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A b s t r a c t .  Texture has found many applications in computer vision. Ex- 
amples where texture analysis methods are being used include: (i) clas- 
sifying images and browsing images based on their texture; (ii) segment- 
ing an input image into regions of homogeneous texture; (iii) extracting 
surface shape information from 'texture gradient'; and (iv) synthesiz- 
ing textures that resemble natural images for various computer graphics 
applications. Image texture is characterized by the gray value or color 
'pattern' in a neighborhood surrounding the pixel. Different methods of 
texture analysis capture this gray-level pattern by extracting textural 
features in a localized input region. Practical texture-based image pro- 
cessing methods define texture in a manner that is most appropriate for 
achieving a given goal and ignore the issue whether the input image really 
contains any texture. This paper describes attempts to learn 'optimal' 
texture discrimination masks using neural networks. 

1 I n t r o d u c t i o n  

Texture characterizes local variations of image color or intensity. Although texture- 
based methods have been widely used in computer vision and graphics, there is 
no single commonly accepted definition of texture. Each texture analysis method 
defines texture  according to its own model. Texture is often described to consist 
of primitives tha t  are arranged according to some placement rule. This definition 
gives rise to structural methods of texture analysis which explicitly a t tempt  to re- 
cover the primitives and the replacement rules. Statistical methods, on the other 
hand, consider texture as a random phenomenon with identifiable local statistics. 
What  is common in all descriptions of texture is that  texture is a neighborhood 
property. Image regions that  are perceived to have a similar texture have a sim- 
ilar pat tern  of color or intensity variation, which may be independent of scale, 
rotation, or illumination. 

The following four areas of texture analysis have been studied most exten- 
sively: texture  segmentation, classification, synthesis, and 'shape from texture '  
[23]. The purpose of texture segmentation is to divide the input image into ho- 
mogeneously textured regions, without knowing a priori  what the textures are. 
Texture  classification methods, on the other hand, a t tempt  to assign a known 
texture  class to each image region. Figure l(a) shows an image which can be 
segmented into five homogeneous textured regions. Closely related to texture 



Fig. 1. Example of textured image: (a) a composition of natural images; (b) segmen- 
tation using Gabor filtering; (c) segmentation using masks from a neural network. 

Fig. 2. Does the image contain texture? (a) an image without texture; (b) a textured 
image with the same texture primitive as in (a). 

classification is the newly emerging area of image database retrieval based on 
texture [5, 19]. Elaborate classification methods are often simplified in image 
database applications to achieve higher processing speed on a large number of 
images. Texture synthesis methods are used in computer graphics to generate 
naturally looking surfaces from a few parameters. Changes in the granularity 
of texture, or in the size of its primitives, give cues about the 3D shape of a 
textured surface. Shape from texture algorithms use these cues to reconstruct 
the 3D shape, often with the help of other information, such as stereopsis or 
shading [17]. 

Texture analysis methods usually assume that the input images really have 
texture. In a practical application, it may not be known if the image has any 
texture and if texture-based methods are appropriate for processing it. Figure 2 
shows two images composed of the same primitive. Texture analysis algorithms 
should not be applied to the first image which contains no texture [14]. 

In this paper we consider the texture segmentation and classification prob- 
lems. Section 2 gives background information on different texture analysis meth- 
ods. Section 3 describes a neural network model to optimize the feature extrac- 
tion and classification tasks. Section 4 presents experimental results, and Section 
5 concludes the paper. 
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Fig. 3. A texture pair with identical second-order statistics: (a) input texture pair; (b) 
its segmentation using masks learned by a neural network. 

2 Texture Analysis  Methods  

Texture is a popular image attribute which has been successfully used in a vari- 
ety of applications (remote sensing, medical imaging, industrial inspection). The 
main goal of texture analysis is to replicate human ability to segment textures. 
Psychological and psychophysical studies have been conducted to understand 
human perception of texture and its limits [i]. Tamura et al. [22] selected six 
perceptual characteristics of texture - coarseness, contrast, directionality, line- 
likeness, regularity, roughness, and proposed algorithms for automatically deter- 
mining numerical values for these features from given input images. The same 
texture features have recently been used in image database retrieval [5]. 

Figure 3 (a) contains a part of synthetic texture images used by Julesz and 
other researchers to establish the limits of our ability to segment textures preat- 
tentively. Julesz [13] conjectured that people cannot segment textures that agree 
in second-order statistics, that is, probabilities of observing gray values at points 
that are a certain displacement from each other. The image in Figure 3 (a) is a 
counterexample to this conjecture. Co-occurrence matrices estimate the second- 
order statistics by counting the frequencies for all pairs of gray values and all 
displacements in the input image. Since the number of co-occurrence matrices is 
very large, they are usually combined in a more compact representation. Haralick 
has proposed several textural features that can be extracted from co-occurrence 
matrices - uniformity of energy, entropy, maximum probability, contrast, inverse 
difference moments, correlation, and probability of run lengths [7]. When a large 
number of textural features are available, feature selection becomes an impor- 
tant issue. Schistad Solberg and Jain [21] have studied feature selection and 
combination for SAR image segmentation. 

Structural texture analysis methods consider texture as a composition of 
primitive elements arranged according to a placement rule. Recovering these 
primitives from natural images is often very difficult, and this severely limits 
the applicability of structural methods. Model-based texture analysis methods 
are used both in computer vision and computer graphics. In texture recognition, 
a model (Markov random field [2], autoregressive [15], fractal [18], or other) is 
fitted to the image data. The estimated model parameters can then be used to 
segment or classify the image, or to synthesize new images. 
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Fig. 4. Multichannel filtering: (a) a general scheem; (b),(c) a Gabor filter in spatial 
and spatial frequency domains, respectively 

The statistical methods described above have the common property that 
processing is divided into two parts: (i) feature extraction and (ii) classifica- 
tion/clustering. Similar two-phase computation can be found in multichannel 
filtering methods (Figure 4 (a)) where features are extracted by convolving the 
input image with a bank of filters. Filters with different band-pass character- 
istics extract different properties of input texture. The resulting feature values 
are often called textural energies. The second stage of the multichannel filtering 
method classifies or clusters pixels based on the extracted features. Statistical 
classification and clustering methods (nearest neighbor classifier or k-means clus- 
tering, for instance) can be used to segment the feature vectors. In Figure 4 (a), 
we have drawn a neural network as a universal classification or clustering device. 

Gabor features have been used to extract textural features corresponding to 
different orientations and frequencies [3, ill .  In the experiments by Jain and 
Farrokhnia [11], 20 even-symmetric Gabor filters were used to form the filter 
bank, tanh(~x 2) nonlinearity was applied to each output pixel, and the results 
were averaged with a Gaussian filter. Figures 4 (b) and (c) show an even sym- 
metric Gabor filter in spatial and spatial frequency domains. The other 19 filters 
can be obtained by rotating and stretching this kernel. The advantages of Ga- 
bor filtering include its multi-scale representation from which invariant features 
could be computed. Complex Gabor filters have been shown to minimize the 
joint localization in spatial and spatial frequency domains [6, 3]. Figure 1 (b) 
shows segmentation of the textured image in Figure 1 (a) using Gabor filters. 
Sixteen Gabor filters (with four orientations and four radial frequencies) were 
used for filtering. The clustering program CLUSTER [10] was used to segment 
the image. The number of clusters was set to five. The classification is quite 
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Fig. 5. Neural network for texture classification: (a) neural network architecture; (b) 
input configuration; shaded pixels are used as inputs to the network for the classification 
of the center pixel. 

accurate except near border areas where the averaged features from different 
textures cause confusion. 

3 N e u r a l  N e t w o r k  C l a s s i f i e r  

A texture  classifier can be obtained by specifying a set of filters and the non- 
linearity in Figure 4 (a). A multi-layer perceptron can then be trained in a 
supervised mode to classify the extracted feature vectors. For an optimal clas- 
sifier, not only the best set of filters has to be found, but  the network has to be 
trained to classify with minimal error. When considering the convolution and 
nonlinearity operations as part  of the neural network (Figure 5), the two tasks 
- filter specification and classifier training - can be performed at the same time. 
The input to the multi-layer perceptron in Figure 5 (a) comes directly from a 
M x M window in the image. In this architecture, the weights in the first layer 
correspond to the mask coefficients of a filter bank in the general multichannel 
filtering scheme. Rather  than use the entire M • M window for input values, we 
have constrained the network's input to the shaded pixels in Figure 5(b). This 
configuration helps to reduce the number of network parameters when the mask 
size M grows larger. 

The neural network is trained with the back propagation method [20]. We 
have used a constant learning rate and momentum term. About one million 
steps were sufficient for convergence. During training the network weights are 
updated in all the layers, including the first one, whereas in F igure  4 (a) only 
the network classifier is trained with fixed filter coefficients. Therefore, training 
the unified neural network involves performing two optimization tasks at the 
same time - finding the best mask coefficients and the best classifier, so that  
the classification error is minimized. The selection of a suitable number of filters 
can also be included in the network training by growing or pruning the neural 
network. We have used the node pruning method by Mao et al. [16]. Since we 
are interested in the selection of masks, we only prune nodes in the first layer. 



Fig. 6. Page layout segmentation: (a) a 1000 x 800 document image scanned at 100 
dpi; (b) segmentation into text, graphics, and background; (c) the post-processed image 
with bounding boxes surrounding different regions. 

4 Experimental  Results 

In this section, we show classification results from several applications. Figure 3 
(b) shows a classification result of segmenting the synthetic image in Figure 3 (a) 
by a two-layer network with only three masks of size 5 • 5. The masks learned in 
a supervised neural network can also be used in unsupervised texture segmenta- 
tion. A two-layer neural network with sixteen 11 x 11 masks was trained on nine 
different textures, including four textures from the image in Figure 1 (a). The 
learned sixteen masks were then separated from the network and used to per- 
form unsupervised segmentation of the five-textured image in Figure 1 (a). The 
input image was convolved with the masks, output pixel values were squared and 
smoothed by a Gaussian function, and the resulting feature vectors were clus- 
tered using the CLUSTER algorithm [10]. Figure l(c) shows the unsupervised 
segmentation result. 

In a document processing system, a scanned page needs to be segmented 
into regions of text, graphics and background, after which character recognition 
or other image processing algorithms are used with the segmented parts. This 
segmentation can be done based on the texture of the different regions [8]. Fig- 
ure 6(a) shows a digitized image of a page containing both text and graphics. 
A three-layer neural network with 20 nodes in each hidden layer was trained to 
classify the input pixels into three classes - background, text, and graphics. The 
result of applying the network with ten masks (pruning ten nodes in the first 
layer did not decrease the performance) to the page is shown in Figure 6(b). Due 
to the small mask sizes (11 x 11 in this experiment), the network is accurate in 
locating the texture boundaries, and finding even such small regions as the page 
numbers. Figure 6(c) shows the image after applying the post-processing steps 
described in [12]. 



Fig. T. Locating barcode: (a) a barcode image; (b) training patterns; (c) segmentation. 

The problem of barcode localization is to find the barcode in an input im- 
age, which may be present in any orientation, position, and scale [9]. In the 
experiments shown in Figure 7, a three-layer network with ten hidden nodes 
was trained to classify input image regions into three categories: (i) barcode, 
(ii) text, and (iii) graphics and uniform gray-value combined. The training pat- 
terns for barcode were taken from a different image, and they were rotated to 
ensure rotational invariance of the classifier. The result of applying the trained 
network to the input image and median filtering the output class labels is shown 
in Figure 7 (c). 

5 C o n c l u s i o n s  

We have shown how a neural network can be trained for supervised as well as 
unsupervised texture segmentation. Practical problems, such as barcode local- 
ization and page layout segmentation, can be solved more efficiently with specif- 
ically designed masks than with a general filter set. The use of neural network 
makes the mask selection automatic. For a new problem, instead of manually 
choosing a system and testing its performance, one can simply train a neural 
network (or several of them) on known images. The neural network approach is 
particularly suitable in texture classification applications where the input tex- 
tures are known. Compared with general filtering methods, a neural network that 
is optimized for the specific input textures is able to achieve higher classification 
accuracy and processing speed. 
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