduling preemptive
identical machines. These techniques, however, do not apply to weighted completion times or
to unrelated machines. To solve these problems, we introduce an integer program that is closely
related to optimal preemptive schedules to minimize average weighted completion time on unrelated
machines. We solve the corresponding linear programming relaxation and then show how to round
this to a feasible; provably good, preemptive schedule; this rounding idea may be useful in other
contexts as well. This formulation gives different approximation guarantees for different problems;
a summary of our results is presented in Figure 1.

We note also that one conseqxence of this last result is the first constant-approximation algo-
rithm for the preemptive scheduling of unrelated machines so as to minimize average completion
time, when all jobs are available at time 0. It is not known if this problem is NP-hard; in [SI it
states, "Very little is known about this problem ... it remains one of the more vexing questions in
the area of preemptive scheduling."

Previous Work: The only work we know of that studies this problem is [12] which gives
O(log2 n)-approximation algorithms for the nonpreemptive versions of the problems, as a special
case of a very general theorem. There is some similarity of spirit between the algorithms there and
those we give in Section 5 in that both solve a sort of generalized matching problem. The type of
generalization of matching, the rounding techniques, and the quality of approximation achieved,
however, are quite different.

Whereas our algorithms in Sections 2 and 3 run in O(n1ogn) time, the algorithms in Section 5,
run in polynomial time, but the polynomial is quite large. We also note that we are not studying
the average flow time of a set of jobs, where the flow time is Cj - ~ j . That optimality criterion
is appropriate when trying to provide fair service to jobs, whereas the criterion we study is more
appropriate in a situation where one does not care about fairness but rather getting as many jobs
done as fast as possible.

3

2 One Machine
In this section we consider the N’P-hard problem of nonpreemptively scheduling n jobs with re-
lease dates on one machine so as to minimize the average completion time. We first give a two-
approsimation algorithm, and then discuss the consequences for the relationship between preemp-
tive and nonpreemptive schedules. The algorithm we give is an on-line scheduling algorithm, so we
prove a lower bound on the performance of any on-line scheduling algorithm for this problem.

Theorem 2.1 There is a polynomial-time 2-approximation algorithm for scheduling jobs with re-
lease dates on one machine so as to minimize the avei-age completion time of the jobs.
Proof: It is well-known that the preemptive version of this problem is solvable in polynomial
time by the shortest processing time rule: always be processing the job with the shortest remaining
processing time [l]. Our algorithm for the nonpreemptive case transforms the preemptive schedule
as follows.
Algorithm ON E-MACHINE:

1. Compute the optimum preemptive schedule.

2. Schedule the jobs nonpreemptively in the order of their completion time in the preemptive

The second step of the algorithm can be visualized as follows. Consider the last scheduled
piece of J j , which is scheduled from time Cy - k to Cp in the preemptive schedule. Insert p j - IC
extra units of time in the scheduie at time ?;, and sihedde Jj nonpreempxively in the resulting
available block of length p j . This requires that we remove from the schedule all pieces of J j that
were processed before C;. We then push all jobs forward in time as much as possible without
changing the scheduled order of the jobs or violating a release date constraint. The result is exactly
the schedule computed by Algorithm ONE-MACHINE. See Figure 2 for an example.

Let Cj” be the completion time of J j in the preemptive schedule. Then Cy, the completion
time in the nonpreemptive schedule, is at most

schedule, subject to the constraint that no job starts before its release date.

where the second term follows from the fact that job J j can only be moved back by prccessing
times associated with jobs that finish earlier in the schedule. However, since all this processing did

E

Theorem 2.2 Given n jobs with release dates on one machine, let C, be the minimum possible
average completion time of those jobs when preemption is allowed, and let CN be the minimum
average completion time with no preemption allowed. Then CN 5 2Cp. Furthermore, there exist
instances for which CNIC, = $ - E , for any E > 0.
Proof: The first claim of the theorem is an immediate consequence of the proof of Theorem 2.1.
To prove the lower bound, consider an instance with two jobs, JO with po = x and rg = 0, and
J1 with p l = 1 and r1 = ?j. In the optimum preemptive schedule the total completion time is
($ + 1) + (z + 1) = 4x + 2. In the optimum nonpreemptive schedule the total completion time is

E

occur before time Cj” this sum is at most Cj” and hence Cy 5 2Cj”.

2x + 2, yielding a ratio arbitrarily close to $.
This theorem generalizes to the optimality criterion of average weighted completion time.

Corollary 2.3 Given a preemptive one-machine schedule of average weighted completion time W ,
there exists a linear-time algorithm to f ind a nonpreemptive schedule for the same instance of
average weighted completion time 2 W .

4

Figure 2: Illustration of the one machine algorithm. Schedule (a) is the optimal preemptive sched-
ule. Schedule (b) has all but the last piece of each job removed from schedule (a), and empty space
inserted in the schedule to make room for the pieces to be collected at the completion point of the
job in (a). Schedule (c) is the resulting nonpreemptive schedule.

Proof: This is adirect consequence of Theorem 2.2 and the fact that the average weighted comple-
tion time is a linear function of the job completion times; doubling each completion time at most

I
Our analysis of the performance guarantee of algorithm ONE-MACHINE is tight, as is indicated

by the following instance. At time 0 a job of size B is released, at time B - 2 a job of size 1 is
released, and at t i ne 3, x jobs of size 1 are released. Both the optimum preemptive sched.de fcr this

schedule, which has average completion time 1 greater, can be obtained by completing the job of
size B first and then completing all of the size-1 jobs. Algorithm ONE-MACHINE, however, yields
total completion time 3B +2Rz -2+ w. Taking 2 suficiently large and letting B go to infinity
causes the ratio of these two quantities to go to 2.

doubles the average weighted completion time as well.

instance has optimum total completion time of B(x+2)-1+-. z+l 2+2 The optimal nonpreemptive

2.1 On-Line Scheduling
Algorithm ONE-MACHINE can be easily modified to be an on-line algorithm without affecting
its performance. The preemptive shortest processing time algorithm is on-line, since it needs no
information about jobs to be released in the futcre. The nonpreemptive on-line scheduler simulates
the preemptive shortest processing time algorithm. If job Jj finishes at time CT in the simulated
preemptive schedule, then it simply runs starting at time CT in the on-line, nonpreemptive schedule,
provided no other job is already running at this time. If another job (that finishes earlier in the
preemptive schedule) is running at time CT, then job Jj is queued and run as soon as all jobs
preceding it in the queue are run. The proof of Theorem 2.1 then yields the following corollary:

Corollary 2.4 There is an on-line nonpreemptive 2-approximation algorithm for scheduling jobs
with release dates on one machine so as to minimize the average completion time of the jobs.

We now give a lower bound on the performance of any on-line algorithm for this problem.

Theorem 2.5 No on-line nonpreemptive p-approximation algorithm exists for scheduling jobs with
release dates on one machine so as to minimize the average completion time of the jobs with p < $.
Proof: Assume that an on-line algorithm A has a performance guarantee of better than 1 + c for
some c. Assume that this algorithm is given a job JO with pj = x and T j = 0. Then we claim that
algorithm A must start JO by time cx. If it did not, and this were the only job ever released, then

5

http://sched.de

the schedule would complete at some time greater than (1 +c)z , while the optimal off-line schedule
would have run the job immediately, for a completion time of 2. Thus the approximation ratio is
greater than (1 + c) z / z = (1 + c) , contradicting the fact that the approximation ratio is (1 + c).
Thus we can assume that A must start JO before time cx.

Now consider the case when in addition to Jo, z additional jobs with p j = 1 and rj = cz + 1.
In this case, the best thing an on-line algorithm that has to start JO before time cz can do is to
run Jo starting at time 0, followed by (in the best case) t,he other jobs, yielding a total completion
time of

3 2 3
1:

z + C (z + i) = - s + - z 2 2 i=l

while the optimal schedule processes all the size-one jobs first and then the large job, for a total
completion time of

(& + 1 + i) + (c2 + 1 + 22) = (c + -)z2 1 + (c + -)2 7 + 1.
i=l) 2 2

As 2 gets large, this ratio tends towards &. Choosing c = $, yields the theorem.

3 A Conversion Algorithm for Identical Parallel Machines
We now turn to the problem of scheduling jobs with release dates on parallel machiaes, so as to
optimize average completion time. The nonpreemptive versions of these problems are NP-hard due
to the NP-hardness of the one-machine problem. When preemption is allowed, as noted, the one
machine problem is solvable in polynomial-time but the scheduling of even two identical machines
is NP-hard [3] .

In this section we give a technique to convert from preemptive identical parallel machine sched-
ules to nonpreemptive schedules. In the next two sections we will give a combinatorial algorithm for
preemptive identical machines and then a linear-programming formulation that yields a constant-
approximation algorithm for average weighted Completion time on preemptive identical machines.
Combining with the techaiques of this section, we obtain the first constant approximation algo-
rithms for the corresponding nonpreemptive problems.

Theorem 3.1 Given a preemptive schedule S for a set of n jobs with release dates on parallel
identical machines, construct a nonpreemptive schedule N for the same jobs by ordering the jobs
in order of their completion times in the nonpreemptive schedule and then scheduling the jobs
nonpreemptively in this order, respecting any release date constraints. Let Cy be the completion
time of Jj in N . Then

cy 5 3cjs.
Proof: Consider Jj which in S was released at Tj and completed at Cf. Jj is not started in N
until J1, J2, . . ., Jj-1 are started. Let N j - 1 be the schedule of J1, J2,. . ., Jj-1 in N .

Let r k be the latest release date of any job in J1,. . . , J j , for k 5 j . We know that ~k + p k 5 Cy,
since C; 5 ~j".

By time r k , jobs J1,. . . , Jj-1 have all been released. Thus, even if no processing happens before
time r k , a t least one machine will have no more processing to do on any one of J1 , . . . , Jj-1 by time
(E:=,' p ;) / m , and so Jj starts in the nonpreemptive schedule by time

6

This last inequality is true because J1,. . ., Jj all completed by time Cf in S. Therefore, Jj
completes by time r k f Cj f p j 5 3Cj.

Corollary 3.2 Given n jobs with release dates, let C, be the minimum possible average weighted
completion time of those jobs scheduled preemptively on m identical machines and let CN be the
minimum average weighted completion time of a nonpreemptive schedule. Then CN 5 3Cp.

Theorem 3.1 is essentially tight, since we have an example in which one job finishes close to
three times later in the nonpreemptive schedule. The corollary, however is not known by us to be
tight; it is quite likely that a cumulative argument can improve the bound.

3.1 Fractional Schedules
Define a fractional preemptive schedule as one in which a job Jj can be scheduled simultaneously
with several other jobs on one machine, where each job receives some fraction of the machine’s
resources and the sum of all the fractions assigned to a machine at any time is at most one. In
other words, let f j (t) be the fractional amount of machine Mi assigned to Jj at time t, with time
taken as continuous, and let t i be the completion time of a schedule. A fractional schedule satisfies
C j f f (t) 5 1 for all machines i and times t; CiJ:Losij f$t) = p j for all jobs j, and for any pair of
t , j only one of the f $ t) is non-zero. The following corollary will be useful in rounding fractional
linear program solutions to valid schedules.

Corollary 3.3 GCven a fractional preemptive schedule for a [one muchine/’pas-allel identical ma-
chine] problem of average weighted completion time VY, there exists a nonpreemptive schedule for
the problem of average weighted completion time [2W/3W].
Proof: Immediate from proofs of Theorems 2.1 and 3.1.

4 Preemptive Scheduling on Identical Machines
In this section we give a kpproximatioa algorithm for minixizing the average completion time of
a set of jo-bs with release dates run with preemption on a set of m identical parallel machines. For
one machine, the shortest-processing-time (SPT) algorithm (always run the job that has the least
amount of work remaining) is optimal. For more than one machine, there is a generalization of this
approach: always run the m jobs with the shortest remaining amount of work. However, even for
the case of 2 machines, this approach does not yield the optimal preemptive schedule. Intuitively,
SPT finishes jobs quickly, but it can increase the schedule length, which forces other jobs to finish
later than they would in the optimal schedule.

We will show that a variation on SPT is a 2-approximation for this problem. Fix an optimal
schedule OPT. Let f0pT-t) denote the number of jobs finished in this optimal schedule by time I

t . We describe a BIN algorithm that computes a pseudoschedule, an assignment of sets of jobs to
a block of time without explicit scheduling of times and machines for individual jobs. Let f B I N (t)
be the number of jobs finished by the pseudoschedule at time t. This pseudoschedule will have the
property that f B I N (t) 2 foPT(t) for 1 5 t _< T, where T is the length of the optimal schedule. Thus
if the s t h job finishes at time t in the BIN algorithm, we have that f is a lower bound on the finish
time of the s t h job in the optimal schedule. We will then show how to convert this pseudoschedule
BIN into an actual schedule RSPT (revised shortest processing time) such that. fmpT(2t) 2 f B I N (t) ,
for 1 _< t 5 2‘. That is, if the s t h job finishes at time t in the BIS algorithm, then the z th job
to finish in the RSPT schedule (not necessarily the same job) will finish by time 2t. Thus we can

,

7

conclude that the average completion time of the RSPT schedule is at most 2 times the average
completion time of the optimal schedule for the preemptive identical parallel machine problem.

We now describe how to construct the pseudoschedule BIN that will yield an upper bound on
the number of jobs that can be completed by time t in any schedule for the preemptive identical
parallel machine problem. Let TI, r2,. . . , T , be the release dates of the input jobs in order. We
can assume that T I = 0. We construct the pseudoschedule as follows: We construct n ”bins”
Bj of size Ij = ~ j + l - ~j for j = 1,. . . , n - 1 and the final bin B, of size I, = T3 - T,, where
TB = p;/ml + max; p; (note that some of the bins may be of size 0 and can be ignored). We
consider the following greedy procedure. Sort all the jobs released at time 0 by processing time.
Place the first mI1 units of work from this list into bin B1 with the restriction that no job can have
more than 11 units of work in the bin (but making no attempt to pack things onto rn processors).
Decrease all processing times of jobs in B1 by the amount of processing they contribute to B1. If
this sets a processing time to zero, we say the job finishes in B1. Now we repeat the process for B2,
a bin of size ~3 - T Z , considering all the jobs released at or before time TZ, that still have positive
processing times. Continue placing jobs in this manner until the last bin which has size m(TB - T n) .

Now now define fBIN(t), the number of jobs finished by the BIN pseudoschedule for any time
0 5 t 2 TB. Suppose ri 5 t < ri+l (assume a dummy r,+1 w). The number of jobs finished
by the BIN procedure, fBm(t), is the number of jobs completely placed in the first i - 1 bins, plus
the number of jobs that would be completely placed in a modified i th bin Bf of size I: = t - ri. In
other words, we consider what the procedure BIN would pack if forced to stop at time t. This new
ith bin can only accept I: units from each job and a total of mIi work.

Lemma 4.1 fBIN(t) 2 fOF’T(t)*
Proof: (Sketch) Suppose there is some schedule S that completes more jobs by time t than
BIN. Let J be the set of jobs not finished in BIN that finished by schedule S. If we wish to put
the set J of jobs into the BIN schedule, we must remove an equal amount of work that is already
“scheduled”. This entering set will complete fewer jobs per unit of work (since the individual jobs
will be larger than the ones they are replacing) and therefore will force the removal of at least as
many jobs are entering, violating the assumption that schedule S completed more jobs than the

Our revised shortest-processing-time (RSPT) algorithm schedules the work assigned to bin Bj
from time 2rj to time 2rj+l. The RSPT algorithm takes all jobs placed in bin Bj by the BIN
pseudoschedule, sorts the pieces by processing time and then list schedules the job pieces on m
processors. Since we are list processing the jobs (or job pieces) within each bin, these jobs will
clearly all finish by time 24 . However, we can claim something slightly stronger.

greedy strategy. E

Lemma 4.2 ~ R S P T (~ ~) L BIN(^).
Proof: Let J be the set of jobs completed at time T; 5 t < T;+I by the BIN pseudoschedule
described above. We show that the RSPT algorithm finishes the set J of jobs by time 2t. Let
jl,jz,. . .,j, be the jobs to be list scheduled into bin Bj, for j 5 i. Starting at time 2rj, processor
P; will process jobs j;,jm+i,j2m+;,.. . ,jk,+;, in order, possibly not completing job jkm+i. At time
2rj + Ij = ~ j + l + ~ j , all the jobs placed in bin Bj by the pseudoschedule are done by RSPT or
are being worked on by RSPT. To see this, notice that there are no preemptions between time
2rj and ~j + ~ j + l because there are no new releases considered (we are scheduling a block of time
that is between releases in the BIN pseudoschedule). At time 2 T j the processors PI,.. . P, will
start on the smallest m jobs j1,. . . ,j, in order. Processor PI will become available no later than
any other processor and will start job jm+l. In fact, the jobs will be tiled across the processors in
order since, for example, xi==, pim+l > E:=, p ; , (because p;,+l 2 pim and the left side also has

8

P I) . This shows that the first processor (which is always getting the shortest first job, the shortest
second, job, etc) can never be more than one job ahead of the last processor (which gets the largest
first job, the largest second job, etc). There are at most m jobs that are placed in Bj by the BIN
strategy but are not completed by RSPT by time 2rj + Ij, the longest (at most) m jobs placed
in B j , each of length at most Ij. We now let these m jobs finish (to the extent that BIN finished
them), which happens by time 2rjtl. This argument shows that by time 2 ~ i , RSPT has finished
all the work that BIN finishes by time r;. We now argue that over the next 2(t - rr) units, RSPT
finishes all the work that would be packed by BIN into a modified bin Bf of size t - ri. RSPT list
schedules jobs from the original bin B; From time 2ri to 27y+l. However, by the above argument, at
time 2ri f I:, RSPT has done all the work that BIN would assign to bin Bf except perhaps the jobs
it is currently processing. No jobs are preempted during the list schedule, so the current jobs will
continue running (or finish) in the next t - ri time units just as though there had been an actual

1 bin boundary at time t.

Theorem 4.3 There is an O (n lg n)-time online 2-approximation algorithm for preemptively schedul-
ing n jobs with release dates on parallel identical machines.
Proof: (Sketch) The 2- approximation follows from the previous two lemmas. The running
time is dominated by sorting and the algorithm can trivially be modified to be on-line so that the
schedule at time t depends only upon the jobs that have been released at times t' 5 t.

5 Preemptive Schedules and Linear Programming Relaxations

In this section we introduce an integer program that is closely related to the preemptive versions
of our scheduling problem. We utilize this integer program in two ways. First, the solutions of
its linear-programming relaxation can be immediately converted, using the techniques of Section
3 , to nonpreemptive schedules for identical machines. Second, we give a method of rounding the
fractional solutions generated by the linear program to valid preemptive schedules, and obtain the
first constant-factor approximation algorithms for a very general form of the preemptive schedul-
ing problem, namely average weighted completion time on unrelated parallel machines. Unless
otherwise stated, all results in this section apply to this most general case.

Our approach utilizes a generaliza.tion of bipartite matching, which we sketch here in the context
of identical parallel machines. We will divide a job J j of size p j into p j units; on one side of the
partition we will include a node for each unit of each job, and on the other side of the partition we
will place a node (mi, t) for each unit of time t on each machine m;, where we include every possible
unit of time during which a job might need to be processed in an optimal schedule. An edge will be
placed in the bipartite graph between the kth unit of Jj and (m;,t) if and only if rj 5 t - (b - l),
i.e. the scheduling of that unit of that machine at that time is feasible with respect to the release
date. We assign a cost of 0 to all edges except for those that represent the scheduling of the last
unit of a job; to these we assign a cost of wit , namely the weighted completion time of J j if its last
unit is scheduled using this edge. We seek the minimum weight matching of all job units subject to
the constraint that for a job of size 5, 2 - 1 units of it have been completed before the last unit is
processed.

The resulting integer program will be quite large; in fact, unless the job sizes are polynomial
in n and m this formulation will not be polynomial in the input size. However, in Section 5.3 we
will show how to scale the input data to be of size polynomial in n and m, and how to interpret
the scaled solution as a solution for the original instance with little degradation in the quality of
approximation.

9

Note that this formulation models schedules in which preemptions are only allowed between
units, and does not capture the possibility of preemption within a unit. Its solution, however,
gives a lower bound on nonpreemptive schedules. In addition we will show that its solutions are at
most a constant factor worse than those of the optimal preemptive schedule, and therefore do yield
preemptive approximations of high quality.

Although all of our algorithms are polynomial-time algorithms, the polynomials involved can
be quite large. Therefore, for the rest of this section we do not discuss running times.

5.1 Polynomial Size Jobs

Throughout this section we assume that no preemption is allowed within single units of a job,
m 5 n, and pj 5 n4. In Sections 5.2 and 5.3 we show how to remove these assumptions. Note that
although preempting an individual unit is not allowed, in the unrelated machine model, due to the
speeds of the machines, units may take fractional amounts of time to complete.

We introduce the following (0,l)-integer program ZP. Let T = (tl3js.t.rj 5 t 5 t + npmax),
denote a set of times that includes all the times that any job will ever be running. Note that by the
assumptions of this section, T is of polynomial size. We will use the variable x i j k t , 1 5 i 5 m, 1 5
j 5 n, 1 5 k 5 p j , t E T . Xi jk t = 1 will represent the scheduling of unit k of job Jj on machine mi
at time t . Note that for convenience of notation, the range of k depends on j . R e c d that S i j is
the speed of job Jj on machine Mi.
ZP will be made up of the following constraints.

j = 1, ..., n; t E T

i = l , ..., m; t E T .

In addition, for all k,j such that k is the last unit of Jj , and for all t

(3)

(4)

For all k, j such that k is the last unit of J j , the cost associated with X i j k t is wjt; otherwise the

Lemmas 5.1 and 5.2 characterize the relationship between ZP and optimal solutions to variants
cost is 0. The goal is to minimize the total cost subject to the above constraints.

of our scheduling problems.

Lemma 5.1 Given an instance of a single machine or parallel identical machines scheduling prob-
lem, and assuming preemption of a single unit is not allowed, there is a schedule of total weighted
completion time 2 i f and only i f there is a feasible solution to ZP of cost 2.
Proof: Clearly any preemptive schedule is a feasible solution to TP. Given a feasible solution
to ZP, equation (2) guarantees that every unit of every job is scheduled; inequality (3) guarantees
that the total amount of time taken up by all any pieces of any units of a job during one time unit
is no more than one. Inequality (4) guarantees that the total time of all the work assigned to any
machine for one unit of time is at most 1. Equation (5) guarantees that when the last unit of a

10

job is scheduled, the one that contributes to the weighted completion time, the rest of the job has.
been scheduled already. Note that as long as (3) and (4) are satisfied, the order in which the first m

For unrelated machines the relationship between ZP and optimal preemptive schedules is more
complex for two reasons. First, a unit may run for a fractional amount of time, and in an optimal
schedule a job might finish at, say, time 2.5; whereas our formulation can only capture finishes at
integral times. Secondly, a preemptive schedule that only allows preemption within units can still
have situations in which a job, for example, starts at time -3 and ends at time 1.2. This overlap
between units of time is not captured by ZP either.

However, these two problems can be remedied. First, note that if J j could be scheduled to
complete at time t , e.g. 2.5, in ZP its last piece can be scheduled into the t = 3 unit of time, and
be “declared” to finish at time 3, which will make a contribution to the objective function of 3, or
in general at most t + 1. Secondly, a schedule with “overlap” can be captured by ZP by associating
the entire overlapping piece with the time unit in which it ends. This mems relaxing (4) to _< 2
instead of 1; call this modified program ZP2. It is not hard to see that given a solution with at
most 2 units of work/machine in any time unit, it can be converted to a solution with at most one,
while at most doubling the completion time of the last piece of any job.

p j - 1 units of Jj are scheduled is not important.

Lemma 5.2 If there is a schedule for an unrelated machine problem in which Jjj j = 1,. . . , n
finishes at time t j , then there is a solution to ZP2 in which the last unit of Jj finishes at time
2t -l- 1.

For the rest of this section we’ll focus on ZP; our results apply, paying a factor of 2 + in the
completion time of each job, to ZP2 as well. To obtain schedules of good approximate quality from
ZP we relax xijkt E (0,l) to 0 2 X{ jk t 5 1 and solve the resdting linear program; call this linear
program LP. In the resulting fractional solution each job contributes to the objective function the
weighted sum of the different fractionally scheduled pieces of the last unit; we call this quantity the
job’s fractional weighted completion time.

The solution to the linear program can not immediately be interpreted as a schedule for two
reasons. First, a particular unit may be fractionally assigned across several machines during the
same time unit; we need to find a way to schedule these fractional pieces of the job so that they
do not run simultaneously. Secondly, the fractional weighted completion time of Jj is a weighted
sum of fractiond completion times of different pieces of Jj’s last unit, and does not represent the
actual point in the schedule at which the last fractional unit of the job finish processing. In fact,
it is possible that the weighted completion time of Jj is much larger than the fractional weighted
completion time.

We now show how to deal with these two concerns and produce a valid schedule. The first we
can get rid of via an application of open shop theory [4, 81; the latter problem we cope with by
introducing a new rounding idea that may have applications in other contexts.

Lemma 5.3 Consider one unit of time t’ in an assignment of fractional pieces of jobs to units of
time. There exists a valid schedule for that unit of time, in which each machine makes at most m4
preemptions.
Proof: Let pilj l = &x;rjrktt/sjrjr denote the amount of processing time that job Jj performs
on machine Mi. Create an operation oirjr of length pil j l . This defines an open shop schedul-
ing problem[4, 81. In the open-shop scheduling environment each job is made up of a number

- of operations, and each operation must be scheduled on a specific one of m machines; no two
operations of one job may be scheduled simultaneously. Using a result of [4], we know that
we can create a preemptive schedule with at most m4 preemptions per processor , with length

11

max(maxj1 &p;ljl,max;t x . t p i t j t } , 3 which by constraints (Y) and (Z) is at most 1. Thus the jobs
a can be scheduled in the time unit they are assigned.

Applying Lemma 5.3 to each time unit of the solution to LP, we obtain:

Lemma 5.4 Given a solution to LP in which the last fractional piece of the last unit of J j , j =
1, n is ussigned to time t j , there exists a valid schedule in which each Jj finishes by time t j .

Lemma 5.5 There exists a polynomial-time algorithm, which, given a solution to LP, converted
to u valid schedule S using Lemma 5.4, produces a schedule with average completion time at most
4 times the weighted fractional completion time of S .
Proof: Consider a job Jj of size pj = k and consider the kth unit of Jj. This unit may be assigned
fractionally on a number of machines at different times. Let time t* be the unit of time at the end
of which, for the first time, 1/2 of this kth unit is assigned.

By constraint 5 we know that by time t* - 1 at least half of the first k - 1 units of Jj have been
processed. We double the time scale of the entire schedule, remove all pieces of the first k - 1 units
of Jj that were scheduled in 5’ after t* - 1, any pieces of the kth unit that were scheduled after
time t*, and schedule these pieces in the “doubles” of the pieces of Jj that were scheduled before
t* - 1 or t*, respectively. Therefore, by time 2t* aJl of J j has been processed. Noting that f is a
lower bound on the fractional completion time gives the lemma.

Theorem 5.6 IJnder the assumptions that p,, I: n4 and that preemption is not allowed within
units of a job, there exists a polynomial-time 4-approximatio7~ algorithm for preemptive scheduling
of identical machines with release dates to minimize average weighted completion time, and a (8+~) -
approximation algorithms for the corresponding unrelated machines problem.
Proof: Combine Lemmas 5.1, 5.2, 5.4 and 5.5.

5.2 -4llowing Arbitrary Preemption
We can prove that if one restricts preemptions to happen only at time intervals which are integral
multiples of l jm4, the weighted average completion time can only increase by at most a factor of
(2 + o(l)), and in many cases, such as the presence of large jobs, by a 1 + o(1) factor. The details
are omitted in this extended abstract.

Lemma 5.7 Let C be the weighted average completion time of the optimal schedule. A linear
program of the form LP in which we split each job and each time slot on each machine into m5 equal-
size pieces, will have an optimal weighted average completion time of at most (1 + l /m)C + $ W j .

We note that this is always at most 2 + o(l), and when p,,, > n2 and wj = 1 V j it is 1 + o(1).

5.3 Large Jobs
One can round and scale to take care of large jobs, the details are omitted in this extended abstract.

Lemma 5.8 Given a p-approximation algorithm for the preemptive scheduling of jobs on unrelated
machines so as to minimize average weighted completion time that assumes p,,, 5 n4, there exists
a (2 + c)p-approximation algorithm for arbitrary job sizes.
Proof: Omitted.

Combining Lemma 5.8 with Lemma 5.7 and Theorem 5.6 with Lemma 5.8, Lemma 5.7 and
Corollary 3.3, along with a bit of balancing of different cases yields the results detailed in Figure 1.

12

References

[l] K. R. Baker. Introduction to Sequencing and Scheduling. Wiley, 1974.

[2] J. Bruno, E.G. Coffman Jr., and R. Sethi. Scheduling independent tasks to reduce mean
finishing time. Communications of the ACM, 17:382-387, 1974.

[3] J. Du, J.Y.-T. Leung, and G.H. Young. Minimizing mean flow time with release time con- - straints. Technical report, University of Texas at Dallas, 1988. Technical Report.

[4] T. Gonzalez and S. Sahni. Open shop scheduling to minimize finish time. Journal of the ACM,
23:665-679,1976.

[5] W. Horn. Minimizing average flow time with pardel machines. Operations Research, 215346-
847, 1973.

[6] T. Kawaguchi and S. Kyan. Worst case bound of an Lrf schedule for the mean weighted

[7] J. Labetoulle, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinooy Kan. Preemptive scheduling of
uniform machines subject to release dates. In W.R. Pulleyblank, editor, Progress in Combi-
natorial Optimization, pages 245-261. Academic Press, 1984.

flow-time problem. SIAM Journal on Computing, 15:1119-1129,1986.

[8] E.L. Lawler, J.K. Lenstra,, A.H.G. Rinooy Kan, and D.B. Shmoys. Sequencing and scheduling:
Algorithms and complexity. In S.C. Graves, A.H.G. Riilnooy Kan, and P.X. Zipkin, editors,
Handbooks in Operations Research and Management Science, Vol4., Logistics of Production
and Inventory, pages pp 445-522. 1993.

[9] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling prob-

[lo] R. McNaughton. Scheduling with deadlines and loss functions. Management Science, 6:l-12,

lems. Annals of Discrete Mathematics, 1:343-362, 1977.

1959.

[ll] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. In Proceedings of the 4th

1121 C. Phillips, C. Stein, and J. Wein. Task scheduling in networks. In Proceedings of Fourth

[13] W.E. Smith. Various optimizers for single-stage production. Naval Research Logistics Quar-

ACM-SIAId Symposium on Discrete Algorithms, pages 422-431, January 1993.

Scandinavian Workshop on Algorithm Theory, pages 290-301,1994.

terly, 3:59-66, 1956.

. :

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of t h e United States Government. Neither t h e
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for t he
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents tha t
its use would not infringe privately owned rights. Reference
herein to any specific commercial. product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, .or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

