Skip to main content

On condorcet and median points of simple rectilinear polygons

Extended abstract

  • Communications
  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 965))

Included in the following conference series:

  • 142 Accesses

Abstract

Let P be a simple rectilinear polygon with N vertices, endowed with rectilinear metric, and let the location of n users in P be given. There are a number of procedures to locate a facility for a given family of users. If a voting procedure is used, the chosen point x should satisfy the following property: no other point y of the polygon P is closer to an absolute majority of users. Such a point is called a Condorcet point. If a planning procedure is used, such as minimization of the average distance to the users, the optimal solution is called a median point.

We prove that Condorcet and median points of a simple rectilinear polygon coincide and present an O(N+nlogN) algorithm for computing these sets. If all users are located on vertices of a polygon P, then the running time of the algorithm becomes O(N+n).

Research supported by the Alexander von Humboldt Stiftung

Research supported by DAAD

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.-J. Bandelt. Networks with Condorcet solutions. European J. Operational Research, 20(1985), 314–326.

    Google Scholar 

  2. H.-J. Bandelt. Single facility location on median networks (submitted).

    Google Scholar 

  3. H.-J. Bandelt and J.-P. Barthelemy. Medians in median graphs. Discrete Appl. Math., 8(1984), 131–142.

    Google Scholar 

  4. H.-J. Bandelt, V.D. Chepoi and M. van de Vel. Pasch-Peano spaces and graphs. Preprint (1993).

    Google Scholar 

  5. H.-J. Bandelt and J. Hedlíková. Median algebras. Discrete Math., 45(1983), 1–30.

    Google Scholar 

  6. M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest and R.E. Tarjan. Time bounds for selection. J. Comput. System Sci., 7(1972), 448–461.

    Google Scholar 

  7. B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6(1991), 485–524

    Google Scholar 

  8. V.D. Chepoi. A multifacility location problem on median spaces. Discrete Appl. Math. (to appear).

    Google Scholar 

  9. V.D. Chepoi and F.F. Dragan. Computing a median point of a simple rectilinear polygon. Inform. Process. Lett.49(1994), 281–285.

    Google Scholar 

  10. T.H. Cormen, C.E. Leiserson and R.L. Rivest. Introduction to Algorithms. MIT Press Cambridge, MA, Mc Graw-Hill, New-York, 1990.

    Google Scholar 

  11. M. de Berg. On rectilinear link distance. Computational Geometry: Theory and Applications, 1(1991), 13–34

    Google Scholar 

  12. A. Dress and R. Scharlau. Gated sets in metric spaces. Aequationes Math., 34(1987), 112–120

    Google Scholar 

  13. H. Edelsbrunner, L.J. Guibas and J. Stolfi. Optimal point location in a monotone subdivision. SIAM J. Comput., 15(1985), 317–340

    Google Scholar 

  14. A.J. Goldman. Optimal center location in simple networks. Transportation Sci., 5(1971), 212–221

    Google Scholar 

  15. P. Hansen and M. Labbé. Algorithms for voting and competitive location on a network. Transportation Sci., 22(1988), 278–288.

    Google Scholar 

  16. P. Hansen and J.-F. Thisse. Outcomes of voting and planning: Condorcet, Weber and Rawls locations. J. Public Econ., 16(1981), 1–15.

    Google Scholar 

  17. P. Hansen, J.-F. Thisse and R.E. Wendell. Equilibrium analysis for voting and competitive location problems. in: Discrete Location Theory, R.L. Francis and P.B. Mirchandani (eds.), John Wiley & Sons.

    Google Scholar 

  18. D.G. Kirkpatrick. Optimal search in planar subdivisions, SIAM J.Comput., 12(1983), 28–35

    Google Scholar 

  19. M. Labbé. Outcomes of voting and planning in single facility location problems. European J. Operational Research, 20(1985), 299–313.

    Google Scholar 

  20. H.M. Mulder. The Interval Function of a Graph. Math. Centre Tracts (Amsterdam), 132(1980).

    Google Scholar 

  21. S. Schuierer. Helly-type theorem for staircase visibility (submitted).

    Google Scholar 

  22. P.S. Soltan and V.D. Chepoi. Solution of the Weber problem for discrete median metric spaces (in Russian). Trudy Tbilisskogo Math. Inst., 85(1987), 53–76

    Google Scholar 

  23. B.C. Tansel, R.L. Francis and T.J. Lowe. Location on networks. Parts 1,2. Management Sci., 29(1983), 482–511

    Google Scholar 

  24. M. van de Vel. Theory of Convex Structures. Elsevier Science Publications (Amsterdam), 1993.

    Google Scholar 

  25. R.E. Wendell and R.D. McKelvey. New perspectives in competitive location theory. European J. Operational Research, 6(1981), 174–182.

    Google Scholar 

  26. R.E. Wendell and S.J. Thorson. Some generalizations of social decisions under majority rules. Econometrica, 42(1974), 893–912.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Horst Reichel

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chepoi, V.D., Dragan, F.F. (1995). On condorcet and median points of simple rectilinear polygons. In: Reichel, H. (eds) Fundamentals of Computation Theory. FCT 1995. Lecture Notes in Computer Science, vol 965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60249-6_50

Download citation

  • DOI: https://doi.org/10.1007/3-540-60249-6_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60249-1

  • Online ISBN: 978-3-540-44770-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics