
In-Place Calculation of Minimum-Redundancy
Codes

Alistair Moffat 1 Jyrki Katajainen 2

Department of Computer Science, The University of Melbourne,
Parkville 3052, Australia

alistair@cs.mu.oz.an
2 Department of Computer Science, University of Copenhagen,

Universitetsparken 1, DK-2100 Copenhagen East, Denmark
jyrki~diku.dk

Abstract . The optimal prefix-free code problem is to determine, for a
given array p = [p~li �9 {1.. . n}] of n weights, an integer array l --
[l~ I i �9 {1.. . n}] of n codeword lengths such that ~ 1 2-~' ~ 1 and
~i~=1 pil~ is minimized. Huff-man's famous greedy algorithm solves this
problem in O(n log n) time, if p is unsorted; and can be implemented to
execute in O(n) time, if the input array p is sorted. Here we consider the
space requirements of the greedy method. We show that if p is sorted
then it is possible to calculate the array I in-place, with li overwriting Pi,
in O(n) time and using O(1) additional space. The new implementation
leads directly to an O(nlogn)-time and n + O(1) words of extra space
implementation for the case when p is not sorted. The proposed method
is simple to implement and executes quickly.

Keywords . Prefix-free code, Huffman code, in-place algorithm, data
compression.

1 I n t r o d u c t i o n

The algorithm introduced by Huffman [4, 7] for devising minimum-redundancy
prefix-free codes is well known and continues to enjoy widespread use in data
compression programs. Huffman's method is also a good illustration of the greedy
paradigm of algorithm design and, at the implementation level, provides a useful
motivation for the priority queue abstract data type. For these reasons Huffman's
algorithm enjoys a prominence enjoyed by only a relatively small number of
fundamental methods.

In this paper we examine the space-efficiency of this greedy algorithm for
constructing optimal prefix-free codes. Textbooks describing the technique often
provide pseudo-code rather than a complete implementation and draw figures
showing forests of binary trees. These descriptions create the impression that
the implementation of the greedy algorithm should be pointer-based and reliant
upon a linear amount of auxiliary memory for node addresses and for internal
tree nodes. This is, as we shall show, an erroneous impression. We describe
an implementation of the greedy algorithm that, in addition to an input array

394

storing the weights of the symbols to be coded, requires just O(1) words of extra
space if the input array is sorted and n + O(1) words of extra space if the input
array is not sorted, where n is the number of symbols for which the code is to
be constructed. As for pointer-based implementations, the algorithms require
O(n) time for sorted input, and O(nlogn) time for unsorted input. Moreover,
implementation of the algorithms is straightforward, and they are suitable for
practical use.

The main motivation for this study ~s our algorithmic curiosity. The best
previous implementation of the greedy method for optimal prefix-free coding
requires n + O(1) words of extra memory and O(n log n) time for unsorted input
arrays [10], so it was natural to ask whether these bounds could be improved
if the input array is sorted. In particular, we were interested to know whether
an in-place calculation was possible, since, for practical computation on large
alphabets, the space constant is of overriding concern. For example, a typical
textbook implementation of the greedy method requires around 20 megabytes of
memory to calculate a code for a collection of one million symbols, whereas our
implementation requires just 4 megabytes (one million rather than five million
4-byte words). Furthermore, recent research papers report (see, for example, [2])
tha t in-place algorithms can be faster in practice than their space-inefficient
counterparts when run on a modern computer system with a hierarchical mem-
ory. Speed is one of the important characteristics of our implementation, too.
We have calculated an optimal code for a set of over one million symbols in just
a few seconds of CPU time.

2 P r e f i x Codes

Suppose that in some token stream there are n distinct symbols and that the
i th least frequent symbol appears Pi times. That is, we suppose that p = [Pi I i E
{1 . . .n}] is a non-decreasing array of n positive integer weights, Pl <_ 192 <_
P3"'" <_ Pn. A code is an array 1 = [lili E {1. . .n}] of n integers, where the
presumption is that the i th symbol is to be represented by an /i-bit long bi-
nary codeword over the alphabet {0, 1}. A prefix-free code is a code for which
~ n . 2,1~ < 1. For example, assigning li - [log2 n] is a prefix-free code, since
n .~2 =• flog2 ~7- _< 1. Given a prefix-free code ~, it is straightforward to determine a
set of n codewords, one per distinct symbol, with the property that the codeword
for symbol i is li bits long, and such that no codeword in the set is a proper
prefix of any other.

An optimal prefix-free code is a set of codeword lengths li such that not only
is)-~'~in=l 2 - t ' < 1 satisfied, but also such that B -- ~in=l lipi is minimized over
all prefix-free codes. Quantity B is the number of output bits used by the code
to represent the token stream in question; a code is optimal if there is no other
code that results in an output representation requiring fewer than B bits. For
any given array p there can be more than one optimal code; for the assignment
p ---- [1, 1, 2, 2] both l = [2, 2, 2, 2] and l -- [3, 3, 1, 2] (and one other) result in
compressed representations that require B = 12 bits. Note, however, that there

395

is always at least one code for which ll _> 12 >__ 13-.. _> ln, and it is such a
code that we shall seek to calculate. Huffman's greedy algorithm [4] generates
optimal prefix-free codes, and is sketched in Section 3; an alternative paradigm
by which this problem may be solved has been articulated recently by Larmore
and Przytycka [5].

Once an optimal prefix-free code has been determined and a set of codewords
is known they can be used to generate an efficient representation of the token
stream. If the original representation was not as economical then compression
will result. However, we do not concern ourselves with the steps that actually
assign final codewords or use them, and will regard our task as being over when,
for each symbol, a codeword length is assigned. One method for assigning code-
words that leads to fast decoding is summarized in Witten, Moffat, and Bell [10]
(see also [3]). The decoder is also space-efficient--for the case of sorted sym-
bol weights and ordinal symbol identifiers in {1 . . . n} the decoder requires just
O(max'~= 1 li) words of memory.

We also need some terminology for describing regular binary trees: a node s
is a tree, and if tl and t2 are two trees then t = s(t l , t2) is a tree, with node s
as its root. If t = s(t l , t2) and nodes Sl and s2 are the roots of trees tl and t2
respectively, then s is the parent of nodes sl and s2 in tree t. Similarly, nodes Sl
and s2 are the children of node s. If node s is a singleton and has no children,
then it is a lea] node of the tree, otherwise it is an internal node. The depth of
any node is one greater than the depth of its parent; the depth of a root is zero.
A forest is a set of trees.

The model of computation we assume is a unit-cost random access machine,
in which values as large as U can be stored in a single word, where U = ~ i~1 pi is
the sum of the input weights. That is, we suppose that addition and comparison
operations on integer values in the range 1 . . . U require O(1) time each. At
various stages of the algorithm we will store in these memory words partial
sums of the input weights (integers in the range 1 . . . U), array indices (integers
in the range 1 . . . n), and codeword lengths (integers in the range 1 . . . n - 1).

In all of the algorithms that follow we will assume at no cost the n words of
storage for the input array p; this is the description of the problem and is "free" in
the same way that in-place sorting algorithms such as Heapsort regard the input
list as being "free". We also suppose that the algorithm may be destructive--that
pi can be overwritten by li and that the output array replaces the input array.
What we seek to limit is the extra space required. As will be demonstrated in
Section 4, O(1) words of memory are sufficient to solve the optimal prefix-code
problem as we have stated it here.

3 T h e G r e e d y A l g o r i t h m

Huffman's greedy algorithm [4] is widely known and descriptions appear in a
wide range of algorithms textbooks (see, for example, [9]). In this greedy method
a forest of trees is manipulated. At each step of the algorithm the two least weight
trees are selected and melded, this continuing until a single tree remains. For

396

the purposes of ordering the sequence of operations, the weight of a tree is the
sum of the weights of symbols associated with the leaves of that tree, with ties
broken arbitrarily. Initially each symbol is installed in a singleton tree, so at the
commencement of the algorithm the forest contains n trees.

By the end of the melding process there is one tree remaining. This tree
contains as subtrees all of the other trees constructed during the course of the
algorithm; and the weight of the final tree is the sum of the set of initial weights,
~in_l pi. The structure of the final tree defines an optimal code--symbol i of
weight p~ should be allocated a codeword of li bits, where li is the depth in
the tree of the leaf corresponding to the singleton tree pi. To allow depths to
be calculated, the structure of meldings during the melding loop is noted using
parent pointers. A second loop then traces, for each symbol, the sequence of
parent pointers through to the root of the final tree. The depth is the required
codelength li.

A straightforward implementation of the greedy algorithm uses approxi-
mately 5n words--two words at each leaf node to store the initial weight and
the parent pointer; 2n - 2 words to store the weight and parent of the n - 1
internal nodes of the final tree; and n words for a heap of at most n items so that
the priority queue operations can be performed efficiently. These operations re-
quire O(log n) time each, so O(n log n) time is sufficient for the main loop, since
each iteration of the melding loop involves a constant number of priority queue
operations. This is how the algorithm is described in most textbooks.

One small problem is that, as described, the second phase takes O()-~i~=1 li)
time, which might be as large as O(n 2) and could dominate the time required
by the first phase. The solution to this problem is to label internal nodes with
their depth the first time they are traversed, thereby short-circuiting subsequent
traversals through that node. Since there are exactly 2n - 2 edges and each edge
is traversed once only, this variant of path-compression reduces the time for the
depth-calculation phase to O(n). This modification does not change the space
complexity of the algorithm, as the weight fields can be used to record depth at
both leaf and internal nodes.

Van Leeuwen [6] was apparently the first to note that if the input array p is
in sorted order then the running time can be improved to O(n). The reduction
is achieved by keeping the leaf nodes distinct from the internal nodes formed
during the melding, and maintaining two separate priority queues. The queue
implementation can then be a linked list, since the sequence of internal nodes
is formed in sorted order, and the input list is already in sorted order. At each
melding stage the two items with the smallest weights are within the first two of
the unprocessed section of the input list and the first two of the list of internal
nodes, so all of the priority queue operations can be effected in O(1) time. Im-
plementation of this idea requires 4n words of memory--2n to store the weights
and parent pointers of the leaves and 2n - 2 to store the weights and parent
pointers of the internal nodes.

397

4 In-Place Implementation

Let us now focus on the implementation of van Leeuwen's O(n) variant of the
greedy algorithm. During the melding phase, two lists are manipulated--a sorted
list of leaves that have not yet been processed and a sorted list of internal nodes.
The first observation we make about this operation is that the weight of any
node need be maintained only until that node is processed. At any given stage
of the melding process there are thus at most n weights to be recorded; and by
the end of this phase there is just one extant weight.

The second key observation is that it is not necessary to maintain parent
pointers in both of these lists. If the depth of each internal node of the tree is
known then the depth of each leaf can be inferred, since the codeword lengths
can be assumed to be non-increasing. For example, a tree with internal node
depths of [3, 3, 2, 1, 0] must have leaves at depths [4, 4, 4, 4, 2, 1]. Furthermore, at
the start of the melding phase there are no parent pointers in either list; and
at the end there are n - 2 in the list of internal nodes, but none in the list of
leaves. The combined total of weights (required for nodes yet to be processed)
and parent pointers (required for internal nodes already processed) can never
exceed n, so the parent pointers and weights can co-exist in the same array. If
r indicates the next tree node to be processed, s indicates the next leaf node
to be processed (singleton tree), and t indicates the next vacant position to be
used for a tree node, then the array can be partitioned and processed as shown
in the following diagram:

1 r t s

indices of parents weights of non-singleton [I
of internal nodes trees, non-decreasing I I

n

weights of singleton [
trees, non-decreasing

Figure 1 describes this process in more detail. Initially A[i] is assumed to
store Pi, but the values are modified in-place as the procedure executes. At the
completion of the loop, word A[n] is unused, word A[n - 1] stores the weight of

1. Set s +-- 1 and r e- 1.
2. For t +-- 1 to n - 1 do

(a) If (s > n) or (r < t and A[r] < A[s]) then
/* Select an internal tree node */
Set A[t] +- A[r], Air] e- t, and r +- r + 1

else
/* Select a singleton leaf node */
Set Air] +- A[s] and s +- s + 1.

(b) Repeat Step 2a, but adding to A[t] rather than assigning.

F i g . 1. In-place processing, phase one

398

the code tree, and words A[1. . . n - 2] store parent pointers. Care must be taken
that nodes and leaves are only examined if they logically exist, so the test at
Step 2a includes a validity guard. Note that both "and" and "or" are assumed
to be evaluated conditionally. Note also the strict inequality in the last clause of
the test at Step 2a. If ties are broken in favour of leaf nodes then the resulting
code has the smallest possible value of !1 = max,= 1 l~ amongst all minimum
redundancy codes [6].

Figure 2a shows an example array of n = 6 weights prior to the execution
of the procedure of Figure 1. Figure 2b indicates the state of processing at the
commencement of Step 2a when t = 4 and A[3] has just been computed, at
which time s = 5 indicating that A[5] is the next leaf to be processed, and r = 3,
marking A[3] as the next tree node to be considered. The two sets of double
lines in Figure 2b indicate the three active zones in the array. Finally, Figure 2c
shows the contents of the array at the completion of this first phase.

2 3 4 5 6

21 31 31 41131141
(a)

31 311121 11131141
(b)

3 I 3 I 4[51139 [II
(c)

Fig. 2. Example of phase one on input array [2, 3, 3, 4, 13, 14]

In the second phase of the algorithm the array A must be converted into
a array of codelengths. This process is described in Figure 3, and requires two
further scans of the array A. In the first scan A is converted to an array of depths
of internal nodes--Step 2 in Figure 3. The important observation here is that all
of the array indices--that is, parent pointers--stored in A[1. . . n - 2] point to
the right, so that A[i] > i. Hence, if A[n - 1] is assigned tree depth of 0, then
a leftward scan in the array setting each depth to be one more than the depth
of the parent node correctly converts parent pointers to node depths. By the
completion of Step 2, A l l . . . n - 1] is a list of depths of the internal nodes of the
tree. The arrangement in array A during Step 2 in Figure 3 is:

1 t n - l n

indices of parents I depths of internal]
of internal nodes I nodes I

Continuing the previous example, Figure 4a shows the result of applying this
step to the array shown in Figure 2c.

399

1. Set A[n - 1] ~ 0.
2. For t t-- n - 2 downto 1 do

Set A[t] +-- A[A[t]] + 1.
3. Set a ~ l , u +--O,d +--O, t + - - n - l , and x +--n.
4. While a > 0 do

(a) While t > 1 and A[t] = d do
Set u ~- u + 1 and t e- t - 1.

(b) While a > u do
Set A[x] ~ d, x +-- x - 1, and a +-- a - 1.

(c) Set a +-- 2u, d +-- d + 1, and u +-- 0.

F ig . 3. In-place processing, phase two

1 2 3 4 5 6

131 31 21 11 011 I
(a)

141 41 41 41 21 11
(b)

Fig. 4. Example of phase two on input array [2, 3, 3, 4, 13, 14]

Finally, the n - 1 internal node depths must be converted to n leaf node
depths. This is accomplished by a further right-to-left scan using pointers t,
which consumes internal nodes, and x, which indicates the index at which the
next external node depth should be stored. The arrangement during this phase
(Step 4 of Figure 3) is:

1
depths of internal

nodes

t x n

codelengths I
(depths of leaves)

The procedure used assumes that the internal node depths in A l l . . . n - 1]
form a non-increasing sequence. Tha t this must be so is demonstrated by the
following argument. To disambiguate the two different values stored in array
A, let parent[i] denote the value of A[i] prior to Step 2 of Figure 3 and let
depth[i] denote the value stored in A[i] after the execution of Step 2. Suppose,
in contradiction of the claim that the depth values are non-increasing, tha t
depth[i] < depth[j] for some 1 < i < j < n - 1. Further, assume that j is
the maximum value for which a corresponding i can be found. Note that neither
i nor j can be the root: j cannot, since depth[j] > depth[i] > 0; and i cannot,
since i < n - 1 and the root is, by definition, in A[n - 1].

400

Consider the two values i' = parent[i] and j ' = parent~]. If i' = j ' then
depth[i] and depthS] must be the same, since both are calculated as depth[i ~] +
1 = depth[j'] + 1. Hence, i' ~ j q Moreover, the strict first-in first-out nature
of the queue in which internal nodes are stored means that when i < j we
have parent[i] <_ parent[j]. But, if parent[i] i~ parent~], then i ' < jq Moreover,
depth[i'] = depth[i] - 1 and depthlj '] = depth[j] - 1, by the definition of depth
used during the calculation at Step 2. But this contradicts the assumption that j
was the maximal value for which an i could found, i < j and depth[i] > depth[j],
since we have just demonstrated that i ' < j ' and depth[i'] > depth[j']. Thus, no
such i and j could have existed in the first instance and the claim is cor rec t - - the
list of internal node depths is non-increasing.

To perform the conversion from internal node depths to leaf node depths,
the number u of internal nodes used at each depth d is counted and subtracted
from the total number of nodes (including leaves) available (variable a) at tha t
depth of the tree at Step 4a. Any nodes that were available for use at this level
but not encountered as internal nodes must be leaf nodes and can be assigned;
this is done at Step 4b. Depth d is then incremented and the next level of the
tree is processed. The number of available nodes at any given depth is twice the
number of internal nodes used at the previous depth; and initially there is one
node of depth zero available. Figure 4b shows the state of the example array at
the completion of Step 4. This final array is the desired set of codelengths.

To guarantee that Step 4 of Figure 3 is correct, we must be sure tha t t < x
at all times, as otherwise one or more unprocessed values might get overwritten.
We show this by demonstrating that at the commencement of each loop iteration
at Step 4 we have, as an invariant, that t = x - a - u. When t = n - 1, x, a,
and u have the values n, 1, and 0 respectively and so the claim is t rue the first
t ime Step 4 is executed. Consider now the effect of Step 4a. Each iteration of the
inner loop increases u by one and decreases t by one, maintaining the invariant.

When t either reaches zero or a value at which A[t] ~ d then x is decreased
by a - u during the course of the second inner loop at Step 4b, following which
Step 4c sets a to twice the value of u and u to zero. If a prime indicates the value
of a variable after this sequence of operations, then we have t ~ = t, x ~ = x - a + u ,
u ~ = 0, and a' = 2u. Hence, t' = x r - a' - u' is true if t = x - a + u - 2 . u - 0
holds. But the latter expression is true by assumption, so the claim of invariance
is correct. Moreover, the variable u is non-negative throughout; and a is positive
because of the guard at Step 4. Hence, t < x holds until the loop terminates and
the sequence of operations carried out by Step 4 is safe.

5 O t h e r C o n s i d e r a t i o n s

An actual implementation of the complete algorithm differs only slightly from
the pseudo-code shown in Figures 1 and 3 and is remarkably compact. For ex-
ample, a test implementation in the language C is about 50 lines of code. Three
straightforward scans over the input array are required, one in ascending order
and two descending, meaning that locality of reference is high. The result is ex-

401

tremely fast execution. For example, codelengths for an array of 1,073,971 word
frequencies (accumulated by processing three gigabytes of English text, see [10]
for a description of this document collection) are calculated in just 1.4 seconds
of CPU time on a Sun SparcStation 10/402.

If the input array is not sorted, we introduce an n-element auxiliary array
B, initialized so that B[i] = i. We next sort A, taking care that B[i] continues
to record the location in A of weight Pi. The in-place Huffman algorithm is
then executed on array A, and finally the required codelengths are determined
by setting Ii = B[A[i]]. In this case the running time is dominated by the cost
of sorting, and O(nlogn) time is required; the space cost is n + O(1) words
of auxiliary storage provided an in-place sorting algorithm such as Heapsort is
used, or n + O(log n) words if a stack-bounded Quicksort (which is usually faster)
is used.

If an explicit sort must be performed, sorting is the dominant step. For
the same list of 1,073,971 word frequencies it takes around 3.2 seconds for the
Bentley-McIlroy Quicksort [1] to sort an array of "frequency, index" pairs, so
overall code construction time is 4.6 seconds. I By way of comparison, the heap-
based construction method described in [10] (which assumes the input is not
sorted) requires 23.2 seconds to generate the same codelengths. The difference
between the two alternatives--heap-based calculation, and Quicksort then in-
place code calculation--is accounted for by the locality of reference exhibited
by both Quicksort and the algorithm presented in this paper, and because the
Bentley-McIlroy Quicksort exploits duplicate values in the input list, of which, for
this data, there are many. Even so, for random integer keys without duplications
Quicksort requires just 8.0 seconds to order 1,000,000 two-word records. We thus
conclude that the new algorithm is the most effective way to calculate optimal
prefix-codes, irrespective of whether or not the data is sorted.

Also worth noting is that although we have assumed throughout that an
instance of the optimal prefix-code problem is specified by an n-array of symbol
weights, other methods for describing problem instances are possible and lead to
different time and space requirements. One alternative input formulation suitable
for situations in which there many symbols sharing the same weight is a list of
pairs [(Pi, qi)]i E {1. . . r}], where weight Pi has repetition factor qi, there are r
distinct symbol weights, and there are n = ~-~i~=1 ql symbols in total. If a similar
list of "codelength, repetition count" pairs is the desired output, an optimal
prefix-free code can be constructed in O(r log(n/r)) time and space [8], which is
o(n) when r is o(n).

It is also interesting to examine the memory requirements of the actual encod-
ing and decoding processes. If we assume---as we have--that tokens are integers
in the range 1 . . . n in increasing weight order, then both encoding and decoding
can be carried out using two arrays each of ll words, where 11 is the length of a
longest codeword. These arrays are the only space requirement--in particular,

x Note, however, that the Bentley-McIlroy Quicksort is not stack-bounded, and in the
worst case might require O(n) words of auxiliary memory. Slightly increased times
result if a stack-bounded variant is used.

402

there is no need to maintain an n-element array of codewords--and so if 11 is o(n)
then the total encoding and decoding space requirement is sublinear. Witten,
Moffat, and Bell [10] (see also Hirschberg and Lelewer [3]) describe a mechanism
to achieve this. The time required by each encoding or decoding step is linear in

n l the number of output bits, so the total t ime is 0 (~ = 1 p~ i). Additional memory
is, of course, also required in both encoder and decoder if ordinal symbol num-
bers in increasing weight order must be mapped from or to actual compression
tokens such as characters or words that are not naturally in weight order. The
amount of memory required for this mapping and for storage of source tokens
depends upon the compression model being used.

Acknowledgements

We gratefully acknowledge the assistance of Andrew Turpin. We also thank one
of the referees, who provided incisive comments that improved our presentation.
This work was supported by the Australian Research Council.

References

1. J.L. Bentley and M.D. McIlroy. Engineering a sorting function. Software--Practice
and Experience 23 (1993) 1249-1265.

2. S. Carlsson, J. Katajainen, and J. Teuhola. In-place linear probing sort. Submit-
ted. Preliminary version appeared in Proceedings of the 9th Symposium on The-
oretical Aspects of Computer Science, Lecture Notes in Computer Science 577,
Springer-Verlag, Berlin/Heidelberg, Germany (1992) 581-587.

3. D. Hirschberg and D. Lelewer. Efficient decoding of prefix codes. Communications
of the ACM 33 (1990) 449-459.

4. D.A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the Inst. Radio Engineers 40 (1952) 1098-1101.

5. L.L. Larmore and T.M. Przytycka. Constructing Huffman trees in parallel. SIAM
Journal on Computing. To appear.

6. J. van Leeuwen. On the construction of Huffman trees. In Proceedings of the 3rd
International Colloquium on Automata, Languages and Programming, Edinburgh
University Press, Edinburgh, Scotland (1976) 382-410.

7. D.A. Lelewer and D.S. Hirschberg. Data compression. Computing Surveys 19
(1987) 261-296.

8. A. Moffat, A. ~hrpin, and J. Katajainen. Space-efficient construction of optimal
prefix codes. Proceedings of the 5th IEEE Data Compression Conference, IEEE
Computer Society Press, Los Alamitos, California (1995) 192-201.

9. R. Sedgewick. Algorithms in C. 2nd Edition, Addison-Wesley, Reading, Mas-
sachusetts (1990).

10. I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes: Compressing and In-
dexing Documents and Images. Van Nostrand Reinhold, New York, New York
(1994).

