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Abstract. We show the usefulness ofincompressibility arguments based 
on Kolmogorov complexity in physics of computation by several exam­
ples. These include analysis of energy parsimonious 'adiabatic' compu­
tation, and scalability of network architectures. 

1 Introduction 

In [Shannon, 1948] C. Shannon formulated information theory dealing with the 
average number of bits required to communicate a message produced by a ran­
dom source from a sender to a receiver who both agree on the ensemble of 
possible messages. In this theory, if the universe of messages consists of a two 
elements, a sentence "let's go drink a beer" and Homer's Illiad, both elements 
equally likely, then the Illiad can be transmitted by a single bit. This illustrates 
that, as Shannon points out, this theory does not say anything about the infor­
mation content of individual objects, but only says something about the required 
information exchange for communication. 

In [Kolmogorov, 1965] A.N. Kolmogorov formulated a theory of information 
contents (Kolmogorov complexity) of individual finite objects. Since this theory 
deals with a stronger notion, namely information contents of individual objects 
instead of average information to communicate objects from probabilistic ensem­
bles, it is not a priori obvious that properties of Shannon's notion would hold 
for Kolmogorov's new notion. Remarkably, it turns out that various properties, 
such as the 'symmetry of information' stating that the information in a random 
source X about another random source Y is precisely equal to the information in 
Y about X, holds also approximately for Kolmogorov complexity of individual 
objects, that is, up to a logarithmic additive term. 
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Information theory cl. la Shannon has been shown applicable in a large range 
of areas ranging from combinatorics to communication and computation tech­
nologies. The special feature of Kolmogorov complexity is that it deals with 
individual objects. This allows topics of application were Shannon's theory is 
ostensibly powerless, albeit using slightly weaker laws. We and others have been 
able to find new simpler proofs for known results, like the Razborov - Fort­
now - Laplante version of Hastad's Switching Lemma or Ian Munro's version 
of Russel Schaffer's exact average running time of Heapsort, to find new incom­
pressibility arguments for combinatorial theory, a basis for inductive learning, or 
to resolve (formerly well known) old open problems in the theory of computation 
like Turing machine and PRAM time complexity. The basic theory and many 
of these applications are treated in our textbook [Li & Vitanyi, 1993]. Recently, 
we have extensively used the symmetry of information law where application to 
individual objects seems absolutely crucial, [Jiang et al.]. 

Our purpose here is to point out that applicability of incompressibility argu­
ments based on Kolmogorov complexity is not restricted to the platonic realm 
of mathematics and theory of computation, but can profitably be extended to 
the real world of physical phenomena. 

1.1 Kolmogorov complexity 

The Kolmogorov complexity, [Kolmogorov, 1965], of x is the length of the short­
est effective description of x. That is, the Kolmogorov complexity C(x) of a finite 
string x is simply the length of the shortest program, say in FORTRAN3 encoded 
in binary, which prints x without any input. A similar definition holds condition­
ally, in the sense that C(x!y) is the length of the shortest binary program which 
computes x given y as input. It can be shown that the Kolmogorov complexity is 
absolute in the sense of being independent of the programming language, up to 
a fixed additional constant term which depends on the programming language 
but not on x. We now fix one canonical programming language once and for all 
as reference and thereby C(). 

For the theory and applications, see [Li & Vitanyi, 1993]. Let x, y, z E ./\!, 
where./\! denotes the natural numbers and we identify .N and {O, 1}* according 
to the correspondence (0, €), (1, 0), (2, 1), (3, 00), (4, 01), .... Hence, the length !xl 
of x is the number of bits in the binary string x. Let Ti, T2 , .•• be a standard 
enumeration of all Turing machines. Let ( ·, ·) be a standard invertible effective 
bijection from .N x N to N. This can iterated to ( ( ·, ·), ·). 

Definition 1. Let U be an appropriate universal Turing machine such .that 
U(((i,p),y)) = Ti((p,y}) for all i and (p,y). The Kolmogorov complexity of :z: 
given y (for free) is 

C(x!y) = min{!PI: U((p,y)) = x,p E {O, 1}*,i EN}. 

3 Or in Turing machine codes. 
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2 Energy Parsimonious Computation 

All computations can be performed logically reversibly, [Bennett, 1973], at the 
cost of eventually filling up the memory with unwanted garbage information. 
This means that reversible computers with bounded memories require in the long 
run irreversible bit operations, for example, to erase records irreversibly to create 
free memory space. The minimal possible number of irreversibly erased bits to do 
so is believed to determine the ultimate limit of heat dissipation of the compu­
tation by Landauer's principle, [Landauer, 1961, Bennett, 1973, Bennett, 1982, 
Proc. PhysComp, 1981, 1992, 1994]. In reference [Bennett et al., 1993] we and 
others developed a mathematical theory for the unavoidable number of irre­
versible bit operations in an otherwise reversible computation. A precursor to 
this line of thought is (Zurek, 1989]. Here we present the operational proof 
in [Li & Vitanyi, 1994] for the known exact expression of the number of irre­
versible bit operations in an otherwise reversible computation proved differently 
in (Bennett et al., 1993]. 

Many currently proposed physical schemes implementing adiabatic computa­
tion reduce irreversibility by using longer switching times. This is done typically 
by switching over equal voltage gates after voltage has been equalized slowly. 
This type of switching does not dissipate energy, the only energy dissipation 
is incurred by pulling voltage up and down: the slower it goes the less energy 
is dissipated, [Proc. PhysComp, 1981, 1992, 1994]. If the computation goes in­
finitely slow, zero energy is dissipated. Clearly, this counteracts the purpose of 
low energy dissipation which is faster computation. 

In (Li & Vitanyi, 1994] it is demonstrated that even if adiabatic computation 
technology advances to switching with no time loss, a similar phenomenon arises 
when we try to approach the ultimate limits of minimal irreversibility of an oth­
erwise reversible computation, and hence minimal energy dissipation. This time 
the effect is due to the logical method of reducing the number of irreversible bit 
erasures in the computation irrespective of individual switching times. By com­
puting longer and longer (in the sense of using more computation steps), the 
amount of dissipated energy gets closer to ultimate limits. Moreover, one can 
trade-off time (number of steps) for energy: there is a new time-irreversibility 
(time-energy) trade-off hierarchy. The bounds we derive are also relevant for 
quantum computations which are reversible except for the irreversible observa­
tion steps, [Deutsch, 1985, Benioff, 1995]. 

2 .1 Background 

The ultimate limits of miniaturization of computing devices, and therefore the 
speed of computation, are governed by unavoidable heating up attending rising 
energy dissipation caused by increasing density of switching elements in the 
device. On a basically two dimensional device linear speed up by shortening 
interconnects is essentially attended by squaring the dissipated energy per area 
unit per second because we square the number of switching elements per area 
unit, [Mead & Conway, 1980]. 



318 

Therefore, the question of how to reduce the energy dissipation of computa­
tion determines future advances in computing power. Around 1940 a computing 
device dissipated about 10-2 Joule per bit operation at room temperature. Since 
that time the dissipated energy per bit operation has roughly decreased by one 
order of magnitude (tenfold) every five years. Currently, a bit operation dissi­
pates about 10- 17 Joule.4 Extrapolations of current trends show that the energy 
dissipation per binary logic operation needs to be reduced below kT (thermal 
noise) within 20 years. Here k is Boltzamnn's constant and T the absolute tem­
perature in °Kelvin, so that kT ~ 3 x 10-21 Joule at room temperature. Even at 
kT level, a future laptop containing 1018 gates in a cubic centimeter operating 
at a gigahertz dissipates 3 million watts/second. For thermodynamic reasons, 
cooling the operating temperature of such a computing device to almost abso­
lute zero (to get kT down) must dissipate at least as much energy in the cooling 
as it saves for the computing. It is unlikely that this challenge can be met by 
other means than the use of reversible logic. 

J. von Neumann [Burks, 1966] reputedly thought that a computer operating 
at temperature T must dissipate at least kTln 2 Joule per elementary bit oper­
ation. Around 1960, R. Landauer [Landauer, 1961] analyzed this question and 
concluded that it is only 'logically irreversible' operations that dissipate energy. 
An operation is logically reversible if its inputs can always be deduced from the 
outputs. Erasure of information in a way such that it cannot be retrieved is 
not reversible. Erasing each bit costs kT In 2 energy, when computer operates at 
temperature T. 

One should sharply distinguish between the issue of logical reversibility and 
the issue of energy dissipation freeness. The fact that some computer operates in 
a logically reversible manner says nothing about whether it dissipates heat. The 
only thing it says is that the laws of physics do not pr:eclude that one can invent a 
technology in which to implement a logically similar computer to operate physi­
cally in a dissipationless manner. Computers built from reversible circuits, or the 
reversible Turing machine, [Bennett, 1973, Bennett, 1982, Fredkin & Toffoli, 1982], 
implemented with current technology will presumably dissipate energy but may 
conceivably be implemented by future technology in an adiabatic fashion. For 
nonreversible computers adiabatic implementation is widely considered impos­
sible. 

Thought experiments can exhibit a computer that is both logically and phys­
ically perfectly reversible and hence perfectly dissipationless. An example is the 
billiard ball computer, [Fredkin & Toffoli, 1982], and similarly the possibility of 
a coherent quantum computer, [Feynman, 1985, Deutsch, 1985]. 

Methods to implement (almost) reversible dissipationless computation using 
conventional electronic technologies appear in [Proc. PhysComp, 1981, 1992, 1994], 
often designated by the catch phrase 'adiabatic switching'. Our purpose is to de­
termine the theoretical ultimate limits to which the irreversible actions in an 
otherwise reversible computation can be reduced. 

4 After R.W. Keyes, IBM Research. 



319 

2.2 Model of Computation 

Energy free 'copying' of records, and cancelling of one record with respect to 
an identical record provided it is known that they are identical, is physically 
realizable (or almost realizable). This is the case when a program sets y := x 
and later (reversibly) erases x := 0. We shall call reversible erasure 'cancelling'. 
Irrespective of the original contents of variable x we can always restore x by 
x := y. However, if the program has no copy of x which can be identified by 
examining the program without knowing the contents of the variables, then af­
ter (irreversibly) erasing x := 0 we cannot restore the original contents of x 
even though some variable z may have by chance the same contents. 'Copying' 
and 'cancelling' are logically reversible, and their energy dissipation free execu­
tion gives substance to the idea that logically reversible· computations can be 
performed with zero energy dissipation. 

We have seen that the number of irreversibly erased bits in an otherwise 
reversible computation which replaces input x by output y, each unit counted as 
kT In 2, represents energy dissipation. Complementary to this idea, if such a com­
putation uses initially irreversibly provided bits apart from input x, then they 
must be accounted at the same negated cost as that for irreversible erasure. Be­
cause of the reversibility of the computation, we can argue by symmetry. Namely, 
suppose we run a reversible computation starting when memory contains input 
x and additional record p, and ending with memory containing output y and 
additional garbage bits q. Then p is irreversibly provided, and q is irreversibly 
deleted. But if we run the computation backward, then the roles of x,p and y, q 
are simply interchanged. 

We can view any computation as consisting of a sequence of reversible and 
irreversible operation executions. We want the irreversibility cost to reflect all 
nonreversible parts of the computation. The irreversibility cost of an otherwise 
reversible computation is set to the maximum of the number of irreversibly 
provided and the number of irreversibly erased bits. 

We consider the following axioms as a formal basis on which to develop a 
theory of irreversibility of computation. 

Axiom 1 Reversible computations do not incur any cost. 
Axiom 2 Irreversibly provided and irreversibly deleted bits in a computation 

incur unit cost each. 
Axiom 3 In a reversible computation which replaces input x by output y, the 

input x is not irreversibly provided and the output y is not irreversibly 
deleted. 

Axiom 4 All physical computations are effective. 

Axiom 4 is simply an extended form of Church's Thesis: the notion of phys­
ical computation coincides with effective computation which coincides with the 
formal notion of Turing machines computation. Deutsch, [Deutsch, 1985], and 
others have argued the possibility that this is false. If that turns out to be the 
case then either our arguments are to be restricted to those physical processes 
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for which Axiom 4 holds, or, perhaps, one can extend the notion of effective 
computations appropriately. 

We will be talking about the ultimate limits of energy dissipation by com­
putation. Since these limits will be expressed in the number of bits in the ir­
reversibly erased records, we consider compactification of records. Rather as in 
analogy of garbage collection by a garbage truck: the cost is less if we compact 
the garbage before we throw it away. 

The ultimate compactification which can be effectively exploited is expressed 
in terms of Kolmogorov complexity. This is a recursively invariant concept, and 
to express the ultimate limits no other notion will do. Consequently, this mun­
dane matter of energy dissipation of physical computation is linked to, and 
expressed in, the pristine theoretical notion of Kolmogorov complexity. 

2.3 Irreversibility Cost of Computation 

Axioms 1-4 lead to the definition of the irreversibility cost of a computation as 
the number of bits we added plus the number of bits we erased in computing one 
string from another. Let R = R1 , R2, ... be a standard enumeration of reversible 
Turing machines, [Bennett, 1973). We define E(·, ·) as in [Bennett et al., 1993) 
(where it is denoted as E3(;·)). 

Definition 2. The irreversibility cost ER(x, y) of computing y from x by a re­
versible Turing machine R is is 

ER(x,y) = min{IPI + lql: R((x,p)) = (y,q)}. 

We denote the class of all such cost functions by £. 

We call an element EQ of£ a universal irreversibility cost function, if Q E R, 
and for all R in R 

Eq(x, y) S ER(x, y) +CR, 

for all x and y, where CR is a constant which depends on R but not on x or y. 
Standard arguments from the theory of Turing machines show the following. 

Lemma 3. There is a universal irreversibility cost function in £. Denote it by 

EuR· 

Proof. In [Bennett, 1973] a universal reversible Turing machine UR is constructed 
which satisfies the optimality requirement. 

Two such universal (or optimal) machines UR and UR' will assign the same 
irreversibility cost to a computation apart from an additive constant term c 
which is independent of x and y (but does depend on UR and U R 1). We select 
a reference universal function UR and define the irreversibility cost E(x,y) of 
computing y from x as 

E(x, y) = EuR(x,y). 
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Because of the expression for E(x, y) in Theorem 4 below it is called the sum 
cost measure in [Bennett et al., 1993]. 

In physical terms this cost is in units of kT In 2, where k is Boltzmann's 
constant, T is the absolute temperature in degrees Kelvin, and In is the natural 
logarithm. 

Because the computation is reversible, this definition is symmetric: we have 
E(x,y) = E(y,x). 

In our definitions we have pushed all bits to be irreversibly provided to the 
start of the computation and all bits to be erased to the end of the computation. 
It is easy to see that this is no restriction. If we have a computation where irre­
versible acts happen throughout the computation, then we can always mark the 
bits to be erased, waiting with actual erasure until the end of the computation. 
Similarly, the bits to be provided can be provided (marked) at the start of the 
computation while the actual reading of them (simultaneously unmarking them) 
takes place throughout the computation). 

Computing Between re and y Now let us consider a general computation 
which outputs string y from input string x. We want to know the minimum 
irreversibility cost for such computation. This leads to the following theorem, 
first proven as below and also established in [Bennett et al., 1993] by a different 
more indirect proof, which is the basis of our theory. 

Theorem 4 Fundamental theorem. Up to an additive logarithmic term 

E(x,y) = C(xly) + C(ylx). 

Proof. We prove first an upper bound and then a lower bound. 

Claim 1 E(x,y) ~ C(ylx) + C(xly) + 2[C(C(ylx)ly) + C(C(xly)lx)]. 

Proof. We start out the computation with programs p, q, r. Program p com­
putes y from x and IPI = C(ylx). Program q computes the value C(xly) from 
x and lql = C(C(xly)lx). Program r computes the value C(ylx) from y and 
lrl = C(C(ylx)ly). To separate the different binary programs we have to encode 
delimiters. This takes an extra additional number of bits logarithmic in the two 
smallest length of elements p, q, r. This extra log term is absorbed in the addi­
tive log term in the statement of the theorem. The computation is as follows. 
Everything is executed reversibly apart from the final irreversible erasure. 

1. Use p to compute y from x producing garbage bits g(x,y). 
2. Copy y, and use one copy of y and g(x, y) to reverse the computation to x 

and p. Now we have p, q, r, x, y. 
3. Copy x, and use one copy of x and q to compute C(xly) plus garbage bits. 
4. Use x, y, C(xly) to dovetail the running of all programs of length C(xiy) to 

finds, a shortest program to compute x from y. Doing this, we produce more 
garbage bits. 
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5. Copy s, and reverse the computations in Steps 4, 3, canceling the extra copies 
and all garbage bits. Now we have p, q, r, s, x, y. 

6. Copy y, and use this copy to compute the value C(ylx) from r and y pro­
ducing garbage bits. 

7. Use x,y,C(yjx), to dovetail the running of all programs of length C(yjx) to 
obtain a copy of p, the shortest program to compute y from x, producing 
mor.e garbage bits. 

8. Delete a copy of p and reverse the computation of Steps 7, 6 cancelling the 
superfluous copy of y and all garbage bits. Now we are left with x, y, r, s, q. 

9. Compute from y and s a copy of x and cancel a copy of x. Reverse the 
computation. Now we have y,r,s,q. 

10. Erases, r, q irreversibly. 

We started out with additional shortest programs p, q, r apart from x. We have 
irreversibly erased the shortest programs s, q, r, where lsl = C(xly), leaving only 
y. This proves the claim. 

Note that all bits supplied in the beginning to the computation, apart from 
input x, as well as all bits irreversibly erased at the end of the computation, are 
random bits. This is because we supply and delete only shortest programs, and 
a shortest program p satisfies C(p) ;?: Jpj, that is, it is maximally random. 

Claim 2 E(x, y) :2: C(yjx) + C(xjy). 

Proof. To compute y from x we must be given a program to do so to start out 
with. By definition the shortest such program has length C(yjx). 

Assume the computation from x to y produces g( x, y) garbage bits. Since the 
computation is reversible we can compute x from y and g(x, y). Consequently, 
Jg(x,y)J ;?: C(xjy) by definition [Zurek, 1989). To end the computation with y 
alone we therefore must irreversibly erase g(x,y) which is at least C(xjy) bits. 

Together Claims 1, 2 prove the theorem. 

Corollary 5. Erasing a record x is actually a computation from x to the empty 
string€. Therefore, up to a logarithmic additive term, the irreversible cost (also 
thermodynamic cost) of erasure is E(x,€) = C(x). 

2.4 Trading Time for Energy 

In order to erase a record x, Corollary 5 actually requires us to have, apart from 
x, a program p of length O(O(x)Jx) for computing C(x), given x. The precise 
bounds are C(x) ~ E(x, €) ~ C(x) + 2C(C(x)Jx ). This optimum is not effective, 
it requires that p be given in some way. But we can use the same method as in 
the proof of Theorem 4, by compressing x using some time bound t. 

First we need some definitions. Because now the time bounds are important 
we consider the universal Turing machine U to be the machine with two work 
tapes which can simulate t steps of a multitape Turing machine T in 0( t log t) 
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steps, see for example [Li & Vitanyi, 1993]. If some multitape Turing machine 
T computes x in time t from a program p, then U computes x in time O(tlogt) 
from p plus a description of T. 

Definition 6. Let et ( x IY) be the minimal length of binary program (not neces­
sarily reversibly) for the two work tape universal Turing machine U computing 
x given y (for free) in time t. Formally, 

et(xly) == min{IPI: U((p,y}) == x in:::; t(lxl) steps}. 
pEJ/ 

ct(xly) is called the t-time-limited conditional Kolmogorov complexity of x given 
y. The unconditional version is defined as et(x) := ct(x,E). A program p such 
that U(p) = x in:::; t(!xl) steps and !PI= et(x) is denoted as x;_ 

Note that with C:}(xly) the conditional t-time-limited Kolmogorov complex­

ity with respect to Turing machine T, for all x, y, et' (xiy) :::; ej.(xly)+cT, where 
t' = O(tlogt) and CT is a constant depending on T but not on x and y. 

This et ( ·) is the standard definition of time-limited Kolmogorov complexity, 
[Li & Vitanyi, 1993]. However, in the remainder of the paper we always need 
to use reversible computations. Fortunately, in [Bennett, 1989] the following is 
shown. 

Lemma 7. For any E > 0, ordinary multitape Turing machines using T time and 
S space can be simulated by reversible ones using time O(T) and space O(ST•). 

To do effective erasure of compacted information, we must at the start of the 
computation provide a time bound t. Typically, t is a recursive function and 
the complexity of its description is small, say 0(1). However, in Theorem 8 we 
allow for very large running times in order to obtain smaller et ( ·) values. (In 
the theorem below t need not necessarily be a recursive function t(lx!), but can 
also be used nonuniformly. This leads to a stronger result.) 

Theorem 8 Irreversibility cost of effective erasure. If t(lxl) ~ Ix! is a time 
bound which is provided at the start of the computation, then erasing an n bit 
record x by an otherwise reversible computation can be done in time {number 
of steps) 0(21"'1t(lxl)) at irreversibility cost (hence also thermodynamic cost) 
ct(x) + 2et(t!x) + 4loget(tlx) bits. (Typically we consider t as some standard 
explicit time bound and the last two terms adding up to 0(1).) 

Proof. Initially we have in memory input x and a program p of length et(t,x) 
to compute reversibly t from x. To separate binary x and binary p we need to 
encode a delimiter in at most 2loget(t!x) bits. 

1. Use x and p to reversibly compute t. Copy t and reverse the computation. 
Now we have x, p and t. 

2. Use t to reversibly dovetail the running of all programs of length less than 
x to find the shortest one halting in time t with output x. This is x;. The 
computation has produced garbage bits g(x, x;). Copy x;, and reverse the 
computation to obtain x erasing all garbage bits g(x, x;). Now we have 
x, p, x;, t in memory. 
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3. Reversibly compute t from x by p, cancel one copy of t, and reverse the 
computation. Now we have x, p, x; in memory. 

4. Reversibly cancel x using x; by the standard method, and then erase x; and 
p irreversibly. 

More practical compression methods are surveyed in [Storer, 1988]. 
By spending more time we can reduce the thermodynamic cost of erasure 

of x; to its absolute minimum. In the limit we spend the optimal value C(x) 
by erasing x*, since limt-+oo x; == x*. This suggests the existence of a trade-off 
hierarchy between time and energy. The longer one reversibly computes to per­
form final irreversible erasures, the less bits are erased and energy is dissipated. 
This intuitive assertion will be formally stated and rigourously proved below. 
We proceed through a sequence of related 'irreversibility' results. 

Definition9. Let UR be the reversible version of the two worktape universal 
Turing machine, simulating the latter in linear time by Lemma 7. Let Et(x,y) 
be the minimum irreversibility cost of an otherwise reversible computation from 
x to y in time t. Formally, 

Et(x,y) == min {!PI+ lql: UR((x,p)) = (y,q) ins; t(ixl) steps}. 
p,qe.N . 

Since E(x, e) is about C(x), one is erroneously led to believe that Et(x, e) = 
Ct(x) up to a log additive term. However, the time-bounds introduce many 
differences. To reversibly compute x; we may require (because of the halting 
problem) at least 0(21"'1t(!xl)) steps after having decoded t, as indeed is the 
case in the proof of Theorem 8. In contrast, Et(x, e) is about the number of bits 
erased in an otherwise reversible computation which uses at most t steps. It is 
not difficult to show that for each x and t(!xj) ~ Ix!, 

(1) 

with t'(lxl) = O(t(!xl), [Li & Vitanyi, 1994]. Moreover, Theorem 8 can be re­
stated in terms of Et ( ·) as 

Et' (x, e) s; ct(x) + 2Ct(tix) + 4logCt(tix), 

with t'(lxl) = 0(21"'1t(lxl)). Comparing this to the righthand inequality of Equa­
tion 1 we have improved the upper bound on erasure cost at the expense of 
increasing erasure time. However, these bounds only suggest but do not actu­
ally prove that we can exchange irreversibility for time. But the following result, 
shown by incompressibility arguments in [Li & Vitanyi, 1994], definitely estab­
lishes the existence of a trade-off. 

Theorem 10 Irreversibility-time trade-off hierarchy. For every large enough 
n there is a string x of length n and a sequence of m = h!n time functions 
ti(n) < t2(n) < ... < tm(n), such that 

Eti (x, e) > Et2 (:z:, e) > ... > Etm(x, e). 



325 

In the cost measures like Et ( ·, ·) we have counted both the irreversibly pro­
vided and the irreversibly erased bits. But Landauer's principle only charges 
energy dissipation costs for irreversibly erased bits. It is conceivable that the 
above results would not hold if one considers as the cost of erasure of a record 
only the irreversibly erased bits. However, in [Li & Vitanyi, 1994] it is shown 
that the above results hold under these considerations as well. 

3 Scalability of Multiprocessor Architectures 

In many areas of the theory of parallel computation we meet graph structured 
computational models which encourage the design of parallel algorithms where 
the cost of communication is largely ignored. Yet it is well known that the cost 
of computation - in both time and space - vanishes with respect to the cost of 
communication latency in parallel or distributed computing. It turns out that 
symmetric low diameter networks do not scale well; and random networks (and 
hence almost all networks) do not scale at all. This confirms that meshes are the 
way to go. 

Models of parallel computation that allow processors to randomly access a 
large shared memory, such as PRAMs, or rapidly access a member of a large 
number of other processors, will necessarily have large latency. If we use 2n 
processing elements of, say, unit size each, then the tightest they can be packed 
is in a 3-dimensional sphere of volume 2n. Assuming that the units have no 
"funny" shapes, e.g., are spherical themselves, no unit in the enveloping sphere 
can be closer to all other units than a distance of radius R, 

(2) 

Because of the bounded speed of light, it is impossible to transport signals over 
2an (a > 0) distance in polynomial p(n) time. In fact, the assumption of the 
bounded speed of light says that the lower time bound on any computation using 
2n processing elements is !l(2n/3 ) outright. Or, for the case of computations on 
networks which use no. processors, a> 0, the lower bound on the computation 
time is !l(na./3 ). 

In previous theoretical analysis, often a wire did not take room, did not 
dissipate heat, and did not cost anything - at least, not enough to worry about. 
This was realistic when the number of wires was low, somewhere in the hundreds. 
Current designs use many millions of wires (on chip), or possibly billions of wires 
(on wafers). In a computation of parallel nature, most of the time seems to be 
spent on communication - transporting signals over wires. The present analysis 
allows us to see that any reasonable model for multicomputer computation must 
charge for communication. The communication cost will impact on both physical 
time and physical space costs. 
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3.1 Regular Low Diameter Networks 

At present, many popular multicomputer architectures are based on highly sym­
metric communication networks with small diameter. Like all networks with 
small diameter, such networks necessarily contain some long interconnects (em­
bedded edges). We have shown in [Vitanyi, 1986, Vitanyi, 1988] that the desir­
able fast permutation properties of symmetric networks don't come free, since 
they require that the average of all interconnects is long. (Note that 'embedded 
edge,' 'wire,' and 'interconnect' are used synonymously.) To preclude objections 
that the results hold only asymptotically (and therefore can be safely ignored 
for practical numbers of processors), or that processors are huge and wires thin 
(idem), we calculated without hidden constants and assume that wires have 
length but no volume and can pass through everything. It is consistent with the 
results that wires have zero volume, and that infinitely many wires pass through 
a unit area. The lower bound obtained hlolds for the average edge length for 
any graph, in terms of certain symmetries and diameter. The lower bound de­
teriorates when the graph is irregular. For each regular graph topology we have 
examined, the resulting lower bound turned out to be sharp. It turns out that 
for symmetric networks like binary d-cube, cube-connected cycles, star graphs, 
complete graphs, the avera,ge edge length is as bad as can be. An extension 
of the argument shows the same for related networks like the Bruijn networks, 
shuffle-exchange graphs, and so on, [Koppelman, 1995]. 

3.2 Irregular Networks 

Since low-diameter symmetric network topologies lead to high average inter­
connect length, it is natural to ask what happens with irregular topologies. In 
fact, it is sometimes proposed that since symmetric networks of low diameter 
lead to high interconnect length, one should use random networks where the 
presense or absence of a connection is determined by a coin flip. We report on 
some work in [Vitanyi, 1994] that such networks will also have impossibly high 
average interconnect length. 

Concretely, the problem is posed as follows. Let G = (V, E) be a finite undi­
rected graph, without loops or multiple edges, embedded in 3-dimensional Eu­
clidean space. Let each embedded node have unit volume. For convenience of 
the argument, each node is embedded as a sphere, and is represented by the 
single point in the center. The distance between a pair of nodes is the Euclidean 
distance between the points representing them. The length of the embedding of 
an edge between two nodes is the distance between the nodes. How large does 
the average edge length need to be? 

One way to express irregularity or randomness of an individual network 
topology is by a modern notion of randomness like Kolmogorov complexity. 
A simple counting argument shows that for each y in the condition and each 
length n there exists at least one x of length n which is incompressible in the 
sense of C(xly) 2: n, 503 of all x's of length n is incompressible but for 1 bit 
(C(xJy) 2: n-1), 753th of all x's is incompressible but for 2 bits (C(xly) 2: n-2) 
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and in general a fraction of 1- 2-c of all strings cannot be compressed by more 
than c bits, [Li & Vitanyi, 1993]. 

Each graph G = (V, E) on n nodes V = {O, ... , n - l} can be coded (up 
to isomorphism) by a binary string of length n(n - 1)/2. We enumerate the 
n(n - 1)/2 possible edges in a graph on n nodes in standard order and set the 
ith bit in the string to l if the edge is present and to 0 otherwise. Conversely, 
each binary string of length n(n - 1)/2 encodes a graph on n nodes. Hence we 
can identify each such graph with its corresponding binary string. 

We shall call a graph G on n nodes random if it satisfies 

C(Gln)?: n(n - 1)/2 - en, (3) 

where c is an appropriate constant (c = 1/16 suffices for our purpose). Elemen­
tary counting shows that a fraction of at least 

of all graphs on n nodes has that high complexity. 

Lemmall. The degreed of each node of a random graph satisfies Id - (n -

1)/21 < n/4. 

Proof. Assume that the deviation of the degree d of a node v in G from ( n -1) /2 
is at least k. From the lower bound on C(Gjn) corresponding to the assumption 
that G is random, we can estimate an upper bound on k, as follows. 

Describe G given n as follows. We can indicate which edges are incident on 
node v by giving the index of the connection pattern in the ensemble of 

(n) 2 rn = L d :::; 2ne-k /(n-1) 

ld-(n-1)/212'.k 

(4) 

possibilities. The last inequality follows from a general estimate of the tail prob­
ability of the binomial distribution, with Sn the number of successful outcomes 
in n experiments with probability of success 0 < p < l and q = 1 - p. Namely, 
Chernoff's bounds, [Li & Vitanyi, 1993], pp. 127-130, give 

(5) 

To describe G it then suffices to modify the old code of G by prefixing it with 

- the identity of the node concerned in flog n l bits, 
- the value of d in flog n l bits, possibly adding nonsignificant O's to pad up to 

this amount, 
- the index of the interconnection pattern in log m + 2 log log m bits in self­

delimiting form (this form requirement allows the concatenated binary sub­
descriptions to be parsed and unpacked into the individual items: it encodes a 
separation delimiter, at the cost of adding the second term, [Li & Vitanyi, 1993]), 
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followed by the old code for G with the bits in the code denoting the presence 
or absence of the possible edges which are incident on the node v deleted. 

Clearly, given n we can reconstruct the graph G from the new description. 
The total description we have achieved is an effective program of 

logm + 2loglogm + O(logn) + n(n -1)/2 - (n -1) 

bits. This must be at least the length of the shortest effective binary program, 
which is C(Gln) satisfying Equation 3. Therefore, 

logm + 2loglogm ~ n-1 - O(logn) - en. 

Since we have estimated in Equation 4 that 

logm 5 n - (k2 /(n - 1)) loge, 

it follows that, with c = 1/16, 
k < n/4. 

The lemma shows that each node is connected by an edge with about 253 
of all nodes in G. Hence G contains a subgraph on about 25 % of its nodes of 
diameter 1. This is all we need. For completeness, we derive the following lemma, 
using an idea due to Harry Buhrman. 

Lemma12. Random graphs have diameter 2. 

Proof. The only graphs with diameter 1 are the complete graphs which can be 
described in 0(1) bits, given n, and hence are not random. It remains to consider 
G is a random graph with diameter greater than 2. Let i, j be a pair of nodes 
with distance greater than 2. Then we can describe G by modifying the old code 
for G by prefixing it with 

- The identities of i < j in flogn l bits, 

followed by the old code of G with all bits representing an edge (j, k) between j 
and each k with (i,k) an edge of G deleted. We know that all the bits representing 
such edges must be 0 since the existence of any such edge shows that ( i, k), ( k, j) 
is a path of length 2 between i and j contradicting the assumption that i and j 
have distance > 2. Since we know the identities of i and j, and the nodes adjacent 
to j, we can reconstruct G from this discussion and the new description, given 
n. Since by Lemma 11 the degree of i is at least n/4, the new description of G, 
given n, has at most 

n(n -1)/2 + 21lognl -n/4+ 0(1), 

which contradicts Equation 3 from some n onwards. 

Theorem 13. A fraction of at least 1 - 1/2cn (c = 1/16) of all graphs on n 
nodes (the incompressible, random, graphs) have average interconnect length of 
D(n113 ) in each 3-dimensional Euclidean space embedding (or D(n112 ) in each 
2-dimensional Euclidean space embedding). 
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Proof. By lemma 11 we know that in a random graph G each node x is at 
distance 1 of (n - 1)/2 ± n/4 other nodes y, and 7 /8th of these nodes y (in 
3 dimensions) is at distance .r.?(n113 ) of x by Equation 2. The argument for 2 
dimensions is analogous. 

By Lemma 11 we know that a random graph G on n nodes has .r.?(n2 ) edges 
since each node has about n/2 incident edges. Therefore, we have the following. 

Corollary 14. A fraction of at least 1 - l/2cn {c = 1/16} of all graphs on 
n nodes {the incompressible, random, graphs} have total interconnect length of 
.r.?(n713 ) in each 3-dimensional Euclidean space embedding (or rl(n512 ) in each 
2-dimensional Euclidean space embedding). 

Since both the very regular symmetric low diameter graphs and the random 
graphs have high average interconnect length which sharply rises with n, the only 
graphs which will scale feasibly up are symmetric fairly high diameter topologies 
like the mesh-which therefore will most likely be the interconnection pattern 
of the future massive multiprocessor systems. 

3.3 Interpretation of the Results 

An effect that becomes increasingly important at the present time is that most 
space in the device executing the computation is taken up by the wires. Let's 
make the very conservative estimates that the unit length of a wire has a volume 
which is a constant fraction of that of a component it connects. 

Regular Networks. We have shown in [Vitanyi, 1988] that in 3-dimensional 
layouts for binary d-cubes, the volume of then = 2d components (nodes) per­
forming the actual computation operations is an asymptotic fastly vanishing 
fraction of the volume of the wires needed for communication: 

volume computin~ c~mpo~ents = o(n-l/3) 
volume commumcat10n wires 

If we charge a constant fraction of the unit volume for a unit wire length, 
and add the volume of the wires to the volume of the nodes, then the volume 
necessary to embed the binary d-cube is .r.?(n413 ). However, this lower bound 
ignores the fact that the added volume of the wires pushes the nodes further 
apart, thus necessitating longer wires again. How far does this go? A rigorous 
analysis is complicated, and not important here. The following intuitive argu­
ment indicates what we can expect well enough. Denote the volume taken by the 
nodes as Vn, and the volume taken by the wires as V,.,. The total volume taken 
by the embedding of the cube is vt = Vn + V,.,. The total wire length required to 
lay out a binary d-cube as a function of the volume taken by the embedding is, 
substituting radius R obtained from Vt = 4nR3 /3 in the formula for the total 
wire length obtained in [Vitanyi, 1988], 

L(V.) > 7n 3vt ( ) 
1/3 

t - 32 47r 
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Since limn-+oo Vn/Vw --t 0, assuming unit wire length of unit volume, we set 
the total interconnect length L(vt) at L(vt) ~ vt. This results in a better es­
timate of fl(n312 ) for the volume needed to embed the binary d-cube. When 
we want to investigate an upper bound to embed the binary d-cube under the 
current assumption, we have a problem with the unbounded degree of unit vol­
ume nodes. There is no room for the wires to come together at a node. For 
comparison, therefore, consider the fixed degree version of the binary d-cube, 
the Cube Connected Cycles (CCC) topology (see [Vitanyi, 1988]), with n = d2d 
trivalent nodes and 3n/2 edges. The same argument yields D(n312 Iog-3 / 2 n) for 
the volume required to embed CCC with unit volume per unit length wire. It 
is known, that every small degree n-vertex graph, e.g., CCC, can be laid out 
in a 3-dimensional grid with volume O(n312 ) using a unit volume per unit wire 
length assumption, [Mead & Conway, 1980, Ullman, 1984]. This neatly matches 
the lower bound. 

Because of current limitations to layered VLSI technology, previous inves­
tigations have focussed on embeddings of graphs in 2-space (with unit length 
wires of unit volume). We observe that the above analysis for 2 dimensions 
leads to D(n2 ) and f2(n2 log-2 n) volumes for the binary d-cube and the cube­
connected cycles, respectively. These lower bounds have been obtained before 
using bisection width arguments, and are known to be optimal, [Ullman, 1984]. 
In [Mead & Conway, 1980] it is shown that we cannot always assume that a unit 
length of wire has 0(1) volume. (For instance, if we want to drive the signals to 
very high speed on chip.) 

Irregular Networks. Just like for the complete graph, the situation for the 
random graph which we consider here, is far worse. For a random graph we have, 
under the assumption that the wires have unit volume per unit length, that the 
total wire length in 3 dimensional embeddings is fl(n 7 / 3 ) by Theorem 13, and 
that 

volume communication wires = D(n413 ) 

volume computing components 

The proof of Theorem 13 actually shows that the total interconnect length of 
an embedded random graph is L(Vi) = f?(n2V/1 3 ), where the radius of an as 
tight as possibly packed 3-dimensional sphere of the total volume vt of nodes 
and wires together is D(V/13 ). Considering that the larger volume will cause the 
average interconnect length to increase, as above for the binary d-cube, setting 
the total interconnect length L(vt) ::::i vt since the volume of the computing 
nodes add a negligible term, we find for a random graph that on n nodes that 
the total volume satisfies 

Here we have not yet taken into account that longer wires need larger drivers 
and have a larger diameter, that the larger volume will again cause the average 
interconnect length to increase, and so on, which explosion may make embedding 
altogether impossible with finite length interconnects as exhibited in related 
contexts in [Vitanyi, 1985]. 
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The arguments we have developed are purely geometrical, apply to any graph 
and any technology, and give optimal lower bounds in all cases we have exam­
ined. Our observations are mathematical consequences from the noncontroversial 
assumptions on 3 dimensional space and the Laws of Physics. 

4 Algorithmic Entropy, Chaos, Biology 

Algorithmic Entropy. In [Gacs, 1994, Li & Vitanyi, 1993] an application of 
Kolmogorov complexity in statistical thermodynamics due to Peter Gacs is 
reported. One can explain the classical theory of thermodynamics by statisti­
cal and information-theoretic analysis of an underlying deterministic model. It 
turns out that a complexity analysis using the powerful methods as explained 
in [Li & Vitanyi, 1993] gives a basis of an algorithmic theory for entropy. Some 
applications include a proof of an 'entropy nondecrease over time' property, and 
'entropy stability' property, 'entropy increase' for certain systems, and an anal­
ysis of Maxwell's demon. 

Chaos and Predictability. Given sufficient information about a physical 
system, like the positions, masses and velocities of all particles, and a sufficiently 
powerful computer with enough memory and computation time, it should be 
possible in principle to compute all of the past and all of the future of the 
system. This view, eloquently propagated by P.S. Laplace, can be espoused both 
in classical mechanics and quantum mechanics. In classical mechanics one would 
talk about a single 'history', while in quantum mechanics one would talk about 
probability distributions over an ensemble of 'possible histories.' 

Nonetheless, in practice it is impossible to obtain all parameters precisely. 
The finitary nature of measurement and computation requires truncation of real 
valued parameters; there are measuring errors; and ·according to basic quantum 
mechanics it is impossible to measure certain types of parameters simultaneously 
and precisely. Altogether, it is fundamental that there are minute uncertainties 
in our knowledge of any physical system at any time. 

This effect can been combined with the consistent tradition that small causes 
can have large effects exemplified by the metaphor "a butterfly moving its wing 
in tropical Africa can eventually cause a cyclone in the Caribbean." Minute 
perturbations in initial conditions can cause, mediated by strictly computable 
functions, arbitrary large deviations in outcome. In the mathematics of nonlinear 
deterministic systems this phenomenon has been described by the catch term 
'chaos'. 

The unpredictability of this phenomenon is sometimes explained through 
Kolmogorov complexity. Assuming that the initial state is randomly drawn from 
[O, 1) according to the uniform measure, [Ford, 1983] and other papers, use com­
plexity arguments to show that the doubling map's observable orbit cannot be 
predicted better than a coin toss. Namely, with .>.-probability 1 the drawn initial 
state will be a Martin-Lof random infinite sequence. Such sequences by defini­
tion cannot be effectively predicted [Li & Vitanyi, 1993] better than a random 
coin toss. But in this case we do not need to go to such trouble. The observed 
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orbit essentially consists of the consecutive bits of the initial state. Selecting 
that initial state randomly from the uniform measure is isomorphic to :flipping 
a fair coin to generate it. There emerges the question of a genuinely significant 
application of Kolmogorov complexity to unpredictability of chaotic trajectories. 

Compression by Ants. In everyday life, we continuously compress informa­
tion which is presented to us by the environment. Perhaps animals do this as well, 
as the following experiment reported by Zh.I. Reznikova and B.Ya. Ryabko [Prob. 
Inform. Tmnsm., 22:3(1986), 245-249, also reported in [Li & Vitanyi, 1993]] sug­
gests. It is claimed there that the transmission of information by ants using 
tactile code is a well-established fact. This led the researchers to probe both 
the information transmission rate and message compressing capabilities of ants. 
The experimental results suggest that, apparently, it takes a longer time for 
the scout ants to communicate 'random' sequences to the forager ants than to 
communicate 'regular' sequences. 
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