Skip to main content

Computation of 3D-motion parameters using the log-polar transform

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 970))

Abstract

Arificial vision systems for mobile robots necessitate sensors and representations that enable a real-time reactive behavior. The log-polar transform has been shown to be a variable resolution scheme that achieves a high compression of the non-foveal part of an image. Such space variant sensors must inevitably be active in order to utilize the high- and homogeneous resolution fovea. We study here the computation of the heading direction using a log-polar sensor able to fixate. The polar nature of the complex logarithmic mapping produces a computationally superior representation of the optical flow. Based on an insight for the translational case we present a new algorithm for computing the focus of expansion by applying fixation in case of general motion.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.(Y.) Aloimonos, I. Weiss, and A. Bandyopadhyay. Active Vision. International Journal of Computer Vision, 1:333–356, 1988.

    Google Scholar 

  2. A. Bandopadhay and D.H. Ballard. Egomotion perception using visual tracking. Computational Intelligence, 7:39–47, 1990.

    Google Scholar 

  3. R.H.S. Carpenter. Movements of the Eyes. Pion Press, London, 1988.

    Google Scholar 

  4. C. Fermuller and Y. Aloimonos. The role of fixation in visual motion anaylsis. International Journal of Computer Vision, 11:165–186, 1993.

    Google Scholar 

  5. R. Guissin and S. Ullman. Direct computation of the focus of expansion from velocity field measurements. In Proc. IEEE Workshop on Visual Motion, pp. 146–155, Princeton, NJ, Oct. 7–9, 1991.

    Google Scholar 

  6. R. Jain, S.L. Bartlett, and N. O'Brien. Motion Stereo Using Ego-Motion Complex Logarithmic Mapping. IEEE Trans. Pattern Analysis and Machine Intelligence, 9:356–369, 1987.

    Google Scholar 

  7. M. Otte and H.-H. Nagel. Optical flow estimation: advances and comparisons. In Proc. Third European Conference on Computer Vision, pp. 51–60. Stockholm, Sweden, May 2–6, 1994.

    Google Scholar 

  8. D. Raviv and M. Herman. Visual servoing from 2-D image cues. In Y. Aloimonos, editor, Active Perception, pp. 191–226. Lawrence Erlbaum Associates, Hillsdale, NJ, 1993.

    Google Scholar 

  9. M.A. Taalebinezhaad. Direct recovery of motion and shape in the general case by fixation. IEEE Trans. Pattern Analysis and Machine Intelligence, 14:847–853, 1992.

    Google Scholar 

  10. M. Tistarelli and G. Sandini. On the advantages of polar and log-polar mapping for direct estimation of time-to-impact from optical flow. IEEE Trans. Pattern Analysis and Machine Intelligence, 15:401–410, 1993.

    Google Scholar 

  11. C.F.R. Weiman and R.D. Juday. Tracking algorithms using log-polar mapped image coordinates. In Proc. SPIE Conf. on Intelligent Robots and computer Vision VIII, Vol. 1192, Philadelphia, Nov., 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Václav Hlaváč Radim Šára

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daniilidis, K. (1995). Computation of 3D-motion parameters using the log-polar transform. In: Hlaváč, V., Šára, R. (eds) Computer Analysis of Images and Patterns. CAIP 1995. Lecture Notes in Computer Science, vol 970. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60268-2_283

Download citation

  • DOI: https://doi.org/10.1007/3-540-60268-2_283

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60268-2

  • Online ISBN: 978-3-540-44781-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics