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Abstract .  The optimal prefix-free code problem is to determine, for a 
given array p = [p~li �9 {1.. .  n}] of n weights, an integer array l -- 
[l~ I i �9 {1.. .  n}] of n codeword lengths such that ~ 1  2-~' ~ 1 and 
~i~=1 pil~ is minimized. Huff-man's famous greedy algorithm solves this 
problem in O(n log n) time, if p is unsorted; and can be implemented to 
execute in O(n) time, if the input array p is sorted. Here we consider the 
space requirements of the greedy method. We show that if p is sorted 
then it is possible to calculate the array I in-place, with li overwriting Pi, 
in O(n) time and using O(1) additional space. The new implementation 
leads directly to an O(nlogn)-time and n + O(1) words of extra space 
implementation for the case when p is not sorted. The proposed method 
is simple to implement and executes quickly. 

Keywords .  Prefix-free code, Huffman code, in-place algorithm, data 
compression. 

1 I n t r o d u c t i o n  

The algorithm introduced by Huffman [4, 7] for devising minimum-redundancy 
prefix-free codes is well known and continues to enjoy widespread use in data  
compression programs. Huffman's method is also a good illustration of the greedy 
paradigm of algorithm design and, at  the implementation level, provides a useful 
motivation for the priority queue abstract data  type. For these reasons Huffman's 
algorithm enjoys a prominence enjoyed by only a relatively small number of 
fundamental methods. 

In this paper we examine the space-efficiency of this greedy algorithm for 
constructing optimal prefix-free codes. Textbooks describing the technique often 
provide pseudo-code rather than a complete implementation and draw figures 
showing forests of binary trees. These descriptions create the impression that  
the implementation of the greedy algorithm should be pointer-based and reliant 
upon a linear amount of auxiliary memory for node addresses and for internal 
tree nodes. This is, as we shall show, an erroneous impression. We describe 
an implementation of the greedy algorithm that,  in addition to an input array 
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storing the weights of the symbols to be coded, requires just O(1) words of extra 
space if the input array is sorted and n + O(1) words of extra space if the input 
array is not sorted, where n is the number of symbols for which the code is to 
be constructed. As for pointer-based implementations, the algorithms require 
O(n) time for sorted input, and O(nlogn)  time for unsorted input. Moreover, 
implementation of the algorithms is straightforward, and they are suitable for 
practical use. 

The main motivation for this study ~s our algorithmic curiosity. The best 
previous implementation of the greedy method for optimal prefix-free coding 
requires n + O(1) words of extra memory and O(n log n) time for unsorted input 
arrays [10], so it was natural to ask whether these bounds could be improved 
if the input array is sorted. In particular, we were interested to know whether 
an in-place calculation was possible, since, for practical computation on large 
alphabets, the space constant is of overriding concern. For example, a typical 
textbook implementation of the greedy method requires around 20 megabytes of 
memory to calculate a code for a collection of one million symbols, whereas our 
implementation requires just 4 megabytes (one million rather than five million 
4-byte words). Furthermore, recent research papers report (see, for example, [2]) 
tha t  in-place algorithms can be faster in practice than their space-inefficient 
counterparts when run on a modern computer system with a hierarchical mem- 
ory. Speed is one of the important characteristics of our implementation, too. 
We have calculated an optimal code for a set of over one million symbols in just 
a few seconds of CPU time. 

2 P r e f i x  Codes  

Suppose that  in some token stream there are n distinct symbols and that  the 
i th  least frequent symbol appears Pi times. That  is, we suppose that  p = [Pi I i E 
{1 . . .n}]  is a non-decreasing array of n positive integer weights, Pl <_ 192 <_ 
P3"'" <_ Pn. A code is an array 1 = [lili E {1. . .n}]  of n integers, where the 
presumption is that  the i th symbol is to be represented by an /i-bit long bi- 
nary codeword over the alphabet {0, 1}. A prefix-free code is a code for which 
~ n  . 2,1~ < 1. For example, assigning li - [log2 n] is a prefix-free code, since 
n .~2 =• flog2 ~7- _< 1. Given a prefix-free code ~, it is straightforward to determine a 
set of n codewords, one per distinct symbol, with the property that  the codeword 
for symbol i is li bits long, and such that  no codeword in the set is a proper 
prefix of any other. 

An optimal prefix-free code is a set of codeword lengths li such that  not only 
is )-~'~in=l 2 - t '  < 1 satisfied, but also such that  B -- ~in=l lipi is minimized over 
all prefix-free codes. Quantity B is the number of output  bits used by the code 
to represent the token stream in question; a code is optimal if there is no other 
code that  results in an output representation requiring fewer than B bits. For 
any given array p there can be more than one optimal code; for the assignment 
p ---- [1, 1, 2, 2] both l = [2, 2, 2, 2] and l -- [3, 3, 1, 2] (and one other) result in 
compressed representations that  require B = 12 bits. Note, however, that  there 
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is always at least one code for which ll _> 12 >__ 13-.. _> ln, and it is such a 
code that  we shall seek to calculate. Huffman's greedy algorithm [4] generates 
optimal prefix-free codes, and is sketched in Section 3; an alternative paradigm 
by which this problem may be solved has been articulated recently by Larmore 
and Przytycka [5]. 

Once an optimal prefix-free code has been determined and a set of codewords 
is known they can be used to generate an efficient representation of the token 
stream. If the original representation was not as economical then compression 
will result. However, we do not concern ourselves with the steps that  actually 
assign final codewords or use them, and will regard our task as being over when, 
for each symbol, a codeword length is assigned. One method for assigning code- 
words that  leads to fast decoding is summarized in Witten, Moffat, and Bell [10] 
(see also [3]). The decoder is also space-efficient--for the case of sorted sym- 
bol weights and ordinal symbol identifiers in {1 . . .  n} the decoder requires just 
O(max'~= 1 li) words of memory. 

We also need some terminology for describing regular binary trees: a node s 
is a tree, and if tl  and t2 are two trees then t = s(t l ,  t2) is a tree, with node s 
as its root. If t = s(t l ,  t2) and nodes Sl and s2 are the roots of trees tl  and t2 
respectively, then s is the parent of nodes sl and s2 in tree t. Similarly, nodes Sl 
and s2 are the children of node s. If node s is a singleton and has no children, 
then it is a lea] node of the tree, otherwise it is an internal node. The depth of 
any node is one greater than the depth of its parent; the depth of a root is zero. 
A forest is a set of trees. 

The model of computation we assume is a unit-cost random access machine, 
in which values as large as U can be stored in a single word, where U = ~ i~1  pi is 
the sum of the input weights. That  is, we suppose that  addition and comparison 
operations on integer values in the range 1 . . .  U require O(1) time each. At 
various stages of the algorithm we will store in these memory words partial 
sums of the input weights (integers in the range 1 . . .  U), array indices (integers 
in the range 1 . . .  n), and codeword lengths (integers in the range 1 . . .  n - 1). 

In all of the algorithms that  follow we will assume at no cost the n words of 
storage for the input array p; this is the description of the problem and is "free" in 
the same way that  in-place sorting algorithms such as Heapsort regard the input 
list as being "free". We also suppose that  the algorithm may be destructive--that  
pi can be overwritten by li and that  the output array replaces the input array. 
What  we seek to limit is the extra space required. As will be demonstrated in 
Section 4, O(1) words of memory are sufficient to solve the optimal prefix-code 
problem as we have stated it here. 

3 T h e  G r e e d y  A l g o r i t h m  

Huffman's greedy algorithm [4] is widely known and descriptions appear in a 
wide range of algorithms textbooks (see, for example, [9]). In this greedy method 
a forest of trees is manipulated. At each step of the algorithm the two least weight 
trees are selected and melded, this continuing until a single tree remains. For 
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the purposes of ordering the sequence of operations, the weight of a tree is the 
sum of the weights of symbols associated with the leaves of that tree, with ties 
broken arbitrarily. Initially each symbol is installed in a singleton tree, so at the 
commencement of the algorithm the forest contains n trees. 

By the end of the melding process there is one tree remaining. This tree 
contains as subtrees all of the other trees constructed during the course of the 
algorithm; and the weight of the final tree is the sum of the set of initial weights, 
~in_l pi. The structure of the final tree defines an optimal code--symbol i of 
weight p~ should be allocated a codeword of li bits, where li is the depth in 
the tree of the leaf corresponding to the singleton tree pi. To allow depths to 
be calculated, the structure of meldings during the melding loop is noted using 
parent pointers. A second loop then traces, for each symbol, the sequence of 
parent pointers through to the root of the final tree. The depth is the required 
codelength li. 

A straightforward implementation of the greedy algorithm uses approxi- 
mately 5n words--two words at each leaf node to store the initial weight and 
the parent pointer; 2n - 2 words to store the weight and parent of the n - 1 
internal nodes of the final tree; and n words for a heap of at most n items so that 
the priority queue operations can be performed efficiently. These operations re- 
quire O(log n) time each, so O(n log n) time is sufficient for the main loop, since 
each iteration of the melding loop involves a constant number of priority queue 
operations. This is how the algorithm is described in most textbooks. 

One small problem is that, as described, the second phase takes O()-~i~=1 li) 
time, which might be as large as O(n 2) and could dominate the time required 
by the first phase. The solution to this problem is to label internal nodes with 
their depth the first time they are traversed, thereby short-circuiting subsequent 
traversals through that node. Since there are exactly 2n - 2 edges and each edge 
is traversed once only, this variant of path-compression reduces the time for the 
depth-calculation phase to O(n). This modification does not change the space 
complexity of the algorithm, as the weight fields can be used to record depth at 
both leaf and internal nodes. 

Van Leeuwen [6] was apparently the first to note that if the input array p is 
in sorted order then the running time can be improved to O(n). The reduction 
is achieved by keeping the leaf nodes distinct from the internal nodes formed 
during the melding, and maintaining two separate priority queues. The queue 
implementation can then be a linked list, since the sequence of internal nodes 
is formed in sorted order, and the input list is already in sorted order. At each 
melding stage the two items with the smallest weights are within the first two of 
the unprocessed section of the input list and the first two of the list of internal 
nodes, so all of the priority queue operations can be effected in O(1) time. Im- 
plementation of this idea requires 4n words of memory--2n to store the weights 
and parent pointers of the leaves and 2n - 2 to store the weights and parent 
pointers of the internal nodes. 
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4 In-Place Implementation 

Let us now focus on the implementation of van Leeuwen's O(n) variant of the 
greedy algorithm. During the melding phase, two lists are manipulated--a sorted 
list of leaves that have not yet been processed and a sorted list of internal nodes. 
The first observation we make about this operation is that the weight of any 
node need be maintained only until that node is processed. At any given stage 
of the melding process there are thus at most n weights to be recorded; and by 
the end of this phase there is just one extant weight. 

The second key observation is that it is not necessary to maintain parent 
pointers in both of these lists. If the depth of each internal node of the tree is 
known then the depth of each leaf can be inferred, since the codeword lengths 
can be assumed to be non-increasing. For example, a tree with internal node 
depths of [3, 3, 2, 1, 0] must have leaves at depths [4, 4, 4, 4, 2, 1]. Furthermore, at 
the start of the melding phase there are no parent pointers in either list; and 
at the end there are n - 2 in the list of internal nodes, but none in the list of 
leaves. The combined total of weights (required for nodes yet to be processed) 
and parent pointers (required for internal nodes already processed) can never 
exceed n, so the parent pointers and weights can co-exist in the same array. If 
r indicates the next tree node to be processed, s indicates the next leaf node 
to be processed (singleton tree), and t indicates the next vacant position to be 
used for a tree node, then the array can be partitioned and processed as shown 
in the following diagram: 

1 r t s 

indices of parents weights of non-singleton [ I 
of internal nodes trees, non-decreasing I I 

n 

weights of singleton [ 
trees, non-decreasing 

Figure 1 describes this process in more detail. Initially A[i] is assumed to 
store Pi, but the values are modified in-place as the procedure executes. At the 
completion of the loop, word A[n] is unused, word A[n - 1] stores the weight of 

1. Set s +-- 1 and r e- 1. 
2. For t +-- 1 to n -  1 do 

(a) If (s > n) or (r < t and A[r] < A[s]) then 
/* Select an internal tree node */ 
Set A[t] +- A[r], Air] e- t, and r +- r + 1 

else 
/* Select a singleton leaf node */ 
Set Air] +- A[s] and s +- s + 1. 

(b) Repeat Step 2a, but adding to A[t] rather than assigning. 

F i g .  1. In-place processing, phase one 
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the code tree, and words A[1. . .  n - 2] store parent pointers. Care must be taken 
that  nodes and leaves are only examined if they logically exist, so the test at 
Step 2a includes a validity guard. Note that  both "and" and "or" are assumed 
to be evaluated conditionally. Note also the strict inequality in the last clause of 
the test at Step 2a. If ties are broken in favour of leaf nodes then the resulting 
code has the smallest possible value of !1 = max,= 1 l~ amongst all minimum 
redundancy codes [6]. 

Figure 2a shows an example array of n = 6 weights prior to the execution 
of the procedure of Figure 1. Figure 2b indicates the state of processing at the 
commencement of Step 2a when t = 4 and A[3] has just been computed, at 
which time s = 5 indicating that  A[5] is the next leaf to be processed, and r = 3, 
marking A[3] as the next tree node to be considered. The two sets of double 
lines in Figure 2b indicate the three active zones in the array. Finally, Figure 2c 
shows the contents of the array at the completion of this first phase. 

2 3 4 5 6 

21 31 31 41131141 
(a) 

31 311121 11131141 
(b) 

3 I 3 I 4[ 51139 [ II 
(c) 

Fig.  2. Example of phase one on input array [2, 3, 3, 4, 13, 14] 

In the second phase of the algorithm the array A must be converted into 
a array of codelengths. This process is described in Figure 3, and requires two 
further scans of the array A. In the first scan A is converted to an array of depths 
of internal nodes--Step 2 in Figure 3. The important observation here is that  all 
of the array indices--that is, parent pointers--stored in A[1. . .  n - 2] point to 
the right, so that  A[i] > i. Hence, if A[n - 1] is assigned tree depth of 0, then 
a leftward scan in the array setting each depth to be one more than the depth 
of the parent node correctly converts parent pointers to node depths. By the 
completion of Step 2, A l l . . .  n - 1] is a list of depths of the internal nodes of the 
tree. The arrangement in array A during Step 2 in Figure 3 is: 

1 t n - l n  

indices of parents I depths of internal ] 
of internal nodes I nodes I 

Continuing the previous example, Figure 4a shows the result of applying this 
step to the array shown in Figure 2c. 
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1. Set A[n - 1] ~ 0. 
2. For t t-- n - 2 downto 1 do 

Set A[t] +-- A[A[t]] + 1. 
3. Set  a ~ l ,  u +--O,d +--O, t + - - n -  l ,  and x +--n. 
4. While a > 0 do 

(a)  While t > 1 and A[t] = d do 
Set u ~- u + 1 and t e- t -  1. 

(b) While a > u do 
Set A[x] ~ d, x +-- x - 1, and a +-- a - 1. 

(c) Set a +-- 2u, d +-- d + 1, and u +-- 0. 

F ig .  3. In-place processing, phase two 

1 2 3 4 5 6 

131 31 21 11 011 I 
(a) 

141 41 41 41 21 11 
(b) 

Fig.  4. Example of phase two on input array [2, 3, 3, 4, 13, 14] 

Finally, the n - 1 internal node depths must be converted to n leaf node 
depths. This is accomplished by a further right-to-left scan using pointers t, 
which consumes internal nodes, and x, which indicates the index at which the 
next  external node depth should be stored. The arrangement during this phase 
(Step 4 of Figure 3) is: 

1 
depths of internal 

nodes 

t x n 

codelengths I 
(depths of leaves) 

The procedure used assumes that  the internal node depths in A l l . . .  n - 1] 
form a non-increasing sequence. Tha t  this must be so is demonstrated by the 
following argument. To disambiguate the two different values stored in array 
A, let parent[i] denote the value of A[i] prior to Step 2 of Figure 3 and let 
depth[i] denote the value stored in A[i] after the execution of Step 2. Suppose, 
in contradiction of the claim that  the depth values are non-increasing, tha t  
depth[i] < depth[j] for some 1 < i < j < n - 1. Further, assume that  j is 
the maximum value for which a corresponding i can be found. Note that  neither 
i nor j can be the root: j cannot, since depth[j] > depth[i] > 0; and i cannot, 
since i < n - 1 and the root is, by definition, in A[n - 1]. 
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Consider the two values i' = parent[i] and j '  = parent~].  If i' = j '  then 
depth[i] and depthS] must be the same, since both are calculated as depth[i ~] + 
1 = depth[j'] + 1. Hence, i' ~ j q  Moreover, the strict first-in first-out nature 
of the queue in which internal nodes are stored means that  when i < j we 
have parent[i] <_ parent[j]. But, if parent[i] i~ parent~],  then i '  < jq  Moreover, 
depth[i'] = depth[i] - 1 and depthlj '  ] = depth[j] - 1, by the definition of depth 
used during the calculation at Step 2. But this contradicts the  assumption that  j 
was the maximal value for which an i could found, i < j and depth[i] > depth[j], 
since we have just demonstrated that  i '  < j '  and depth[i'] > depth[j']. Thus, no 
such i and j could have existed in the first instance and the claim is cor rec t - - the  
list of internal node depths is non-increasing. 

To perform the conversion from internal node depths to leaf node depths, 
the number u of internal nodes used at each depth d is counted and subtracted 
from the total number of nodes (including leaves) available (variable a) at tha t  
depth of the tree at Step 4a. Any nodes that  were available for use at this level 
but  not encountered as internal nodes must be leaf nodes and can be assigned; 
this is done at Step 4b. Depth d is then incremented and the next level of the 
tree is processed. The number of available nodes at any given depth is twice the 
number of internal nodes used at the previous depth; and initially there is one 
node of depth zero available. Figure 4b shows the state of the example array at 
the completion of Step 4. This final array is the desired set of codelengths. 

To guarantee that  Step 4 of Figure 3 is correct, we must be sure tha t  t < x 
at all times, as otherwise one or more unprocessed values might get overwritten. 
We show this by demonstrating that  at the commencement of each loop iteration 
at Step 4 we have, as an invariant, that  t = x - a - u. When t = n - 1, x, a, 
and u have the values n, 1, and 0 respectively and so the claim is t rue the first 
t ime Step 4 is executed. Consider now the effect of Step 4a. Each iteration of the 
inner loop increases u by one and decreases t by one, maintaining the invariant. 

When t either reaches zero or a value at which A[t] ~ d then x is decreased 
by a - u during the course of the second inner loop at Step 4b, following which 
Step 4c sets a to twice the value of u and u to zero. If a prime indicates the value 
of a variable after this sequence of operations, then we have t ~ = t, x ~ = x -  a + u ,  
u ~ = 0, and a' = 2u. Hence, t' = x r -  a' - u' is true if t = x -  a + u -  2 . u -  0 
holds. But  the latter expression is true by assumption, so the claim of invariance 
is correct. Moreover, the variable u is non-negative throughout;  and a is positive 
because of the guard at Step 4. Hence, t < x holds until the loop terminates and 
the sequence of operations carried out by Step 4 is safe. 

5 O t h e r  C o n s i d e r a t i o n s  

An actual implementation of the complete algorithm differs only slightly from 
the pseudo-code shown in Figures 1 and 3 and is remarkably compact. For ex- 
ample, a test implementation in the language C is about  50 lines of code. Three 
straightforward scans over the input array are required, one in ascending order 
and two descending, meaning that  locality of reference is high. The result is ex- 
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tremely fast execution. For example, codelengths for an array of 1,073,971 word 
frequencies (accumulated by processing three gigabytes of English text, see [10] 
for a description of this document collection) are calculated in just 1.4 seconds 
of CPU time on a Sun SparcStation 10/402. 

If the input array is not sorted, we introduce an n-element auxiliary array 
B, initialized so that B[i] = i. We next sort A, taking care that B[i] continues 
to record the location in A of weight Pi. The in-place Huffman algorithm is 
then executed on array A, and finally the required codelengths are determined 
by setting Ii = B[A[i]]. In this case the running time is dominated by the cost 
of sorting, and O(nlogn) time is required; the space cost is n + O(1) words 
of auxiliary storage provided an in-place sorting algorithm such as Heapsort is 
used, or n + O(log n) words if a stack-bounded Quicksort (which is usually faster) 
is used. 

If an explicit sort must be performed, sorting is the dominant step. For 
the same list of 1,073,971 word frequencies it takes around 3.2 seconds for the 
Bentley-McIlroy Quicksort [1] to sort an array of "frequency, index" pairs, so 
overall code construction time is 4.6 seconds. I By way of comparison, the heap- 
based construction method described in [10] (which assumes the input is not 
sorted) requires 23.2 seconds to generate the same codelengths. The difference 
between the two alternatives--heap-based calculation, and Quicksort then in- 
place code calculation--is accounted for by the locality of reference exhibited 
by both Quicksort and the algorithm presented in this paper, and because the 
Bentley-McIlroy Quicksort exploits duplicate values in the input list, of which, for 
this data, there are many. Even so, for random integer keys without duplications 
Quicksort requires just 8.0 seconds to order 1,000,000 two-word records. We thus 
conclude that the new algorithm is the most effective way to calculate optimal 
prefix-codes, irrespective of whether or not the data is sorted. 

Also worth noting is that although we have assumed throughout that an 
instance of the optimal prefix-code problem is specified by an n-array of symbol 
weights, other methods for describing problem instances are possible and lead to 
different time and space requirements. One alternative input formulation suitable 
for situations in which there many symbols sharing the same weight is a list of 
pairs [(Pi, qi)]i E {1. . .  r}], where weight Pi has repetition factor qi, there are r 
distinct symbol weights, and there are n = ~-~i~=1 ql symbols in total. If a similar 
list of "codelength, repetition count" pairs is the desired output, an optimal 
prefix-free code can be constructed in O(r log(n/r)) time and space [8], which is 
o(n) when r is o(n). 

It is also interesting to examine the memory requirements of the actual encod- 
ing and decoding processes. If we assume---as we have--that tokens are integers 
in the range 1 . . .  n in increasing weight order, then both encoding and decoding 
can be carried out using two arrays each of ll words, where 11 is the length of a 
longest codeword. These arrays are the only space requirement--in particular, 

x Note, however, that the Bentley-McIlroy Quicksort is not stack-bounded, and in the 
worst case might require O(n) words of auxiliary memory. Slightly increased times 
result if a stack-bounded variant is used. 
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there is no need to maintain an n-element array of codewords--and so if 11 is o(n) 
then the total encoding and decoding space requirement is sublinear. Witten, 
Moffat, and Bell [10] (see also Hirschberg and Lelewer [3]) describe a mechanism 
to achieve this. The time required by each encoding or decoding step is linear in 

n l the number of output  bits, so the total t ime is 0 ( ~ =  1 p~ i). Additional memory 
is, of course, also required in both encoder and decoder if ordinal symbol num- 
bers in increasing weight order must be mapped from or to actual compression 
tokens such as characters or words that  are not naturally in weight order. The 
amount  of memory required for this mapping and for storage of source tokens 
depends upon the compression model being used. 

Acknowledgements 

We gratefully acknowledge the assistance of Andrew Turpin. We also thank one 
of the referees, who provided incisive comments that improved our presentation. 
This work was supported by the Australian Research Council. 

References 

1. J.L. Bentley and M.D. McIlroy. Engineering a sorting function. Software--Practice 
and Experience 23 (1993) 1249-1265. 

2. S. Carlsson, J. Katajainen, and J. Teuhola. In-place linear probing sort. Submit- 
ted. Preliminary version appeared in Proceedings of the 9th Symposium on The- 
oretical Aspects of Computer Science, Lecture Notes in Computer Science 577, 
Springer-Verlag, Berlin/Heidelberg, Germany (1992) 581-587. 

3. D. Hirschberg and D. Lelewer. Efficient decoding of prefix codes. Communications 
of the ACM 33 (1990) 449-459. 

4. D.A. Huffman. A method for the construction of minimum-redundancy codes. 
Proceedings of the Inst. Radio Engineers 40 (1952) 1098-1101. 

5. L.L. Larmore and T.M. Przytycka. Constructing Huffman trees in parallel. SIAM 
Journal on Computing. To appear. 

6. J. van Leeuwen. On the construction of Huffman trees. In Proceedings of the 3rd 
International Colloquium on Automata, Languages and Programming, Edinburgh 
University Press, Edinburgh, Scotland (1976) 382-410. 

7. D.A. Lelewer and D.S. Hirschberg. Data compression. Computing Surveys 19 
(1987) 261-296. 

8. A. Moffat, A. ~hrpin, and J. Katajainen. Space-efficient construction of optimal 
prefix codes. Proceedings of the 5th IEEE Data Compression Conference, IEEE 
Computer Society Press, Los Alamitos, California (1995) 192-201. 

9. R. Sedgewick. Algorithms in C. 2nd Edition, Addison-Wesley, Reading, Mas- 
sachusetts (1990). 

10. I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes: Compressing and In- 
dexing Documents and Images. Van Nostrand Reinhold, New York, New York 
(1994). 


