
Matching

Efficient Attributed Graph Matching and its
Application to Image Analysis

H. Bunke and B.T. Messmer

Institut fiir Informatik und angewandte Mathematik, University of Bern,
Neubrfickstr. 10, CH-3012 Bern~ Switzerland, bunke@iam.unibe.ch

Abs t rac t . Graphs are a very powerful data structure for many tasks in
image analysis. If both known models and unknown objects are repre-
sented by graphs, the detection or recognition problem becomes a prob-
lem of graph matching. In this paper, we first review different methods
for graph matching. Then we introduce a new family of exact and error-
tolerant graph matching algorithms that have a number of interesting
properties. The algorithms are particularly efficient if there is a large
number of model graphs to be matched with an unknown input graph.
Moreover, they allow the incremental updating of a database of known
models. This property supports the application of graph matching in a
machine learning context. As an example, we show a 2-D shape recogni-
tion system based on graph matching that is able to learn new shapes.

1 I n t r o d u c t i o n

Graph structures are a powerful and universal tool with applications in various
subfields of science and engineering. In pattern recognition and image analysis,
graphs are often used for the representation of structured objects. For example,
if the problem is to recognize instances of known objects in an image, then often
models, or prototypes, of the known objects are represented by means of graphs
and stored in a database. The unkown objects in the input image are extracted by
means of suitable preprocessing and segmentation algorithms, and represented
by graphs that are analogous to the model graphs. Thus the problem of object
recognition is transformed into a graph matching problem.

Generally, the term graph matching refers to the process of comparing two
(or more) graphs with each other. There are several classes of graph matching
problems. In the graph isomorphism problem, we want to determine if two given
graphs are isomorphic to each other. An isomorphism is a bijective mapping
between the nodes of the two graphs such that the structure of the edges is
preserved. Informally speaking, two graphs are isomorphic to each other if they
are structurally identical. In the subgraph isomorphism problem, we are given
two graphs gl and g2, and want to find out if g2 contains a subgraph that is
isomorphic to gl. More generally, a bidirectional subgraph isomorphism between
gl and g2 means the existence of subgraphs g~ and g~ of gl and g2, respectively,
such that g~ and g~ are isomorphic to each other. Finally, in error-tolerant graph
matching, we want to establish a graph, subgraph, or bidirectional subgraph

46

isomorphism that may include some distortions. The admissable distortions are
often problem dependent. A general distortion model may include, for exam-
ple, the deletion, insertion, and substitution of both nodes and edges. These
distortions are also called edit operations. In order to model the fact that cer-
tain distortions are more frequent than others, one can assign a cost to each
individual edit operation. Error-tolerant graph matching can be used to calcu-
late a measure of similarity, or dissimilarity, for a given pair of graphs. This
measure of similarity is based on the sequence of edit operations that has the
minimum cost among all possible sequences that transform one of the given
graphs into the other. Thus, approximate graph matching is a generalization of
string edit distance computation [25]. For a more comprehensive introduction to
graph matching see [1, 21].

It is still an open question whether the graph isomorphism problem is in
the complexity class P or NP [7]. In this paper, we will consider only subgraph,
bidirectional subgraph and error-tolerant graph matching as these problems are
more important with respect to applications in image analysis. All these prob-
lems are known to be in NP. This means that all available methods have an
exponential time complexity. Consequently, graph matching algorithms that are
guaranteed to yield the correct solution are applicable only if the underlying
graphs are relatively small. Graph matching for large graphs becomes computa-
tionally intractable. The only choice to deal with large graphs are approximate
algorithms. These have usually a computational complexity that is lower than
exponential, but they are no longer guaranteed to find the correct solution for a
given problem.

The best known algorithm for subgraph isomorphism detection is that of
Ullman [24]. Is is based on tree search with backtracking. In order to speed
up the search, a particular lookahead technique is used, which allows to detect
and prune dead ends in the search tree early. Another well-known method for
subgraph and bidirectional subgraph isomorphism detection is based on maximal
clique detection in a compatibility graph [10]. The algorithms that have been
proposed for error-tolerant matching are based on tree search, similar to Ullman's
algorithm [2, 5, 19, 23]. As the search space in error-tolerant matching is even
larger than in regular subgraph or bidirectional subgraph isomorphism detection,
the use of good heuristics together with A*-like search techniqus [18] becomes
indispensable.

Ullman's method, the technique based on maximal clique detection, and
tree search based error-tolerant graph matching are optimal algorithms in the
sense that they are guaranteed to yield the correct solution to a given prob-
lem. In the area of approximate algorithms, on the other hand, methods like
simulated annealing [9], neural networks [6], genetic algorithms [11], continous
optimization[13] and probabilistic relaxation [12] have been proposed. The idea
common to all these methods is to iteratively minimize an objective function
that represents the distance of the current solution to the correct solution. The
most serious problem of these approaches is that the minimization procedure
may either not converge or get trapped in a local minimum.

47

Numerous image analysis applications of graph matching have been described
in the literature. These include character classification [15], schematic diagram
and 2-D shape analysis [14], 3-D object recognition [8, 26], stereo vision [10],
dynamic scene analysis [3] and muscle tissue classification [20].

2 Efficient subgraph and error-tolerant subgraph
matching

In this section, we introduce a new family of optimal algorithms for subgraph
and error-tolerant subgraph isomorphism detection. These algorithms have been
developed particularly for the case where an input graph g representing some
unknown object in an image is to be matched against a database of prototype
graphs P l , . . �9 PM in order to find each Pi that is a subgraph of g, or - in the case
of error-tolerant matching - to find the Pi that is most similar to g. All graphs
under consideration may have directed edges and any number of symbolic labels
or numeric attributes attached to their nodes and edges. Given g and p l , . . . , PM,

any of the known algorithms, for example that by Ullman or the method based
on maximal clique detection, would sequentially match each Pi against g. In
many applications, however, the prototypes Pi will not be completely dissimilar.
Instead, there will be graphs sj that occur as subgraphs simultaneously in several
of the p~'s. These sj's will be matched multiple times against g by any of the
known algorithms. This clearly leads to some redundancy.

In the new approach to graph matching described in this paper, the prototype
graphs P l , . . . , P M are preprocessed, generating a symbolic data structure, the
so-called network of prototypes. This network is a compact representation of the
prototypes P l , . . . ,PM in the sense that a graph s that occurs as a subgraph
multiple times within the same or different prototypes is represented only once
in the network. Consequently, such a graph will be matched once and only once
with the input graph g. Thus the computational effort will be reduced. For the
case of error-tolerant subgraph isomorphism detection, the new algorithm can be
combined with a very efficient lookahead procedure. For a detailed description
of the new method, see [4, 16, 17]. In this paper, we will only briefly sketch the
main ideas of the matching algorithm, give an example, and show some results.

The new algorithm follows the divide-and-conquer paradigm. That is, if we
want to check if there exists a subgraph isomorphism from one graph G to
another graph g, we divide G into two disjoint parts, G1 and G2, and check if
there exist two subgraph isomorphisms, one from G1 to g, and another from
G2 to g. If there are two such subgraph isomorphisms and, additionally, the
structure of the edges between G1 and G2 is preserved in g, we can conclude
that there is a subgraph isomorphism from G to g. This observation can be
utilized by successively dividing all prototypes p~ - they correspond to G in the
description above - into smaller subgraphs until we eventually reach the level
of single nodes. The subgraphs resulting from such a recursive division of the
prototypes can be arranged in a network, where identical subgraphs resulting
from different prototypes are represented only once.

Pl:

P2:

g: 3

1 4
2

48

(3)

|

(3,1,2,4)
(3,5,2,4)

(5) }~

(1,2)
(5,2)

S (1,~,4)
(5,2,4)

~ H P2

Fig. 1. Network for the graph models pl and P2 and the instances found by the
network units after the graph g was processed.

Two prototype graphs, Pl and P2, and the network that represents the recur-
sive subdivision of Pl and P2 into smaller graphs are shown in Fig. 1. (Note that
the network is shown "upside down" with the smallest units, i.e. network nodes
representing single nodes of the pi's, on top and full prototypes at the bo t tom.)
A network like the one shown in Fig. 1 is not uniquely defined, in general. How-
ever, this property doesn't influence the matching performance. The generation
of a network like the one given in Fig. 1 from a set of prototypes is described in
more detail in [16].

A network like the one shown in Fig. 1 can be used for subgraph isomorphism
detection in a straightforward manner. Each unit in the network representing
some subgraph s that occurs once or multiple times in one or several prototypes
has a procedure attached to it that finds all instances of s in the input graph g.
Suppose that s has been split into two disjoint parts sl and s2 in the recursive
prototype subdivision procedure. Then in order to find all instances of s, we
consider all pairs of instances of sl and s2. Every such disjoint pair for which
the structure of the edges between Sl and s2 is preserved in g is an instance of s.
Therefore, in order to find M1 instances of the prototype graphs in the input, we
start with the individual nodes at the top of the network and determine all their
instances in g. Then we descend into the network and successively determine
all instances of the units at the lower network levels. The procedure terminates
once we have reached units at the bottom of the network, which represent the
prototypes.

To illustrate the new graph matching procedure, let's consider an example.

49

Assume we want to determine all occurrences of pl and p2 in the input graph g
shown in Fig. 1. Note that the small letters denote node labels, while the number
1, 2 , . . . , 5 in g are used to uniquely identify the nodes in g. Furthermore, capital
letters A, B , . . . , I are used as identifiers for the network units. Units A through
E check for instances of single nodes in the input graph, H and I check for the
prototypes Pl and P2, respectively, and units F and G check for proper subgraphs
of Pl and p~ consisting of more than one node. In Fig. 1 the instances that were
found by the network units in the input graph g are printed in round brackets
below each unit. For example, the nodes 1 and 5 are instances of network unit
B in g, the pairs (1,2) and (5, 2) are instances of the subgraph represented by
network unit F, a.s.o. Finally, two instances of Pl and no instance of P2 are
found. It can be easily verified that this is the correct result.

It is possible to generalize the algorithm to error-tolerant subgraph isomor-
phism detection. The static network, an example of which is shown in Fig. 1, as
well as the algorithm that compiles a network from a set of prototype graphs
remain the same. But the dynamic procedure that finds instances of network
units in the input graph has to be extended. In the error-tolerant version, each
network unit also accepts distorted subgraphs in the input graph g. Together
with each distorted instance of a network unit, the corresponding edit costs are
stored. The network nodes are no longer activated strictly from top to bottom,
i.e. from smaller to larger units, but in a best-first manner where the subgraph
with the smallest edit cost is considered first. It is possible to integrate a looka-
head procedure that takes into regard a lower bound estimate of the future cost
when selecting the unit with the smallest edit cost. This lookahead procedure can
be implemented such that almost no additional computational overhead arises.
Thus, we get a very efficient error-tolerant graph matching procedure. For more
details of this method see [16, 17].

In a theoretical computational complexity analysis, the best and the worst
case behavior of the new family of algorithms were studied and compared to
Ullman's method for the case of subgraph isomorphism detection, and A*-like
search techniques for the error-tolerant case [18]. The main result is that for one
prototype or completely disjoint prototypes - these are the most unfavorable
scenarios for the network based algorithms - the worst case time complexity of
both approaches is the same, while in the best case the network-based method
is better by a factor of P, where P is the number of nodes in one prototype.
Moreover, for the case of M > 1 prototypes P l , . . . , P M it can be shown that
the complexity of the new method is only sublinearly dependent on M if there
are common parts that are shared by different p~'s. In the limit with all pi's
being identical, the complexity is no longer dependent on M. By contrast, the
complexity of any traditional, non-network-based matching procedure is always
linear in M, no matter how similar or dissimilar the individual pi's are.

The results of the theoretical complexity analysis could be confirmed in a
series of practical experiments where network-based subgraph isomorphism de-
tection was compared to Ullman's algorithm. All graphs in these experiments
were randomly generated.

50

- 0

Vertices 10-50

Fig. 2. Computation time for in-
creasing the number of vertices and
the number of prototypes in the
database (the lower plane denotes
the network algorithm, while the
upper plane corresponds to the tra-
ditional algorithm).

Seconds

Commoz

Fig. 3. Computation time for in-
creasing the number of vertices in
the common subgraph and the size
of the database (the lower plane at
the front corner denotes the net=
work algorithm, while the upper
plane corresponds to the traditional
algorithm).

d s

In the first experiment shown in Fig. 2 we increased the number of vertices in
the prototype graphs from 10 to 50 and the number of prototypes in the database
from t to 20. The labels of the vertices were randomly chosen from a set of
10 different labels. For each prototype graph a corresponding, isomorphic input
graph was generated by reordering the adjacency matrix. The lower plane in Fig.
2 denotes the time of the new algorithm while the Upper plane denotes the time of
the Ullman's algorithm. Fig. 2 confirms that for a growing number of prototypes
the time for the new algorithm grows only sublinearly while the traditional
algorithm is linearly dependent on the size of the database. Additionally, we
observe that for larger prototype graphs the new algorithm performs remarkably
better than the traditional algorithm. This can be explained by the fact that
for larger graphs, the number of identical subgraphs within a single prototype
and among different prototypes also grows. In this first experiment, no common
subgraphs of the different prototypes was explicitly defined. However, due to the
limited number of labels, common subgraphs evolved naturally.

In the second experiment, the effect of sharing common substructures among
prototypes was examined more closely. For this purpose, we generated prototype
graphs consisting of 50 vertices and approximately 60 edges and increased the
number of prototypes from 1 to 20 and the size of the common subgraph from
5 to 45 vertices. Except for the common subgraph, all prototypes were disjoint.
The results of the second experiment are given in Fig 3 where the lower plane at
the front corner denotes the times of the new algorithm while the upper plane
represents the traditional algorithm. Clearly, the intersection of the two planes
indicates that for a small or no common subgraph in the different prototypes the
performace of the new algorithm is slightly worse than that of the traditional
algorithm. But for an increasing size of the common subgraph, the time needed
by the new algorithm decreases and becomes much less than that required by
the traditional algorithm.

2O.O

. Nevw AlgodIh m

/ /
/ /

, i

/ +

+'x /
/

/ / '

L i i
o.%.o=.~:.: -~:-, 7 , , ,

1~.o ~.o 3~,o 4~.o
Numl~er ol vertqces

51

lO.O

so

- Tmcilioned

J
/

++
+

f
/

/ J r
/

J
J

j /

/
e2~'-- .

~176 ' 2 ; o ' , ; . o d . o ' ~o.o ' , |
Number of rnodGIs

Fig. 4. Computation time for an in-
creasing number of vertices in the pro-
totype graphs.

Fig. 5. Computation time for an in-
creasing number of prototypes in the
database.

Finally, in the last two experiments we repeated the first experiment for
large graphs and a large number of prototypes, respectively. In Fig. 4 we kept
the number of prototypes at one and steadily increased the size of the prototype
from 50 to 500 vertices. In Fig. 5 the size of the prototypes was fixed at 50
vertices and the number of prototypes was increased from 1 to 100. It can be
conluded that under the selected scenario network-based graph matching clearly
outperforms the traditional algorithm. Furtermore, even relatively large graphs
and databases are computationally tractable using the proposed approach.

3 Recognition and learning of 2-D shapes using
network-based graph matching

The graph matching methods introduced in the last section have the property
that any network of prototypes can be incrementally built and updated. Given
a network that represents prototypes P l , . . . ,PM, M > 0, we can successively
add new prototypes PM+I, . . . ,PM+L to the network without the need to recom-
pile the whole network from scratch. This property makes network-based graph
matching very interesting in the context of machine learning. While research on
machine learning in the general artificial intelligence field has produced inter-
esting results [22], machine learning in the domain of computer vision is still
in its infancy. In this section, we consider the problem of symbol recognRion in
engineering diagrams as an example of an application of network-based error-
tolerant graph matching. Input data to our system are line drawings that may
contain both known and unknown symbols. All known symbols are stored in a
database. The output produced by the system is a list of instances of the known
symbols found in the diagrams. Furthermore, unknown symbols are identified
and added to the database. Thus the system is able to learn new symbols and
continuously update its database.

Symbols and drawings are represented by attributed relational graphs. The
line segments of a drawing and their spatial relationships are encoded in the

52

0 1 2 3

, ,]

4 5 6 7

Fig. 6. DIN ISO symbols denoting machine parts.

graph such that the representation is translation, scale and rotation invariant.
The process of recognizing a particular symbol in a drawing can then be for-
mulated as the search for an error tolerant subgraph isomorphism between the
symbol graph and the drawing graph. As the database of the known symbols
usually contains more than one element, the recognition task for a given drawing
consists of finding all symbol graphs for which a subgraph isomorphism to the
drawing graph with an error less than a certain threshold exists.

The system starts with a number of a priori known symbols in the database.
(This number may be zero.) Our proposed learning procedure has to satisfy
two objectives. First, all symbols that are unknown, i.e. not contained in the
database, should be added to the database in order to guarantee the complete
interpretation of the input diagram. Secondly, if the same symbol occurs multiple
times in the same input diagram (perhaps with some distortions), only one
representative instance of it should be added to the database. This prevents
the database from growing unnecessarily large.

In order to satisfy these two objectives, our learning scheme works in two
steps. First, after all known symbols have been recognized and removed from
the input diagram, all line segments that do not belong to a known symbol
are collected and grouped into possible new symbols. A potential new symbol
must satisfy certain constraints, such as the presence of a minimal number of
line segments or at least one closed loop. These constraints are user-defined
and vary from one application to the other. In the second step, a hierarchical
clustering procedure is applied to the set of potential new symbols. Initially, the
graph distance between each pair of potential symbols is calculated by the error
tolerant graph matching method. Then clusters of symbols are formed depending
on these distances. Finally, a single symbol is taken as the representative for each
cluster and incrementally added to the database of known symbols.

We illustrate the process of recognizing and learning symbols with an exam-
ple dealing with machine layouts. Notice that our proposed procedure can be
very easily adapted to other types of engineering drawings. In Fig. 6 the set of
symbols a priori known to the system is given. Based on these symbols, a first
interpretation of the drawing in Fig. 7 is attempted. Instances of the symbols
0, 1 and 3 are detected and removed from the drawing; see Fig. 8. The learning
scheme is then applied to the remaining symbols in Fig. 8 and the symbols given
in Fig. 9 are learned and added to the database of symbols. With these new
symbols it is now possible to completely interpret the drawing in Fig. 7.

It is obvious from the symbols displayed in Fig. 6 that this application is well

53

Fig. 7. First draw- Fig. 8. First drawing after Fig. 9. Two symbols
ing, containing known and all known symbols have learned from the
unknown symbols, been removed, drawing in Fig. 8.

suited for the new algorithm. There is a large number of common substructures in
the machine part symbols such that the detection process can be efficiently done
with the network based algorithm. Furthermore, the new algorithm supports the
learning scheme by allowing the network structure to be incrementally updated
with new symbols.

4 C o n c l u s i o n s

In this paper we described a new method for exact and error-tolerant subgraph
isomorphism detection, which is based on a compact network representation
of model graphs. With several models in the database, the network represents
identical subgraphs of the different model graphs only once, thus reducing the
number of computational steps necessary in order to detect exact and error-
tolerant subgraph isomorphisms from a model graph to an input graph. In ad-
dition to sharing identical graph structures, the network can be combined with
a fast lool~head procedure. The efficiency of the new algorithm was analytically
shown and practically demonstrated in experiments.

The graph matching algorithm described in this paper is very general and
powerful. As a matter of fact, there are no problem dependent assumptions
included in the algorithm. Our distortion model consists of the deletion, insertion
and substitution of both nodes and edges, which is powerful enough to model any
type of error that may be introduced into an input graph. Adapting the matching
algorithm to a particular application requires the solution of two concrete tasks.
First, a suitable graph representation of the objects in the problem domain has
to be developed. Secondly, appropriate costs of the graph edit operations have
to be found. It is anticipated that there are many applications where both tasks
are not really difficult if a set of sample pattern is given.

One of the most challenging problems in computer vision and image analysis
is the automatic learning of object models. The network of prototypes that was

54

proposed in this paper can be incrementally expanded by new model graphs.
This property makes network-based graph matching applicable in the context
of machine learning. As an example of object recognition and the automatic
learning of models based on graph matching, we have described a prototype
system that deals with 2-D objects in engineering drawings. In can be concluded
from this example that a similar approach is possible for a number of other
machine vision applications.

Acknowledgement
This work is part of project No 5003-34285 funded by the Swiss National Science
Foundation under the "Schwerpunktprogramm Informatikforschung".

References

1. H. Bunke. Structural and syntactic pattern recognition. In C.H. Chen, L.F. Pau,
and P. Wang, editors, Handbook of Pattern Recognition and Computer Vision,
pages 163-209. World Scientific Publ. Co. Singapore, 1993.

2. H. Bunke and G. Allerman. Inexact graph matching for structural pattern recog-
nition. Pattern Recognition Letters 1, 4:245-253, 1983.

3. H. Bunke, T. Glauser, and T.-H. Tram Efficient matching of dynamically changing
graphs. In P. Johansen and O.Olsen, editors, Theory and Applications of Image
Analysis, pages 110-124. World Scientific Publ., 1992.

4. H. Bunke and B.T. Messmer. Similarity measures for structured representations.
In M. M. l~ichter, S. Wess, K.-D. Althoff, and F. Maurer, editors, Proceedings
EWCBR-93 Lecture Notes on Arti]ical Intelligence. Springer Verlag, 1994.

5. M.A. Eshera and K.S. Fu. A graph distance measure for image analysis. IEEE
Transactions on Systems, Man, and Cybernetics, 14(3):398-408, May 1984.

6. J. Feng, M. Laumy, and M. Dhome. Inexact matching using neural networks. In
E.S. Gelsema and L.N. Kanal, editors, Pattern Recognition in Practice IV: Mul-
tiple Paradigms, Comparative Studies and Hybrid Systems, pages 177-184. North-
Holland, 1994.

7. M.I~. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman and Company, 1979.

8. E. Gmuer and H. Bunke. 3-D object recognition based on subgraph matching
in polynomial time. In R. Mohr, T. Pavlidis, and A. Sanfeliu, editors, Structural
Pattern Analysis, pages 131-147. World Scientific, 1990.

9. L. Herault, R. Horaud, F. Veillon, and J.J. Niez. Symbolic image matching by
simulated annealing. In Proe. British Machine Vision Conference, pages 319-324.
Oxford, 1990.

10. R. Horaud and T. Skordas. Stereo correspondence through feature grouping and
maximal cliques. IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI, 11(11):1168-1180, 1989.

11. K.A. De Jong and W. M. Spears. Using genetic algorithms to solve NP-complete
problems. In J.D. Schaffer, editor, Genetic Algorithms, pages 124-132. Morgan
Kaufmann, 1989.

12. J. Kittler, W. J. Christmas, and M. Petrou. Probabilistic relaxation for matching
of symbolic structures. In H. Bunke, editor, Advances in Structural and Syntactic
Pattern Recognition, pages 471-480. World Scientific, 1992.

55

13. P. Kuner and B. Ueberreiter. Pattern recognition by graph matching - combina-
torial versus continous optimization. International Journal of Pattern Recognition
and Artificial Intelligence, 2(3):527-542, 1988.

14. S.W. Lee, J.H. Kim, and F.C.A. Groen. Translation- rotation- and scale invariant
recognition of hand-drawn symbols in schematic diagrams. International Journal
of Pattern Recognition and Artificial Intelligence, 4(1):1-15, 1990.

15. S.W. Lu, Y. Ren, and C.Y. Suen. Hierarchical attributed graph representation and
recognition of handwritten Chinese characters. Pattern Recognition, 24:617-632,
1991.

16. B. T. Messmer and H. Bunke. A network based approach to exact and inexact
graph matching. Technical Repgrt IAM-93-021, Universits Bern, September 1993.

17. B.T. Messmer and H. Bunke. A new method for efficient error-correcting subgraph
isomorphism. In D. Dori and A. Bruckstein, editors, Syntactic and Structural Pat-
tern Recognition. World Scientific Publishers, Singapore, to appear in 1995.

18. N.J. Nilsson. Principles of Artificial Intelligence. Tioga, Palo Alto, 1980.
19. A. Sanfeliu and K.S. Fu. A distance measure between attributed relational graphs

for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics,
13:353-363, 1983.

20. A. Sanfeliu, K.S. Fu, and J.M.S. Prewitt. An application of a graph distance
measure to the classification of muscle tissue patterns. Int. Journal of Pattern
Recognition and Artificial Intelligence, 1(1):17-42, 1987.

21. L. Shapiro. Relational matching. In T.Y. Young, editor, Handbook of Pattern
Recognition and Image Processing: Computer Vision, pages 475-496. Academic
Press, 1993.

22. J.W. Shavlick and T.G. Dietterich, editors. Readings in Machine Learning. Mor-
gan Kaufman, San Mateo, 1990.

23. W.H. Tsai and K.S Fu. Error-correcting isomorphisms of attributed relational
graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cyber-
netics, 9:757-768, 1979.

24. J.P~. Ullman. An algorithm for subgraph isomorphism. Journal of the Association
for Computing Machinery, 23(1):31-42, 1976.

25. R.A. Wagner and M.J. Fischer. The string-to-string correction problem. Journal
of the Association for Computing Machinery, 21(1):168-173, 1974.

26. E. K. Wong. Three-dimensional object recognition by attributed graphs. In
H. Bunke and A. Sanfeliu, editors, Syntactic and Structural Pattern Recognition-
Theory and Applications, pages 381-414. World Scientific, 1990.

