Skip to main content

Arrangements in higher dimensions: Voronoi diagrams, motion planning, and other applications

  • Invited Presentation
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 955))

Abstract

We review recent progress in the study of arrangements of surfaces in higher dimensions. This progress involves new and nearly tight bounds on the complexity of lower envelopes, single cells, zones, and other substructures in such arrangements, and the design of efficient algorithms (near optimal in the worst case) for constructing and manipulating these structures. We then present applications of the new results to motion planning, Voronoi diagrams, visibility, and geometric optimization.

by NSF Grants CCR-91-22103 and CCR-93-11127, by a Max-Planck Research Award, and by grants from the U.S.-Israeli Binational Science Foundation, the Israel Science Fund administered by the Israeli Academy of Sciences, and the G.I.F., the German-Israeli Foundation for Scientific Research and Development.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.K. Agarwal, B. Aronov and M. Sharir, Computing envelopes in four dimensions with applications, Proc. 10th ACM Symp. on Computational Geometry (1994), 348–358.

    Google Scholar 

  2. P.K. Agarwal, B. Aronov, M. Sharir and S. Suri, Selecting distances in the plane, Algorithmica 9 (1993), 495–514.

    Article  Google Scholar 

  3. P.K. Agarwal, A. Efrat and M. Sharir, Vertical decompositions of shallow levels in arrangements and their applications, Proc. 11th ACM Symp. on Computational Geometry (1995).

    Google Scholar 

  4. P.K. Agarwal, A. Efrat, M. Sharir and S. Toledo, Computing a segment-center for a planar point set, J. Algorithms 15 (1993), 314–323.

    Article  Google Scholar 

  5. P.K. Agarwal, O. Schwarzkopf and M. Sharir, The overlay of lower envelopes in 3-space and its applications, to appear in Discrete Comput. Geom.

    Google Scholar 

  6. P.K. Agarwal and M. Sharir, On the number of views of polyhedral terrains, Discrete Comput. Geom. 12 (1994), 177–182.

    Google Scholar 

  7. P.K. Agarwal and M. Sharir, Efficient randomized algorithms for some geometric optimization problems, Proc. 11th ACM Symp. on Computational Geometry, 1995.

    Google Scholar 

  8. P. Agarwal, M. Sharir and P. Shor, Sharp upper and lower bounds for the length of general Davenport Schinzel sequences, J. Combin. Theory, Ser. A 52 (1989), 228–274.

    Google Scholar 

  9. P.K. Agarwal, M. Sharir and S. Toledo, New applications of parametric searching in computational geometry. J. Algorithms 17 (1994), 292–318.

    Article  Google Scholar 

  10. B. Aronov, M. Pellegrini and M. Sharir, On the zone of a surface in a hyperplane arrangement, Discrete Comput. Geom. 9 (1993), 177–186.

    Google Scholar 

  11. B. Aronov, personal communication, 1995.

    Google Scholar 

  12. B. Aronov and M. Sharir, The union of convex polyhedra in three dimensions, Proc. 34th IEEE Symp. on Foundations of Computer Science (1993), 518–527.

    Google Scholar 

  13. B. Aronov and M. Sharir, Castles in the air revisited, Discrete Comput. Geom. 12 (1994), 119–150.

    Google Scholar 

  14. B. Aronov and M. Sharir, On translational motion planning in three dimensions, Proc. 10th ACM Symp. on Computationl Geometry (1994), 21–30.

    Google Scholar 

  15. B. Aronov, M. Sharir and B. Tagansky, The union of convex polyhedra in three dimensions, to appear in SIAM J. Comput. (a revised version of [12]).

    Google Scholar 

  16. J.D. Boissonnat and K. Dobrindt, Randomized construction of the upper envelope of triangles in ℝ3, Proc. 4th Canadian Conf. on Computational Geometry (1992), 311–315.

    Google Scholar 

  17. J.D. Boissonnat and K. Dobrindt, On-line randomized construction of the upper envelope of triangles and surface patches in ℝ3, to appear in Comp. Geom. Theory Appls.

    Google Scholar 

  18. J.D. Boissonnat, M. Sharir, B. Tagansky and M. Yvinec, Voronoi diagrams in higher dimensions under certain polyhedral convex distance functions, Proc. 11th ACM Symp. on Computational Geometry (1995).

    Google Scholar 

  19. K.W. Bowyer and C.R. Dyer, Aspect graphs: An introduction and survey of recent results, Int. J. of Imaging Systems and Technology 2 (1990), 315–328.

    Google Scholar 

  20. B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir, A singly exponential stratification scheme for real semi-algebraic varieties and its applications, Proc. 16th Int. Colloq. on Automata, Languages and Programming (1989), 179–193.

    Google Scholar 

  21. B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir, Diameter, width, closest line pair, and parametric searching, Discrete Comput. Geom. 10 (1993), 183–196.

    Google Scholar 

  22. L.P. Chew, Near-quadratic bounds for the L 1 Voronoi diagram of moving points, Proc. 5th Canadian Conf. on Computational Geometry (1993), 364–369.

    Google Scholar 

  23. L.P. Chew, K. Kedem, M. Sharir, B. Tagansky and E. Welzl, Voronoi diagrams of lines in three dimensions under a polyhedral convex distance function, Proc. 6th ACM-SIAM Symp. on Discrete Algorithms (1995), 197–204.

    Google Scholar 

  24. K.L. Clarkson, New applications of random sampling in computational geometry, Discrete Comput. Geom. 2 (1987), 195–222.

    Google Scholar 

  25. K.L. Clarkson and P.W. Shor, Applications of random sampling in computational geometry, II, Discrete Comput. Geom. 4 (1989), 387–421.

    Google Scholar 

  26. M. de Berg, personal communication, 1993.

    Google Scholar 

  27. M. de Berg, K. Dobrindt and O. Schwarzkopf, On lazy randomized incremental construction, Proc. 26th. ACM Symp. on Theory of Computing (1994), 105–114.

    Google Scholar 

  28. M. de Berg, L. Guibas and D. Halperin, Vertical decomposition for triangles in 3-space, Proc. 10th ACM Symp. on Computational Geometry (1994), 1–10.

    Google Scholar 

  29. M. de Berg, D. Halperin, M. Overmars and M. van Kreveld, Sparse arrangements and the number of views of polyhedral scenes, Manuscript, 1991.

    Google Scholar 

  30. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg 1987.

    Google Scholar 

  31. H. Edelsbrunner, The upper envelope of piecewise linear functions: Tight complexity bounds in higher dimensions, Discrete Comput. Geom. 4 (1989), 337–343.

    Google Scholar 

  32. H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel and M. Sharir, Arrangements of curves in the plane: topology, combinatorics, and algorithms, Theoret. Comput. Sci. 92 (1992), 319–336.

    Article  Google Scholar 

  33. H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements, Discrete Comput. Geom. 1 (1986), 25–44.

    Google Scholar 

  34. H. Edelsbrunner, R. Seidel and M. Sharir, On the zone theorem for hyperplane arrangements, SIAM J. Comput. 22 (1993), 418–429.

    Article  Google Scholar 

  35. A. Efrat and M. Sharir, A near-linear algorithm for the planar segment center problem, to appear in Discrete Comput. Geom.

    Google Scholar 

  36. J.-J. Fu and R.C.T. Lee, Voronoi diagrams of moving points in the plane, Internat. J. Comput. Geom. Appl. 1 (1994), 23–32.

    Article  Google Scholar 

  37. L. Guibas, D. Halperin, J. Matoušek and M. Sharir, On vertical decomposition of arrangements of hyperplanes in four dimensions, Discrete Comput. Geom. 14 (1995) (in press).

    Google Scholar 

  38. L. Guibas, J. Mitchell and T. Roos, Voronoi diagrams of moving points in the plane, Proc. 17th Internat. Workshop Graph-Theoret. Concepts Computer Science, Lecture Notes in Comp. Sci., vol. 570, Springer-Verlag, pp. 113–125.

    Google Scholar 

  39. L. Guibas and M. Sharir, Combinatorics and algorithms of arrangements, in New Trends in Discrete and Computational Geometry, (J. Pach, Ed.), Springer-Verlag, 1993, 9–36.

    Google Scholar 

  40. L. Guibas, M. Sharir and S. Sifrony, On the general motion planning problem with two degrees of freedom, Discrete Comput. Geom. 4 (1989), 491–521.

    Google Scholar 

  41. D. Halperin, On the complexity of a single cell in certain arrangements of surfaces in 3-space, Discrete Comput. Geom. 11 (1994), 1–33.

    Google Scholar 

  42. D. Halperin and M. Sharir, Near-quadratic bounds for the motion planning problem for a polygon in a polygonal environment, Proc. 34th IEEE Symp. on Foundations of Computer Science (1993), 382–391.

    Google Scholar 

  43. D. Halperin and M. Sharir, New bounds for lower envelopes in three dimensions with applications to visibility of terrains, Discrete Comput. Geom. 12 (1994), 313–326.

    Google Scholar 

  44. D. Halperin and M. Sharir, Almost tight upper bounds for the single cell and zone problems in three dimensions, Proc. 10th ACM Symp. on Computational Geometry (1994), 11–20.

    Google Scholar 

  45. D. Halperin and M. Sharir, Arrangements and their applications in robotics: Recent developments, in The Algorithmic Foundations of Robotics, K. Goldberg, D. Halperin, J.C. Latombe and R. Wilson, Eds., A.K. Peters, Boston, MA, 1995, 495–511.

    Google Scholar 

  46. S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes, Combinatorica 6 (1986), 151–177.

    Google Scholar 

  47. D. Haussler and E. Welzl, ε-nets and simplex range queries, Discrete Comput. Geom. 2 (1987), 127–151.

    Google Scholar 

  48. J. Heintz, T. Recio and M.F. Roy, Algorithms in real algebraic geometry and applications to computational geometry, in Discrete and Computational Geometry: Papers from DIMACS Special Year, (J. Goodman, R. Pollack, and W. Steiger, Eds.), American Mathematical Society, Providence, RI, 137–163.

    Google Scholar 

  49. M. Katz and M. Sharir, Optimal slope selection via expanders, Inform. Process. Lett. 47 (1993), 115–122.

    Article  Google Scholar 

  50. M. Katz and M. Sharir, An expander-based approach to geometric optimization, Proc. 9th ACM Symp. cm Computational Geometry (1993), 198–207.

    Google Scholar 

  51. K. Kedem and M. Sharir, An efficient motion planning algorithm for a convex rigid polygonal object in 2-dimensional polygonal space, Discrete Comput. Geom. 5 (1990), 43–75.

    Google Scholar 

  52. K. Kedem, M. Sharir and S. Toledo, On critical orientations in the Kedem-Sharir motion planning algorithm for a convex polygon in the plane, Proc. 5th Canadian Conference on Computational Geometry (1993), 204–209.

    Google Scholar 

  53. J. Komlós, J. Pach and G. Woeginger, Almost tight bound on epsilon-nets, Discrete and Computational Geometry 7 (1992), 163–173.

    Google Scholar 

  54. J. Matoušek, Approximations and optimal geometric divide-and-conquer, Proc. 23rd ACM Symp. on Theory of Computing (1991), 506–511.

    Google Scholar 

  55. J. Matoušek, Randomized optimal algorithm for slope selection, Inform. Process. Lett 39 (1991), 183–187.

    Article  Google Scholar 

  56. J. Matoušek, J. Pach, M. Sharir, S. Sifrony and E. Welzl, Fat triangles determine linearly many holes, SIAM J. Comput. 23 (1994), 154–169.

    Article  Google Scholar 

  57. P. McMullen and G. C. Shephard, Convex Polytopes and the Upper Bound Conjecture, Lecture Notes Ser. 3, Cambridge University Press, Cambridge, England, 1971.

    Google Scholar 

  58. N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J. ACM 30, 852–865.

    Google Scholar 

  59. J. Pach and M. Sharir, The upper envelope of piecewise linear functions and the boundary of a region enclosed by convex plates: Combinatorial analysis, Discrete Comput. Geom. 4 (1989), 291–309.

    Google Scholar 

  60. M. Pellegrini, On lines missing polyhedral sets in 3-space, Proc. 9th ACM Symp. on Computational Geometry (1993), 19–28.

    Google Scholar 

  61. H. Plantinga and C. Dyer, Visibility, occlusion, and the aspect graph, International J. Computer Vision, 5 (1990), 137–160.

    Article  Google Scholar 

  62. J.T. Schwartz and M. Sharir, On the Piano Movers' problem: II. General techniques for computing topological properties of real algebraic manifolds, Advances in Appl. Math. 4 (1983), 298–351.

    Article  Google Scholar 

  63. O. Schwarzkopf and M. Sharir, Vertical decomposition of a single cell in 3-dimensional arrangements and its applications, in preparation.

    Google Scholar 

  64. M. Sharir, Almost tight upper bounds for lower envelopes in higher dimensions, Discrete Comput. Geom. 12 (1994), 327–345.

    Google Scholar 

  65. M. Sharir and P.K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, New York, 1995.

    Google Scholar 

  66. M. Sharir and S. Toledo, Extremal polygon containment problems, Comput. Geom. Theory Appls. 4 (1994), 99–118.

    Google Scholar 

  67. B. Tagansky, A new technique for analyzing substructures in arrangements, Proc. 11th ACM Symp. on Computational Geometry (1995).

    Google Scholar 

  68. P.M. Vaidya, Geometry helps in matching, SIAM J. Comput. 18 (1989), 1201–1225.

    Article  Google Scholar 

  69. A. Wiernik and M. Sharir, Planar realization of nonlinear Davenport-Schinzel sequences by segments, Discrete Comput. Geom. 3 (1988), 15–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Selim G. Akl Frank Dehne Jörg-Rüdiger Sack Nicola Santoro

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sharir, M. (1995). Arrangements in higher dimensions: Voronoi diagrams, motion planning, and other applications. In: Akl, S.G., Dehne, F., Sack, JR., Santoro, N. (eds) Algorithms and Data Structures. WADS 1995. Lecture Notes in Computer Science, vol 955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60220-8_55

Download citation

  • DOI: https://doi.org/10.1007/3-540-60220-8_55

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60220-0

  • Online ISBN: 978-3-540-44747-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics