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Abs t rac t .  Graphs are a very powerful data structure for many tasks in 
image analysis. If both known models and unknown objects are repre- 
sented by graphs, the detection or recognition problem becomes a prob- 
lem of graph matching. In this paper, we first review different methods 
for graph matching. Then we introduce a new family of exact and error- 
tolerant graph matching algorithms that have a number of interesting 
properties. The algorithms are particularly efficient if there is a large 
number of model graphs to be matched with an unknown input graph. 
Moreover, they allow the incremental updating of a database of known 
models. This property supports the application of graph matching in a 
machine learning context. As an example, we show a 2-D shape recogni- 
tion system based on graph matching that is able to learn new shapes. 

1 I n t r o d u c t i o n  

Graph structures are a powerful and universal tool with applications in various 
subfields of science and engineering. In pattern recognition and image analysis, 
graphs are often used for the representation of structured objects. For example, 
if the problem is to recognize instances of known objects in an image, then often 
models, or prototypes, of the known objects are represented by means of graphs 
and stored in a database. The unkown objects in the input image are extracted by 
means of suitable preprocessing and segmentation algorithms, and represented 
by graphs that  are analogous to the model graphs. Thus the problem of object 
recognition is transformed into a graph matching problem. 

Generally, the term graph matching refers to the process of comparing two 
(or more) graphs with each other. There are several classes of graph matching 
problems. In the graph isomorphism problem, we want to determine if two given 
graphs are isomorphic to each other. An isomorphism is a bijective mapping 
between the nodes of the two graphs such that  the structure of the edges is 
preserved. Informally speaking, two graphs are isomorphic to each other if they 
are structurally identical. In the subgraph isomorphism problem, we are given 
two graphs gl and g2, and want to find out if g2 contains a subgraph that  is 
isomorphic to gl. More generally, a bidirectional subgraph isomorphism between 
gl and g2 means the existence of subgraphs g~ and g~ of gl and g2, respectively, 
such that  g~ and g~ are isomorphic to each other. Finally, in error-tolerant graph 
matching, we want to establish a graph, subgraph, or bidirectional subgraph 
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isomorphism that may include some distortions. The admissable distortions are 
often problem dependent. A general distortion model may include, for exam- 
ple, the deletion, insertion, and substitution of both nodes and edges. These 
distortions are also called edit operations. In order to model the fact that cer- 
tain distortions are more frequent than others, one can assign a cost to each 
individual edit operation. Error-tolerant graph matching can be used to calcu- 
late a measure of similarity, or dissimilarity, for a given pair of graphs. This 
measure of similarity is based on the sequence of edit operations that has the 
minimum cost among all possible sequences that transform one of the given 
graphs into the other. Thus, approximate graph matching is a generalization of 
string edit distance computation [25]. For a more comprehensive introduction to 
graph matching see [1, 21]. 

It is still an open question whether the graph isomorphism problem is in 
the complexity class P or NP [7]. In this paper, we will consider only subgraph, 
bidirectional subgraph and error-tolerant graph matching as these problems are 
more important with respect to applications in image analysis. All these prob- 
lems are known to be in NP. This means that all available methods have an 
exponential time complexity. Consequently, graph matching algorithms that are 
guaranteed to yield the correct solution are applicable only if the underlying 
graphs are relatively small. Graph matching for large graphs becomes computa- 
tionally intractable. The only choice to deal with large graphs are approximate 
algorithms. These have usually a computational complexity that is lower than 
exponential, but they are no longer guaranteed to find the correct solution for a 
given problem. 

The best known algorithm for subgraph isomorphism detection is that of 
Ullman [24]. Is is based on tree search with backtracking. In order to speed 
up the search, a particular lookahead technique is used, which allows to detect 
and prune dead ends in the search tree early. Another well-known method for 
subgraph and bidirectional subgraph isomorphism detection is based on maximal 
clique detection in a compatibility graph [10]. The algorithms that have been 
proposed for error-tolerant matching are based on tree search, similar to Ullman's 
algorithm [2, 5, 19, 23]. As the search space in error-tolerant matching is even 
larger than in regular subgraph or bidirectional subgraph isomorphism detection, 
the use of good heuristics together with A*-like search techniqus [18] becomes 
indispensable. 

Ullman's method, the technique based on maximal clique detection, and 
tree search based error-tolerant graph matching are optimal algorithms in the 
sense that they are guaranteed to yield the correct solution to a given prob- 
lem. In the area of approximate algorithms, on the other hand, methods like 
simulated annealing [9], neural networks [6], genetic algorithms [11], continous 
optimization[13] and probabilistic relaxation [12] have been proposed. The idea 
common to all these methods is to iteratively minimize an objective function 
that represents the distance of the current solution to the correct solution. The 
most serious problem of these approaches is that the minimization procedure 
may either not converge or get trapped in a local minimum. 
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Numerous image analysis applications of graph matching have been described 
in the literature. These include character classification [15], schematic diagram 
and 2-D shape analysis [14], 3-D object recognition [8, 26], stereo vision [10], 
dynamic scene analysis [3] and muscle tissue classification [20]. 

2 Efficient subgraph and error-tolerant subgraph 
matching 

In this section, we introduce a new family of optimal algorithms for subgraph 
and error-tolerant subgraph isomorphism detection. These algorithms have been 
developed particularly for the case where an input graph g representing some 
unknown object in an image is to be matched against a database of prototype 
graphs P l , . .  �9 PM in order to find each Pi that is a subgraph of g, or - in the case 
of error-tolerant matching - to find the Pi that is most similar to g. All graphs 
under consideration may have directed edges and any number of symbolic labels 
or numeric attributes attached to their nodes and edges. Given g and p l , . . . ,  PM, 

any of the known algorithms, for example that by Ullman or the method based 
on maximal clique detection, would sequentially match each Pi against g. In 
many applications, however, the prototypes Pi will not be completely dissimilar. 
Instead, there will be graphs sj that occur as subgraphs simultaneously in several 
of the p~'s. These sj's will be matched multiple times against g by any of the 
known algorithms. This clearly leads to some redundancy. 

In the new approach to graph matching described in this paper, the prototype 
graphs P l , . . . , P M  are preprocessed, generating a symbolic data structure, the 
so-called network of prototypes. This network is a compact representation of the 
prototypes P l , . . .  ,PM in the sense that a graph s that occurs as a subgraph 
multiple times within the same or different prototypes is represented only once 
in the network. Consequently, such a graph will be matched once and only once 
with the input graph g. Thus the computational effort will be reduced. For the 
case of error-tolerant subgraph isomorphism detection, the new algorithm can be 
combined with a very efficient lookahead procedure. For a detailed description 
of the new method, see [4, 16, 17]. In this paper, we will only briefly sketch the 
main ideas of the matching algorithm, give an example, and show some results. 

The new algorithm follows the divide-and-conquer paradigm. That is, if we 
want to check if there exists a subgraph isomorphism from one graph G to 
another graph g, we divide G into two disjoint parts, G1 and G2, and check if 
there exist two subgraph isomorphisms, one from G1 to g, and another from 
G2 to g. If there are two such subgraph isomorphisms and, additionally, the 
structure of the edges between G1 and G2 is preserved in g, we can conclude 
that there is a subgraph isomorphism from G to g. This observation can be 
utilized by successively dividing all prototypes p~ - they correspond to G in the 
description above - into smaller subgraphs until we eventually reach the level 
of single nodes. The subgraphs resulting from such a recursive division of the 
prototypes can be arranged in a network, where identical subgraphs resulting 
from different prototypes are represented only once. 
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Fig. 1. Network for the graph models pl and P2 and the instances found by the 
network units after the graph g was processed. 

Two prototype graphs, Pl and P2, and the network that represents the recur- 
sive subdivision of Pl and P2 into smaller graphs are shown in Fig. 1. (Note that 
the network is shown "upside down" with the smallest units, i.e. network nodes 
representing single nodes of the pi's, on top and full prototypes at the bo t tom. )  
A network like the one shown in Fig. 1 is not uniquely defined, in general. How- 
ever, this property doesn't influence the matching performance. The generation 
of a network like the one given in Fig. 1 from a set of prototypes is described in 
more detail in [16]. 

A network like the one shown in Fig. 1 can be used for subgraph isomorphism 
detection in a straightforward manner. Each unit in the network representing 
some subgraph s that occurs once or multiple times in one or several prototypes 
has a procedure attached to it that finds all instances of s in the input graph g. 
Suppose that s has been split into two disjoint parts sl and s2 in the recursive 
prototype subdivision procedure. Then in order to find all instances of s, we 
consider all pairs of instances of sl and s2. Every such disjoint pair for which 
the structure of the edges between Sl and s2 is preserved in g is an instance of s. 
Therefore, in order to find M1 instances of the prototype graphs in the input, we 
start with the individual nodes at the top of the network and determine all their 
instances in g. Then we descend into the network and successively determine 
all instances of the units at the lower network levels. The procedure terminates 
once we have reached units at the bottom of the network, which represent the 
prototypes. 

To illustrate the new graph matching procedure, let's consider an example. 
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Assume we want to determine all occurrences of pl and p2 in the input graph g 
shown in Fig. 1. Note that the small letters denote node labels, while the number 
1, 2 , . . . ,  5 in g are used to uniquely identify the nodes in g. Furthermore, capital 
letters A, B , . . . ,  I are used as identifiers for the network units. Units A through 
E check for instances of single nodes in the input graph, H and I check for the 
prototypes Pl and P2, respectively, and units F and G check for proper subgraphs 
of Pl and p~ consisting of more than one node. In Fig. 1 the instances that were 
found by the network units in the input graph g are printed in round brackets 
below each unit. For example, the nodes 1 and 5 are instances of network unit 
B in g, the pairs (1,2) and (5, 2) are instances of the subgraph represented by 
network unit F, a.s.o. Finally, two instances of Pl and no instance of P2 are 
found. It can be easily verified that this is the correct result. 

It is possible to generalize the algorithm to error-tolerant subgraph isomor- 
phism detection. The static network, an example of which is shown in Fig. 1, as 
well as the algorithm that compiles a network from a set of prototype graphs 
remain the same. But the dynamic procedure that finds instances of network 
units in the input graph has to be extended. In the error-tolerant version, each 
network unit also accepts distorted subgraphs in the input graph g. Together 
with each distorted instance of a network unit, the corresponding edit costs are 
stored. The network nodes are no longer activated strictly from top to bottom, 
i.e. from smaller to larger units, but in a best-first manner where the subgraph 
with the smallest edit cost is considered first. It is possible to integrate a looka- 
head procedure that takes into regard a lower bound estimate of the future cost 
when selecting the unit with the smallest edit cost. This lookahead procedure can 
be implemented such that almost no additional computational overhead arises. 
Thus, we get a very efficient error-tolerant graph matching procedure. For more 
details of this method see [16, 17]. 

In a theoretical computational complexity analysis, the best and the worst 
case behavior of the new family of algorithms were studied and compared to 
Ullman's method for the case of subgraph isomorphism detection, and A*-like 
search techniques for the error-tolerant case [18]. The main result is that for one 
prototype or completely disjoint prototypes - these are the most unfavorable 
scenarios for the network based algorithms - the worst case time complexity of 
both approaches is the same, while in the best case the network-based method 
is better by a factor of P, where P is the number of nodes in one prototype. 
Moreover, for the case of M > 1 prototypes P l , . . . , P M  it can be shown that 
the complexity of the new method is only sublinearly dependent on M if there 
are common parts that are shared by different p~'s. In the limit with all pi's 
being identical, the complexity is no longer dependent on M. By contrast, the 
complexity of any traditional, non-network-based matching procedure is always 
linear in M, no matter how similar or dissimilar the individual pi's are. 

The results of the theoretical complexity analysis could be confirmed in a 
series of practical experiments where network-based subgraph isomorphism de- 
tection was compared to Ullman's algorithm. All graphs in these experiments 
were randomly generated. 
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Fig. 2. Computation time for in- 
creasing the number of vertices and 
the number of prototypes in the 
database (the lower plane denotes 
the network algorithm, while the 
upper plane corresponds to the tra- 
ditional algorithm). 
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Fig. 3. Computation time for in- 
creasing the number of vertices in 
the common subgraph and the size 
of the database (the lower plane at 
the front corner denotes the net= 
work algorithm, while the upper 
plane corresponds to the traditional 
algorithm). 

d s  

In the first experiment shown in Fig. 2 we increased the number of vertices in 
the prototype graphs from 10 to 50 and the number of prototypes in the database 
from t to 20. The labels of the vertices were randomly chosen from a set of 
10 different labels. For each prototype graph a corresponding, isomorphic input 
graph was generated by reordering the adjacency matrix. The lower plane in Fig. 
2 denotes the time of the new algorithm while the Upper plane denotes the time of 
the Ullman's algorithm. Fig. 2 confirms that for a growing number of prototypes 
the time for the new algorithm grows only sublinearly while the traditional 
algorithm is linearly dependent on the size of the database. Additionally, we 
observe that for larger prototype graphs the new algorithm performs remarkably 
better than the traditional algorithm. This can be explained by the fact that 
for larger graphs, the number of identical subgraphs within a single prototype 
and among different prototypes also grows. In this first experiment, no common 
subgraphs of the different prototypes was explicitly defined. However, due to the 
limited number of labels, common subgraphs evolved naturally. 

In the second experiment, the effect of sharing common substructures among 
prototypes was examined more closely. For this purpose, we generated prototype 
graphs consisting of 50 vertices and approximately 60 edges and increased the 
number of prototypes from 1 to 20 and the size of the common subgraph from 
5 to 45 vertices. Except for the common subgraph, all prototypes were disjoint. 
The results of the second experiment are given in Fig 3 where the lower plane at 
the front corner denotes the times of the new algorithm while the upper plane 
represents the traditional algorithm. Clearly, the intersection of the two planes 
indicates that for a small or no common subgraph in the different prototypes the 
performace of the new algorithm is slightly worse than that of the traditional 
algorithm. But for an increasing size of the common subgraph, the time needed 
by the new algorithm decreases and becomes much less than that required by 
the traditional algorithm. 
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Fig. 4. Computation time for an in- 
creasing number of vertices in the pro- 
totype graphs. 

Fig. 5. Computation time for an in- 
creasing number of prototypes in the 
database. 

Finally, in the last two experiments we repeated the first experiment for 
large graphs and a large number of prototypes, respectively. In Fig. 4 we kept 
the number of prototypes at one and steadily increased the size of the prototype 
from 50 to 500 vertices. In Fig. 5 the size of the prototypes was fixed at 50 
vertices and the number of prototypes was increased from 1 to 100. It can be 
conluded that under the selected scenario network-based graph matching clearly 
outperforms the traditional algorithm. Furtermore, even relatively large graphs 
and databases are computationally tractable using the proposed approach. 

3 Recognition and learning of 2-D shapes using 
network-based graph matching 

The graph matching methods introduced in the last section have the property 
that any network of prototypes can be incrementally built and updated. Given 
a network that represents prototypes P l , . . .  ,PM, M > 0, we can successively 
add new prototypes PM+I, . . . ,PM+L to the network without the need to recom- 
pile the whole network from scratch. This property makes network-based graph 
matching very interesting in the context of machine learning. While research on 
machine learning in the general artificial intelligence field has produced inter- 
esting results [22], machine learning in the domain of computer vision is still 
in its infancy. In this section, we consider the problem of symbol recognRion in 
engineering diagrams as an example of an application of network-based error- 
tolerant graph matching. Input data to our system are line drawings that may 
contain both known and unknown symbols. All known symbols are stored in a 
database. The output produced by the system is a list of instances of the known 
symbols found in the diagrams. Furthermore, unknown symbols are identified 
and added to the database. Thus the system is able to learn new symbols and 
continuously update its database. 

Symbols and drawings are represented by attributed relational graphs. The 
line segments of a drawing and their spatial relationships are encoded in the 
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Fig. 6. DIN ISO symbols denoting machine parts. 

graph such that the representation is translation, scale and rotation invariant. 
The process of recognizing a particular symbol in a drawing can then be for- 
mulated as the search for an error tolerant subgraph isomorphism between the 
symbol graph and the drawing graph. As the database of the known symbols 
usually contains more than one element, the recognition task for a given drawing 
consists of finding all symbol graphs for which a subgraph isomorphism to the 
drawing graph with an error less than a certain threshold exists. 

The system starts with a number of a priori known symbols in the database. 
(This number may be zero.) Our proposed learning procedure has to satisfy 
two objectives. First, all symbols that are unknown, i.e. not contained in the 
database, should be added to the database in order to guarantee the complete 
interpretation of the input diagram. Secondly, if the same symbol occurs multiple 
times in the same input diagram (perhaps with some distortions), only one 
representative instance of it should be added to the database. This prevents 
the database from growing unnecessarily large. 

In order to satisfy these two objectives, our learning scheme works in two 
steps. First, after all known symbols have been recognized and removed from 
the input diagram, all line segments that do not belong to a known symbol 
are collected and grouped into possible new symbols. A potential new symbol 
must satisfy certain constraints, such as the presence of a minimal number of 
line segments or at least one closed loop. These constraints are user-defined 
and vary from one application to the other. In the second step, a hierarchical 
clustering procedure is applied to the set of potential new symbols. Initially, the 
graph distance between each pair of potential symbols is calculated by the error 
tolerant graph matching method. Then clusters of symbols are formed depending 
on these distances. Finally, a single symbol is taken as the representative for each 
cluster and incrementally added to the database of known symbols. 

We illustrate the process of recognizing and learning symbols with an exam- 
ple dealing with machine layouts. Notice that our proposed procedure can be 
very easily adapted to other types of engineering drawings. In Fig. 6 the set of 
symbols a priori known to the system is given. Based on these symbols, a first 
interpretation of the drawing in Fig. 7 is attempted. Instances of the symbols 
0, 1 and 3 are detected and removed from the drawing; see Fig. 8. The learning 
scheme is then applied to the remaining symbols in Fig. 8 and the symbols given 
in Fig. 9 are learned and added to the database of symbols. With these new 
symbols it is now possible to completely interpret the drawing in Fig. 7. 

It is obvious from the symbols displayed in Fig. 6 that this application is well 
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Fig. 7. First draw- Fig. 8. First drawing after Fig. 9. Two symbols 
ing, containing known and all known symbols have learned from the 
unknown symbols, been removed, drawing in Fig. 8. 

suited for the new algorithm. There is a large number of common substructures in 
the machine part symbols such that the detection process can be efficiently done 
with the network based algorithm. Furthermore, the new algorithm supports the 
learning scheme by allowing the network structure to be incrementally updated 
with new symbols. 

4 C o n c l u s i o n s  

In this paper we described a new method for exact and error-tolerant subgraph 
isomorphism detection, which is based on a compact network representation 
of model graphs. With several models in the database, the network represents 
identical subgraphs of the different model graphs only once, thus reducing the 
number of computational steps necessary in order to detect exact and error- 
tolerant subgraph isomorphisms from a model graph to an input graph. In ad- 
dition to sharing identical graph structures, the network can be combined with 
a fast lool~head procedure. The efficiency of the new algorithm was analytically 
shown and practically demonstrated in experiments. 

The graph matching algorithm described in this paper is very general and 
powerful. As a matter of fact, there are no problem dependent assumptions 
included in the algorithm. Our distortion model consists of the deletion, insertion 
and substitution of both nodes and edges, which is powerful enough to model any 
type of error that may be introduced into an input graph. Adapting the matching 
algorithm to a particular application requires the solution of two concrete tasks. 
First, a suitable graph representation of the objects in the problem domain has 
to be developed. Secondly, appropriate costs of the graph edit operations have 
to be found. It is anticipated that there are many applications where both tasks 
are not really difficult if a set of sample pattern is given. 

One of the most challenging problems in computer vision and image analysis 
is the automatic learning of object models. The network of prototypes that was 
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proposed in this paper can be incrementally expanded by new model graphs. 
This property makes network-based graph matching applicable in the context 
of machine learning. As an example of object recognition and the automatic 
learning of models based on graph matching, we have described a prototype 
system that  deals with 2-D objects in engineering drawings. In can be concluded 
from this example that a similar approach is possible for a number of other 
machine vision applications. 
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