
A VLSI Scalable Processor Array for Motion Estimation

P. Baglietto, M. Maresca, A. Migliaro and M. Migliardi

DIST - University of Genoa
via Opera Pia 13 - 16145 Genova

tel +39-10-353.2983 fax +39-10-353.2948
e-mail prp@dist.unige.it

Abstract - In this paper we describe a parallel architecture for motion
estimation based on the Full Search Block Matching Algorithm. The
distinctive characteristic of the proposed architecture is its suitability
to be implemented both in a high performance dedicated device for
embedded systems (e.g. an ASIC) and on mesh connected SIMD
massively parallel computers. The paper describes the first of these
options in detail.

Keywords: MPEG, Motion Estimation, Processor Array, VLSI.

1 Introduction

Motion estimation is one of the issues in full motion video compression [1][2].
Motion estimation allows to reduce the amount of information needed to represent a
frame in a video sequence by eliminating the temporal redundancy due to the fact
that a frame is usually very similar to the previous ones.

A video coder implements motion estimation by encoding the current frame with
respect to one of the preceding frames in the video sequence taken as a reference
frame. The current frame is represented as a combination of the estimation function
to be applied to the reference frame and of the error resulting from the application of
such a function to the reference frame. The frame resulting from the application of
the estimation function to the reference frame, called estimated frame, should be as
similar as possible to the current frame and the error is the difference between the
estimated frame and the current frame.

The computation of the estimation function is called motion estimation. The
motion estimation in the MPEG and H.261 standards is computed following the
Block Matching Algorithm (BMA) which consists of dividing the current frame into
fixed size blocks of pixels and for each block finding the most similar block of pixels
in the reference frame. As a consequence, each block of the current frame is
estimated by means of a motion vector representing the difference between the
position of the block in the current frame and the position of the corresponding block
in the reference frame. The set of motion vectors associated to the blocks of the
current frame are the estimation function.

128

As the amount of computation requested to identify the motion vectors is large
and the degree of parallelism that can be exploited appears to be high, special
purpose architectures for motion estimation have been proposed and are currently
available [3][4][5].

In this paper we describe a metodology that allows to efficiently implement the
Full Search BMA (FSBMA) in parallel both in a high performance dedicated device
for embedded systems (tipically ASIC) and on mesh connected SIMD massively
parallel computers (e.g. the MasPar MP-1).

The FSBMA for motion estimation presents three levels of potential parallelism:

1. at the frame level the computation of the motion vector of each block is totally
independent from the computation of the motion vectors of the other blocks;

2. at the block level the computation of the error associated to each possible
motion vector is totally independent from the computation of the errors
associated to other possible motion vectors;

3. at the error level all the differences to be computed (see next section for
details) can be carried out in parallel;

The implementation described in this paper, at the ASIC level, exploits the
parallelism at the block level while an implementation on SIMD massively parallel
computers may in addition exploit the parallelism at the frame level to reach higher
performance. Parallelism at the error level cannot be easily exploited, especially in
ASICs, as it requires the use of parallel adders, and gives less performance
improvements compared to the other two types of parallelism. The available ICs for
motion estimation prevalently exploit parallelism at the block level [3][4]. The VLSI
implementation of our architecture follows the same technique and improves the
performance of these ICs.

The paper is organized as follows. In the next section we present the BMA
algorithm and a parailelization technique suitable for implementation both in a
SIMD massively parallle computer and in VLSI. In section 3 we present an abstract
parallel architecture supporting such a parallelisation technique and in section 4 we
describe a VLSI ASIC implementing such an abstract architecture and discuss its
performance. Finally we give some concluding remarks.

2 The parallel algorithm for full block matching

The BMA estimates the amount of motion on a block by block basis. In a tipical
BMA, a frame on NxM pixels is divided into blocks of nxn pixels (in MPEG and
H.261 standard n=16). Each block of pixels of the frame, called reference block, is
compared with a set of blocks of a previous frame, called candidate blocks, and the
candidate block most similar to the reference block is identified. The blocks in the
set are not taken from the whole frame, but, on the contrary, they are taken from a
search area of size (n+2p)x(n+2p) around the position of the reference block, where
p is the maximum displacement (see fig. 1). The motion vector of a reference block

129

corresponds to the displacement of the best matching candidate block.
Among the possible search methods, the Full Search BMA, which searches all

possible candidate blocks in a search area, is the optimal solution and has the lowest
control overhead. This last feature makes the FSMBA easy to be implemented in a
SIMD processor array and highly suitable for VLSI implementation.

Among the possible matching criteria the Mean Absolute Difference (MAD) is
usually preferred for VLSI implemetation because it requires the repetition of simple
operations. The MAD is defined as follows:

n n

MAD,u, v,= ~ ~ ~(i+u, j+v,- R(i, J)l
i=1 j=l

where R(i, j) is a pixel of the reference block and S(i+u, j+v) is the corresponding
pixel of the candidate block displaced of (u, v), which is also the corresponding
motion vector. The motion vector associated with the reference block is the motion
vector corresponding to the least MAD. According to this def'mition of the FBMA, in
each search area there are (2p+l) 2 candidate blocks and the computation of the
MAD of a candidate block requires n 2 subtractions, n 2 absolute value operations and
n 2 accumulations. A total of 3n2x(2p+l)2 operations for each reference block.

In order to be able to perform the motion estimation in real-time, a parallel
architecture is required. The architecture we propose in the paper is based on the
parallelization of the MAD calculation for a single reference block over the (2p+1)2
possible displacements, taking advantage of the fact that the computation of the
MADs corresponding to the (2p+1) 2 displacements are independent from each other.
The same technique can be implemented on a massively parallel computer taking
advantage also of the parallelization over the blocks, as the MADs of all the blocks
can be calculated in parallel.

Reference (previous) Frame

M

Reference Block-.-.~

n I
N

Current Frame

Motion Vector

Figure 1 - Block matching for motion estimation.

Search Area

Candidate Block

130

xeoord

yeoord

distortion

Figure 2 - Processor array architecture.

Rs
In
w
Dut
up

Lon

[i~Q
LI1

3 The processor a r r a y a r c h i t e c t u r e

The parallel architecture based on the technique described in the previous section
is basically a mesh of Processing Elements (PEs) and of Memory Elements (MEs)
which are respectively represented as black and white boxes in figure 2. The PEs
compute the MADs for each possible motion vector and the MEs to store all the
pixels of the search area including those pixels which are not used at a given
processing step.

A single PE is composed of a 8-bit register to store the current pixel of the search
area, a 8-bit adder, a 1-complement unit for absolute value computation, a 16-bit
adder for accumulation of the result in a 16-bit register. At each clock cycle the
three following operations are executed:

�9 the value of a pixel of the reference block is broadcast to all the PEs;
�9 all the PEs simultaneously compute the absolute value of the difference

between the pixel of the reference block received and the pixel of the search
area stored in their 8-bit register; then they accumulate the result;

�9 the mesh of registers (which include the 8-bit registers inside each PE) shift
its content along one of the four directions (NEWS).

131

The pixels of the search area (contained in the 8-bit registers, i.e. the ME and the
8-bits registers of the PEs) shift over the mesh of PEs according a snake shaped path,
while the values of the pixels of the reference block are sequentially broadcast to all
the PEs. At each clock cycle the (2p+1)2 PEs compute the difference between a pixel
of the reference block and all the pixels of the search area onto which the reference
block pixel can be mappedi n parallel. Then they compute the absolute values of the
results and accumulate them in the 16-bit registers.

A total of n2+4p(n-1)-I registers are needed to store the pixels of the search area
in addition to the (2p+l) 2 PEs. A total of n 2 clock cycles are required to compute the
MADs while a few more clock cycles are needed to extract the MADs from the PEs,
to compare them and to initialize the mesh with a new search area.

In addition to the processor and register array, the architecture is composed of:

�9 a Best Match Selection Unit compares all the MADs computed by the PEs and
extracts the minimum among them along with the associated motion vector;

�9 an Input Buffer Unit which allows to overlap the input of the next search area
with the computation of the MADs for the current search area;

�9 an Input Unit which distributes the pixels stored in the Input Buffer according
to the pattern required by the current step of computation.

4 The VLSI implementation

The VLSI implementation of the architecture defined in the previous section has
been realized with the Epoch Silicon Compiler using a standard cell technology. The
characteristics of the chip are:

Technology: 0.5 Ix, 3 metals, 3V clock speed: 50 MHz

Package: PLCC 84 pins block rate 183000 blocks/sec

Core area: 8.8• mm. on chip memory 1062 Bytes

of PEs: 81 # of MOPS: 12150

The chip was designed for the special case of blocks of size n=16 (as
reccomended by the MPEG and H.261 standards) and a search area of size p=4. As a
consequence the ASIC hosts a mesh of 576 elements (81 PEs and 495 MEs) and is
able to deliver the motion vector associated to a reference block every 273 clock
cycles (256 cycles for MADs computation, 16 cycles for best match selection and
initialization with the next search area pixels, 1 cycle for input buffer reset).
However the chip can be used with blocks and search areas of different size.

The chip can operate at a maximum clock frequency of 50 MHz which
corresponds to a maximum block rate of 183 Kblock/sec and to a maximum pixel
rate of 46,9 Mpixels/sec.

The use of this chip as a part of a board, or more in general of an embedded
system, is very flexible as can be seen from the folowing table which lists the number
of chips and the clock speed required to process various video streams at two level of

132

accuracy (video streams at a rate of 30 frame/see., blocks of size n=16, search area of
size p--4 and p=8):

Frame size # of blocks
Search Area
24>424 pixels

640• 36.000 1 AS1C at 10 MHz

800• 57.000 1 ASIC at 16 MHz

1280• 153.600 1 ASIC at 42 MHz

1500:<1024 180.480 1 ASIC at 50 MHz

Search Area
32:<32 pixels

1 ASIC at 30 Mhz with
lime sharing

1 ASIC at 48 Mhz with
time sharing

4 ASIC at 42 Mhz in
parallel

4 ASIC at 50 Mhz in
parallel

5 Concluding Remarks

We have presented a general approach to the problem of the parallelization of the
Full Search Block Matching Algorithm for motion estimation suitable to be adopted
both in SIMD massively parallel computers and in ASIC. In particular we have
discussed an ASIC which can be used in embedded systems to compress video
sequences according the MPEG and H.261 standards since the degree of parallelism
exploited allows to obtain real time performance even at a low clock rate. The paper
demonstrates that the VLSI implementation of the proposed approach is feasible and
convenient using available technology. Finally the proposed approach can be used
both in emebdded systems and in general purpose computers since its performance is
fully scalable and proportional to the size of the parallel system used.

References

[1] Video codec for audio visual services at px 64 kb/s, CCITI" Reccomendation H.261,
1990.

[2] Coding of moving pictures and associated audio, Committee Draft of standard ISO11172:
ISO/MPEG/90/176, Dec. 1991.

[3] P. Ruetz, P. Tong, D. Bailey, D. Luthi and P. Ang, A high performance full-motion video
compression chip set, IEEE Trans. on Circuits and systems for video technology, Vol. 2,
N. 2, June 1992, pp. 111-122.

[4] H. Fujiwara, M. Liou, M. Sun, K. Yang, M. Maruyama, K. Shomura and K. Ohyama, An
all-ASIC implementation of a low bit-rate video codec, IEEE Trans. on Circuits and
systems for video technology, Vol. 2, N. 2, June 1992, pp. 123-134.

[5] C. Hsieh and T. Lin, VLSI architecture for block-matching motion estimation algorithm,
IEEE Trans. on Circuits and systems for video technology, Vol. 2, N. 2, June 1992, pp.
169-175.

