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Abstract. This paper deals with the development of a parametric model 
based method to locate and characterize accurately important curved 
features such as ellipses and B-splines based curves. The method uses all 
the grey level information of the pixels contained within a window around 
the feature of interest and produces a complete parametric model that 
best approximates in a mean-square sense the observed grey level image 
intensities within the working area. Promising experimental results have 
been obtained on real data. 

1 I n t r o d u c t i o n  

This paper  presents an approach which is a natural  extension and generalization 
of the work presented in [3]. I t  deals with the localization and characterization 
of curved image features. 

After this introduction, a first section is devoted to the modelization of the 
image features, then the next one will present the evaluation of the parameters  
of our models, the third section will be devoted to the experimental  results and 
the perspectives and the applications of this work will conclude. 

2 C h a r a c t e r i z a t i o n  o f  I m a g e  F e a t u r e s  

The linear models, defined in [3], are very useful for indoor scenes because of their 
polygonal environment.  But for more general processes primitives not limited to 
lines are required, and to this end features delimited by curves will be considered. 

The motivat ion is to have a complete characterization of curved features and 
to propose an approach tha t  allows us to detect  them with a sub-pixellic accu- 
racy. Following the ideas used in the case of the linear features, the considered 
curve features are of the same global type: n regions with constant  intensity de- 
fined by lines or by curve boundary  in the working area. This type of a t t r ibutes  
can be defined by the use of the function of Heaviside U. This function allows 
us to define features with sharp edges, but  in the real images such a t t r ibutes  
don ' t  appear  because of the blur introduced by the acquisition system. Then,  a 
convolution operat ion with some smoothing kernel S is used to characterize this 
blur; these functions are defined as: 

~ l i f x > 0  
V ( x ) =  [ 0 i f e l s ~  I |  = f i R f ~ S ( a ,  f l ) I ( x - ~ , y - f l ) d f l d a  . (1) 
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The considered smoothing kernels are the Gaussian and the exponential filters 
introduced in [1]: 

- -  x 2 

g(x) = - ~  e ~ G(x ,y)  --- g(x)g(y) e(x) = ~ (o~lx I + 1)e -~l~j E ( x , y )  = e(x)e(y) . 

These filters lead us to define the models which will be denoted, in the rest of the 
paper, as Gaussian model and exponential model depending of the smoothing 
kernel used. 

2.1 El l ipse  M o d e l s  

In our context, the simplest way to define ellipses, is to consider their analytical 

*~ ~ 1 = 0, where a and b denotes the lengths of formulation: N l ( x , y )  = ~ + b2 -- 
the ellipse axis. The combined use of this equation and the Heaviside function 
yields to the model of a sharp ellipse: V ( N l ( x , y ) ) . I n  order to consider more 
general ellipses, a frame change is done to take into account the orientation 0 
of its axis, and the position (x0, Y0) of its center. Considering the new coordi- 
nates (x ' ,y ' )  and adding the grey-level intensities inside (A) and outside (B) 
the ellipse, the expression of the model becomes: N[(x,y ,~o,yo,O,a,b ,A,  B) = 
(A - B) U (Nz(x', y')) + B. Convolving this model with one of the smoothing ker- 
nels (Gaussian or exponential), leads to the general model of ellipse, defined by 
eight parameters,  Ml(x ,  y, x0, Y0,0, a, b, a, A, B). 

At this stage, one can note the difference between the approach of Lipson 
et al in [4] which first computes the ellipse parameters,  and then evaluates the 
mean grey-level inside it, while our model intrinsically includes the radiometric 
(grey-level and blur) and geometric informations. 

2.2 C losed  B -S p l i ne  M o d e l s  

In order to deal with a larger class of curved features, another  type of curve 
model based on B-Spline closed curves is defined. 

Within the large set of possible B-spline curves, only the subset of the smooth 
closed curves defined by their degree d and their control vertices of multiplicity 
one are used. The points M of such a B-Spline curve are defined as: 

M(t) = V~Bd(/) + Z V , B ~ + i ( t )  (2) 
/ = 1  i = l  

where t is the parameter  varying along the curve, n the number of control 
vertices Vi,  and B d the basis functions of degree d. 

For our application, the selected curve has a fixed degree and a fixed num- 
ber of control vertices, then its parameters  are only the position of the control 
vertices. This leads to a model with 2n + 3 parameters: the coordinates of the 
control vertices, the grey-level intensities inside and outside the curve (A and 
B), and the blur coefficient (a). 

This representation of curve prohibits the use of the Heaviside function in 
its analytical form, and consequently a close form for the smoothed model can' t  
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be derived. To solve this problem, an algorithmical solution is used. First, a 
synthetic image of the curve is created and it is filled by the use of one clas- 
sic algorithm. At this stage, the model of a B-Spline curve Nb(V1,..., Vn, A, B) 
including the grey-level intensities, but  without  smoothing is defined. The next 
step is to smooth this image, using a discrete convolution. As for the previous 
features, two models of B-Spline curve are considered depending on the smooth- 
ing filter (f) used, Gaussian or exponential: 

M[ (V1,... , Vn,~r,A,B) = Nb(V1,... , Vn, A,B) |  (3) 

Due to the CPU time needed by a direct convolution operation, the recursive 
implementation of the Gaussian and the exponential smoothing described in [2] 
and [1] are used. These approaches lead us to reduce the computation time twice, 
at least, without any lost of precision. 

3 Approximation of the Data  

To characterize the features from the images, using the previous models, an 
iterative method called the model based approach is used. This method supposes 
to have a region of interest around the feature to characterize and a feature type 
selected. But an iterative method needs a first vector to initiate the process, and 
even if the method has been proven to be robust (see the experimental part) ,  
starting with a parameter  vector far from the solution leads to a great CPU time. 
To tackle this problem, a fast method called variance descent approach has been 
developed. This method is designed to fastly produce a close initial parameter  
vector which is a rough solution to the minimization process of the model based 
approach. 

3.1 Variance Descent  Approach 

This method is based on the remark that  the considered curves define two iso- 
intensity regions in the working area. If the parameters  of this feature are known 
and if there is no blur then the sum of the s tandard deviations within each region 
will be null. Therefore this method consist to define an energy criterion Z which 
is the sum of the standard deviations of each region defined by the curve in the 
working area. 

Case  o f  El l ipses .  Considering a first ellipse given inter-actively by the user or 
by a previous process, the energy Z corresponding to this initial ellipse is eval- 
uated. Then, each geometric parameter  of the ellipse is moved from its initial 
position, keeping the others unchanged, and the energy Z is computed. The pa- 
rameter  set corresponding to the minimal energy term computed is retained and 
the process iterates until the energy stops to decrease. The way the parameters 
are moved depends on the considered parameter:  the center of the ellipse is moved 
in the eight directions corresponding to its eight neighbors, the axis lengths and 
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orientation are increased and decreased separately. The initialization vector is 
composed of the founded geometric parameters,  the grey-level intensities are set 
to the means of each region and the blur coefficient is set to 1. 

Case  o f  B -S p l i ne  Curves .  the method used in this case is derived directly 
from the ellipse algorithm: the initial energy term is calculated; each control 
point is moved in the eight directions of its eight neighbors, while keeping the 
other control points invariants; the energy term corresponding to this new set of 
control points is calculated; the set of control points corresponding to the lower 
energy term is retained and the process iterates until the energy term stop to 
decrease. 

As expected due to the number of control points of the curve, this direct 
method,  denoted direct vda approach in the rest of the paper, is computation- 
ally very expensive. Then, a more efficient method in term of CPU have been 
developed: the following steepest gradient method, denoted gradient vda method.  
This approach corresponds to evaluate the initial energy, to compute the gradi- 
ent of the energy function using finite difference, to find the best step in order to 
minimize the energy function in the gradient direction and to i terate until the 
process stop to decrease. 

The initialization parameter  vector is composed of the set of control points 
founded with one of the previous vda approaches and the grey-level intensities 
are set to the mean grey-levels of each region and the blur coefficient is set to 1. 

3.2 M o d e l  B a s e d  A p p r o a c h  

The final step is now to start  from the close initial conditions provided by the 
previous approaches and use the following method to evaluate the solution pa- 
rameters with sub-pixellic precision while taking into account the blur intro- 
duced by the acquisition system. The refinement of the parameters  is done by a 
numericM method which is intended to minimize the error function: 

1 m 
F ( P )  = m ~ (Ma (i, P )  - I(i)) 2 (4) 

i = 1  

where Ma denotes the model of the considered feature, I(i)  the intensity of 
the pixel i, m the number of pixels of the working area, and P the vector of 
parameters  of the considered feature model. The minimization of this function 
which is a sum of squares of non-linear functions is done by the routine lmdi.f of 
the Minpack library which implements the Levenberg-Marquardt algorithm. 

4 E x p e r i m e n t a l  R e s u l t s  

To test  our models and the robustness of our method a lot of experimentations 
on noisy synthetic data  and on real images have been done. But only results on 
real images are presented here. 
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Fig. 1. Application of ellipse models. Fig. 2. Application of B-Spline models. 

Fig. 3. The direct vda method. Fig. 4. The gradient vda method. 

Figure 1 presents the application of the ellipse model. On the left image the 
manual initialization is drawn in black, and the convergence of the vda approach 
in white. In the right image lies the result of the model based approach in white 
initialized by the vda in black. Following the same scheme, Fig. 2 presents the 
application of the B-Spline curve model on the same image. One can note that 
the final results are the same in the two types of model~ but the B-spline based 
approach is two-times faster. 
In the case of B-Spline curves Fig. 3 and 4 show the results of the application 

of the direct vda method and of the gradient vda method respectively. The CPU 
time required for the first approach is about 200 seconds for the cloud image 
(left) and about 650 seconds for the dog image (right). But the gradient vda 
method takes roughly just 30 seconds. However, it is worthwhile to note that 
the initial conditions provided by these two approaches both leads to the same 
result when applying the model based approach. 

The robustness of the method is illustrated by Fig. 5 where the initialization 
(in black in the left image) was given far from the solution. The result of the 
gradient vda method is shown in white of the left image and the result of the 
Gaussian model of B-spline initialized by the previous process corresponds in a 
satisfactory way to the solution (in white in the right image). This illustrates 
the fact that the model of B-Spline has a good convergence on images of smooth 
curves and the use of the vda allows to reduce drastically the CPU time of the 
convergence. 

The application of our B-Spline models on real images is presented in Fig. 
6. The black curves show the results of the vda approaches (Left direct vda and 
right gradient vda) and the white curves show the results of the application of 
the exponential model initialized by the black curves. In term of CPU time the 
direct vda approach is very long, up to ten times longer than the gradient vda 
approach. The CPU time required by the model based approach initialized by 
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Fig. 5. Combination of the gradi- Fig. 6. The vda approaches and the 
ent vda and the Gaussian model of Exponential model of B-Spline (see 
B-Spline. text). 

the direct vda output was 250 sec on the image representing the dog~ and 300 
sec using the output of the gradient vda approach (right Fig. 6). On the image 
representing the cloud, the model based approach has converged in 140 sec with 
the output of the direct vda approach as initial condition (left Fig. 6) and in 150 
sec using the output of the gradient vda approach. 

The direct vda method allows to be slightly faster but globally the sum of 
the CPU times of the two steps is smaller in the case of the use of the gradient 
vda method. Due to the fact that the accuracy of the model based approach is 
the same in the two cases of initialization, one can consider the vda gradient 
approach as the good way to produce a close initialization. 

5 C o n c l u s i o n  

An efficient model based method has been developed to locate and characterize 
precisely curved image features. Two different models have been developed to 
describe efficiently these features and a minimization process has been proposed 
to find the parameters that best approximate locally the observed grey level 
image intensities. Among the directions in which the approach presented in this 
paper can be extended, one can consider the generalization of the models to take 
into account non planar intensity regions, and the application of the estimation 
of the blurring parameter to the problem of recovering depth from focus. 
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