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Abstract

The ideas of texture analysis by means of the structure tensor are com-
bined with the scale-space concept of anisotropic diffusion filtering. In con-
trast to many other nonlinear diffusion techniques, the proposed one uses a
diffusion tensor instead of a scalar diffusivity. This allows true anisotropic
behaviour. The preferred diffusion direction is determined according to the
phase angle of the structure tensor. The diffusivity in this direction is in-
creasing with the local coherence of the signal. This filter is constructed in
such a way that it gives a mathematically well-founded scale-space represen-
tation of the original image. Experiments demonstrate its usefulness for the
processing of interrupted one-dimensional structures such as fingerprint and
fabric images.

1 Introduction

Textures play an important role in various pictures. In images depicting, e.g.
fabrics or fingerprints, the texture consists of locally one-dimensional objects. If
the image quality is not sufficient for a direct interpretation the problem appears
to close interrupted lines.

The goal of the present paper is to contribute a multiscale method for this
purpose. It is based on an anisotropic diffusion process whose activity is driven
by a diffusion tensor. This diffusion tensor is adapted to the image in order to
enhance coherent structures. To this end, we chose it as a function of a stable and
reliable descriptor of local structure, the structure tensor.

The paper is organized as follows.

Section 2 gives a brief review of the idea of anisotropic diffusion filtering, and in
Section 3 we recall the essential properties of structure tensor analysis. Equipped
with this information, in Section 4 we construct an anisotropic process which
enhances locally coherent structures. Section 5 relates the work to other nonlinear
filters based on partial differential equations. In Section 6 we apply this multiscale
process to fingerprint and fabric images. We conclude with a summary in Section
7.
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2 Nonlinear Anisotropic Diffusion Filtering

Let the image domain be an open rectangle Q := (0,a1) x (0,as), I’ := 09 its
boundary, and let an image f(x) be represented by a bounded function f : Q — IR.
Then, one may obtain a processed version u(z,t) of f(x) with a scale parameter
t > 0 as the solution of a diffusion equation with f as initial condition and reflecting
boundary conditions:

Oyu = div (D Vu) on Q x (0,00) (1)
u(@,0)=f(&) on Q @
(DVu, n) =0 on I' x (0,00) 3)

Hereby, n denotes the outer normal and (.,.) the usual inner product.

If one wants to adapt the diffusion process to the image itself one should choose
the symmetric positive definite diffusion tensor D € IR**? as a function of the local
image structure. This may be useful to avoid undesirable effects such as blurring
or dislocating of edges. A very simple descriptor of the image structure is the
regularized gradient Vu,, where

Kofo) = greew(-55 ), (@)
ug(z,t) = (K, =*a(,t))(z) (0 >0) (5)

and @ denotes an extension of u from Q to IR?, which may be obtained by mirroring
at T'. Regularizing by convolving with a Gaussian makes the edge detection insen-
sitive to noise at scales smaller than ¢. Within a flat region, we have Vu, = 0. At
pronounced edges, |Vu,| is large and Vu, points in the normal direction of the
edge.

We may adapt the orthonormal system of eigenvectors vy, v2 of D to the direc-
tion of Vu, by choosing v; || Vu, and v L Vu,. The corresponding eigenvalues
A1, A2 prescribe the amount of diffusion in the eigendirections v; and vy, respec-
tively.

Let us study one example: if one wishes to smooth within each region and aims
to reduce diffusion across steep edges one may choose

1 if Vu, =0,
Moo= 1 —exp (ﬁ) else, (6)
)\2 = 1. (7)

Models of this type are useful for denoising of highly degraded images, for visual-
izing quality-relevant features in computer aided quality control, for preprocessing
medical images, and for postprocessing fluctuating numerical data [10, 12]. A the-
oretical scale-space interpretation of this and related methods is given by Weickert
[11].

Nevertheless, since Vu,, serves only as an edge detector, the applicability of the
previously discussed diffusion filter is restricted to smoothing with edge enhance-
ment. In the sequel, we study an example of how diffusion filters can be modified
for enhancing coherent structures.



3 The Structure Tensor

In order to identify features like corners or to measure local coherence of structures,
we need more sophisticated structure-analysing methods taking into account how
the gradient changes within the vicinity of any investigated point.

The structure tensor (also called scatter matriz or (windowed second) moment
tensor) is an important representative of this class. It is a useful tool for analysing
flow-like textures and spatio—temporal image sequences, see [9], [4, pp. 147-153],
[6, pp. 349-382] and the references therein. Let us focus on some aspects which
are of importance in our case.

To this end, we reconsider the vector-valued structure descriptor Vu, within
a matrix framework. The matrix Jy resulting from the tensor product

Jo(Vuy) := Vu, ® Vu, := Vu, Vul (8)

has an orthonormal basis of eigenvectors vy, v with vy || Vu, and va L Vu,.
The corresponding eigenvalues |Vu,|?> and 0 give just the contrast (the squared
gradient) in the eigendirections. By convolving Jo(Vu,) componentwise with a
Gaussian K, we obtain the structure tensor

J,(Vus) = K, x (Vu, ® Vu,) (p>0). 9)
It is not hard to verify that the symmetric matrix J, = (ﬁ; g;z) is positive
semidefinite and possesses orthonormal eigenvectors wy, we with
2j12
\/(122—1114- (111—j22)2+4jf2)2+4ﬁ2
w1 = Jea—jiita/ (J11i—je2) 2 +443, (10)

2
\/(jzz —J11+4/ (j11—j22)2+4jf2) +453,

if j11 # joo or j12 # 0. The corresponding eigenvalues are

1/, . . . .
pp = 5 (Jn +j2a £ \/(Jn —j22)% + 43122> ; (11)

where the + sign belongs to u1. The eigenvalues integrate the variation of the grey
values within a neighbourhood of size O(p). They describe the average contrast in
the eigendirections. Thus, the integration scale p should reflect the characteristic
size of the texture. The presmoothing for obtaining Vu, makes the structure
tensor insensitive to noise and irrelevant details at scales smaller than O(c). The
parameter o is called local scale.

Constant areas are characterized by pu; = ps = 0, while straight edges give
1> pe =0, and corners yield g1 > po > 0. The difference

i — fo = \/(ju —j22)% + 453, (12)

becomes large for anisotropic structures. It measures the coherence within a win-
dow of scale p. It will play an important role for the construction of our novel
diffusion filter.



4 Coherence-Enhancing Anisotropic Diffusion

To adapt the diffusion tensor D to the local structure, we may prescribe that it
should possess the same eigenvectors wy, ws as the structure tensor J,(Vu,). The
corresponding eigenvalues of D are chosen as

/\1 = « (13)
\ { (e if j11 =j22 and j12 ZO, (14)
2 = —1
Oé+(].—Oé) €xp (m) else

with some parameter « € (0,1). This gives

DU, ) = (wn [ ) (5 4 ) (b ). (15

wsy

Thus, our diffusion filter consists in solving the initial boundary value problem
(1)—(3) with the preceding diffusion tensor.

We observe that Ay is an increasing function in (u1 —p2)?. Since the corres-
ponding eigenvector ws points in the direction with the highest coherence (the
lowest average contrast within an integration scale p) we have constructed a dif-
fusion process acting preferently along coherent structures.

The exponential function and the positive parameter o > 0 were introduced
mainly for two theoretical reasons: First, the diffusion tensor is a smooth function
in the whole image domain:

DolJ,: [C®(Q] = [C®(Q)*** Vp>0.

The second reason is that the process never stops: Even if the structure becomes
isotropic (1 — 2 — 0), we still have isotropic diffusion with diffusivity a > 0.
Thus, the diffusion tensor is uniformly positive definite.

Exploiting these properties, we may get a well-founded scale-space interpre-
tation in a similar way as for the anisotropic filter class proposed in [11]. This
multiscale representation simplifies the image with respect to many aspects: max-
ima decrease, minima increase, all LP-norms (1 < p < o0) decrease, even central
moments are diminished, and the entropy increases. Moreover, the solution de-
pends continuously on the original image. For ¢ — o0, all images tend to a constant
image with the same average grey value. Existence and uniqueness results for this
problem can be obtained in a similar way as in [2].

5 Relation to Other Partial Differential Equations

Since the work of Perona and Malik [8] numerous nonlinear diffusion filters have
been proposed. Nevertheless, most of them use a (spatially varying) scalar diffu-
sivity, not a diffusion tensor. Thus, they act inhomogeneously (nonuniformly) on
the image, but — in our terminology — they remain isotropic.



True anisotropic diffusion filtering is studied in the reaction-diffusion model of
Cottet and Germain [3]. It uses the eigenvectors v1 || Vug, va L Vu, and its
eigenvalues are

/\1 = O, (16)
o Ulvu0|2
Ay = g (lvug|/0)2 (’f} > 0) (17)
This choice is similar in spirit to our method, as it diffuses mainly along strongly
anisotropic structures. However, there are two important differences:

First, we observe that this diffusion tensor does not fit into our scale-space
framework using uniformly positive definite diffusion tensors. Due to its additional
reaction term, the Cottet/Germain model is intended as a restoration method
leading to nontrivial steady states. Second, the eigendirections of D are adapted
to Vu,, not to the eigendirections of the structure tensor. In Section 6, we shall
see that the structure tensor can improve the measurement of local orientation.

The use of structure tensors for diffusion-like filters was proposed by Nitzberg
and Shiota [7]. They apply the quadratic form induced by the structure tensor
to determine the shape of their anisotropic Gaussian kernel to convolve the im-
age with. For special scaling limits of the parameters, this can be interpreted
as an anisotropic diffusion filter. In [11], it is shown how to derive anisotropic
diffusion models from isotropic ones using the structure tensor approach. These
and the Nitzberg/Shiota model combine isotropic smoothing inside a region with
anisotropic diffusion along edges. They may enhance corners, but they are not
constructed for enhancing coherent structures.

Other anisotropic partial differential equations for smoothing images rely on
morphological methods such as the mean-curvature motion (geometric heat equa-
tion) [5, 1]

Owu = uge = |Vulcurv(u) (18)

with £ being the direction perpendicular to Vu.

Since the mean-curvature motion propagates isophotes in inner normal direc-
tion with curvature-dependent speed, we should not expect such methods to be
capable of closing interrupted line-like structures.

6 Examples

To approximate the proposed multiscale process, a splitting-based semi-implicit
finite difference scheme was implemented. Its computational effort is linear with
respect to the pixel number. The following calculations used as grid sizes Ax =
Ay =1, and the time step size is chosen to be At = 2. For 256 x 256 images, it
takes approximately 5 CPU seconds per time step on an HP 712/80 workstation.

Figure 1(a) shows a fingerprint image of size 256 x 256. In order to investigate
its local orientation we have calculated the gradient direction of the smoothed
image (Fig. 1(b)). Horizontally oriented structures appear black, while vertical



structures are depicted in white. We observe high fluctuations in the local ori-
entation. However, when calculating the local orientation by use of the structure
tensor, we investigate a much smoother behaviour (Fig. 1(c)). The proposed
anisotropic diffusion filter based on this structure analysis is applied in Fig. 1(d).
We recognize that this process is really capable of closing interrupted lines without
destroying the relevant singularities in the image.

Figure 2 depicts the scale-space behaviour of coherence-enhancing anisotropic
diffusion. The original image is taken from a fabric. In order to assess its quality
one is interested in visualizing coherent fibre agglomerations (stripes) at different
scales (see also [10]). The temporal behaviour of the proposed diffusion filter seems
to fit this requirement fairly well. Due to the established scale-space properties,
the image becomes gradually simpler with respect to many aspects, before it finally
tends to its coarsest representation, a constant image with the same average grey
value as the original one.

7 Summary and Conclusions

In the present paper, we have treated the problem of enhancing flow-like patterns.
For such tasks, a reliable measurement of local orientation is needed. Our exper-
iments demonstrate that the structure tensor satisfies this requirement. Unlike
many other applications, we do not restrict it to pure image analysis, we use it
also as a tool for steering a filtering process.

To this end, we evolve the original image by means of a nonlinear anisotropic
diffusion equation. Its diffusion tensor reflects the local image structure by using
the same set of eigenvectors as the structure tensor. The eigenvalues are chosen
in such a way that diffusion acts mainly along the direction with the highest
coherence, and becomes stronger when the coherence increases. The proposed
filter gives a well-founded scale-space representation, which takes into account the
demands to enhance coherent structures.

The considered problem class is a typical example for questions that can be
exclusively solved by anisotropic techniques. Isotropic equations, either linear or
nonlinear, are not suited for such applications.
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Figure 1: Local orientation in a fingerprint image. (a) Top Left: Original finger-
print, Q = (0,255)2. (b) Top Right: Orientation of smoothed gradient, o = 0.5.
(c) Bottom Left: Structure tensor orientation, o = 0.5, p = 4. (d) Bottom
Right: Coherence-enhancing anisotropic diffusion, @ = 0.001, ¢ = 0.5, p = 4,
t = 20.



Figure 2: Scale-space behaviour of coherence-enhancing diffusion (a = 0.001,
o = 0.5, p = 2). (a) Top Left: Original fabric image, Q = (0,256)2. (b) Top
Right: ¢t = 20. (c) Bottom Left: ¢ = 120. (d) Bottom Right: ¢ = 640.
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