
A Pyramidal Approach to Convex Hull
and Filling Algorithms

M.G. Albanesi, M. Ferretti, L. Zangrandi
Dipartimento di Informatica e Sistemistica, University of Pavia,

Via Abbiategrasso 209, 1-27100 Italy

Abstract In the paper, a class of algorithms for filling concavities in binary
images is presented. The paradigm of computation is a serial, multi-
resolution approach. Among the algorithms which have been implemented,
the most significant one is fully described, while for the others, some hints
are given on the computational complexity. The algorithm for the
approximation of the convex hull has a complexity which is linear in the
image dimensions, provided that the multi-resolution is already available.
The performance of the algorithms has been measured on a broad set of
images and experimental results are reported. Final considerations about
parallelization are also given.

1 Preliminary considerations

In binary images, the problem of describing objects often is formulated in terms of
an efficient characterization of silhouettes, which are identified by their convex
contour. Therefore, in the analysis of the image, the determination of the convex hull
of the shape or the filling of concavities are used in many applications. It is useful,
for the following discussion, to distinguish between two classes of approach; planar
and hierarchical. In the first class, the data structure involved in the computation is
a bi-dimensional array, in which operations may occur locally or globally. On the
contrary, in the hierarchical approach, a multi-resolution version of the input image
is built, and the computation occurring on a generic level of resolution usually
exploits information provided by other levels.
Planar versions of algorithms for the computation of filling have been proposed [2]
[3], in which computation occurs locally and iteratively in a 3 x 3 neighbourhood. A
hierarchical approach [4] applies iteratively the planar algorithm [3] in each level,
followed by a projection operation to pass to the higher resolution level.
The new methods for convex hull and filling here proposed belong to the serial
paradigm of computation, performed in multi-resolution. In particular, three
algorithms have been implemented for the filling task (named Fill1, Fill2 and Fill3,
respectively), and in the following section the one with best performance (Fill3) is
described carefully. For the other two (Fill1 and Fill2), which have been
preliminary in our study of hierarchical approaches, we will give some hints on their
computation complexity.

140

2 Hierarchical approaches to convex hull and filling computation

The class of the three algorithms is characterized by the computation of the OR-
pyramid on the input binary image; the first algorithm (Fill1) applies the classical
planar method [2] on a generic level k (where k is an input parameter of the
procedure). The computation is followed by a set of projections on the lower levels,
until the base is reached. Projection is associated to a refinement operation, which is
necessary to maintain the convexity of the shapes.
We have computed [5] the computational complexity of the algorithm, which is of
the order O(NZ), for an image ofNxN pixels.
This algorithm gives an approximated version of the filling; the error, defined as the
number of pixels beyond the boundary of the filled concavity due to the project

operation, can be evaluated [5] as 2 k+l / , f2 . In order to remove this error, a second
algorithm can be proposed (Fill2), in which the refinement is performed directly on
the basis of the pyramid at the end of the projection phase.
In order to understand the strategy of the third algorithm for filling (Fill3), it is
necessary to introduce a new preliminary algorithm; it aims at finding a convex hull
approximation of an object [6] to be used as a starting point in the strategy for
filling.
Let us consider a digital image ,q defined on N x N pixels. The approximation of the
convex hull is done by considering n straight lines which are tangent to the edges of
the object and which envelope the internal concavity of the object. The
approximation is done under the following assumptions:
1) The image is binary and an object is defined as the set of black pixels which

are contiguous, according to a specified topology (see point two).
2) The algorithm uses the 8-connected topology.
3) The algorithm produces one convex hull approximation for the whole image

(see figure 1); therefore, if more than one object are present, the convex hull
is the one which includes all of them.

4) The algorithm can approximate the convex hull in n directions (n > 3); in the
following, only the 8 directions are considered (0 ~ +45 ~ +90 ~ +135 ~ 180~
This is not a strict limitation, because this choice is meaningful to show the
effectiveness of the algorithm in most of the considered cases (see section 3).

The algorithm for the convex hull (CH1) is formulated in a multi-resolution frame,
and it can be described by the following procedure:
Algorithm CHI :
Step 1: On the given image ,~, an OR-Pyramid is built up to the 2x2 level. It
consists of log 2 N levels (l = 0, 1 log 2 N - 1). Level l = 0 is the original image ,~

level l = log 2 N - 1 is a 2 x 2 pixel image.

Step 2: Starting from level l = log 2 N - 1, n searches are performed, one for each
direction D, (j = 0, +45, +90, +135, 180) of the straight lines which approximate the
convex hull. In our case, 8 searches are performed in a serial way. The search
consists of finding the first straight line at a given direction Dj which crosses the

141

object, namely its tangent at that direction D.. This assumes that the image is
scanned along a direction which is normal to J D.,. When the line is found, the
tangency point is marked as Pj and its coordinate ~x i, yj) are stored. The step ends
when all the 8 lines and the corresponding tangency points are determined.

Figure 1. An example of the convex hull approximation: original image (left) and
result (right). In the result, the concavity has also been filled.

Step 3: Step 2 is repeated at level /-1, but the search of the 8 lines is spatially
restricted by the results of the search at the previous level. In fact, for a given
direction D. the scan of the image at level l-1 starts from the line which passes

J
through the coordinates (2xy 2yj)
Step 4: Step 3 is iterated until level l = 0 is reached. The result in level l = 0 is the
output of the algorithm, namely the coordinates of eight points in the image: each
point is associated to one direction Dj, and the edges of the convex hull are
approximated by the eight straight lines which pass through the resulting points.

The advantage of using a multi-resolution approach is the possibility of restricting
the search at a generic level I by using information (i.e. the coordinates of the
tangency points) provided by the algorithm at level l-1. This gain can be
quantitatively evaluated in the following way: a digital straight line Lj represented
by a couple (Dj, Pj), namely passing through point Pj with direction Dj, computed at
level l has obviously a thickness of one pixel. The search at level l- 1 is restricted to a
set of lines, which results from the project of line Lj. The number of lines of this set
is 2, because of the topology of an OR-pyramid. This means that the search for each
level and each direction requires at most 2 trials. Each trial requires at most

x /2N/2 t computations, because there is one possible computation of a new
coordinate pair for each pixel of the corresponding straight line of the image at
resolution level/. For this reason, the whole complexity of the algorithm can be
evaluated [5] as of O(n N); the cost of convex hull approximation is linear with

respect to the image dimension N. This overcomes the square complexity O(N 2) of
a planar approach. Obviously, in a serial computation one should consider also the
cost of the construction of the OR-pyramid (Step 1). For this reason, the whole
complexity of CH1 is asymptotically O(N2). However, software implementation of

142

the algorithm shows that the execution times are preferable in the hierarchical
approach, if compared to the planar one, due to smaller constants (see section 3).
The algorithm CH1 can be modified into algorithm Fill3 in order to produce the
.filling of the concavities of the object (see figure 1):
Algorithm Fill3:
Step 1: On the given image -q, an OR-Pyramid is built as in Step 1 of CH1. A
second pyramid qJ of the same dimensions is created and it is filled with ones. This
second pyramid will contain the result of the filling in its level l = 0.
Step 2: On a generic level I, starting form l = log 2 N - 1 Step 2 of CH1 is

performed, with a little overhead: it consists of filling with zeros the pyramid W in
every pixel belonging to each straight line which does not cross the object. Before
executing step 3 of CH1, a projection of zeros is performed on level l - 1 in pyramid
q-,.

Step 3: Step 2 is iterated until l = 0. Pyramid W contains the result of filling.

The overhead due to the building of pyramid ~I j , essentially in the projection phase,

raises the algorithm asymptotic complexity to O(N2), comparable to the planar
approach. Experiments show that the execution times are preferable in the
hierarchical approach, even if the gain is not high (see next section for details).

3 Experimental Results

This section analyzes the results of software implementation of the hierarchical
approaches Filll, Fill2 and Fill3. The test has been done on a series of binary
images, realized by thresholding naturalistic gray level images (see figures 2a-2b).

Figure 2. An instance of one of the test:: (a) gray level image "blackbird", (b)
binarized image, (c) the result of filling algorithm Fill3 on image "blackbird".

In the test, CPU times have been measured; the algorithm have been implemented in
C++ on a HP 9000/735 workstation. In figure 3 a plot of the CPU time, expressed in
seconds as a function of the image linear dimension N, is shown for a comparison

143

between algorithms Filll and Fill2, namely the first two hierarchical algorithms.
CPU time has been computed running the algorithms on synthetic images of
different size. Experiments confirm the theoretic evaluation of time complexities:
time growth is quadratic, but the constants for algorithm Fill1 are smaller.
Figure 4 shows a plot of the CPU time, expressed in seconds as a function of the
image linear dimension N, for algorithm Fill3, compared with a corresponding
planar serial version (PL). In this version, the simple search for the eight straight
lines which envelope the concavity is performed at the maximum resolution (N).
Experiments confirm the validity of algorithm Fill3, expecially for higher image
dimensions (N > 800) with a maximum gain of about 30% (N = 1600). Moreover,
algorithm Fill3 is preferable if compared with Fill1 and Fill2: this can be easily
verified by comparing plots of figure 3 and 4. For example, for an image dimension
of 1024 x 1024, Fill1 and Fill2 take over 18 and 20 secs, respectively, while Fill3
takes 3.4 secs, with a maximum gain of 83%.

4 Conclusions: towards parallelization

In the paper, a hierarchical approach to filling concavities in binary images is
introduced. The proposed algorithms are serial, but few consideration can be done
for what concerns parallelization. In a parallel pyramidal machine, the problem of
filling objects can be solved in constant time if an operation of propagation is
available in hardware ([1],[7]).
In a standard SIMD pyramid of logaN +1 levels, the n equations defining the
approximation of the convex hull can be obtained in nlogaN steps. In fact, the
algorithm considers in turn each direction Dj (l_<j_~-a): each processor computes its
distance from the line oriented along Dj and passing through one of the four corners
of the basis. The minimum among such distances is associated to the point of
tangency or direction Dj; such minimum is extracted using the pyramid by well
known algorithm [6] in logaN steps. At this point, the n lines of the approximation
of the convex hull are detected, so the filling can be built in a constant time.

References

1. V. Cantoni, V. Di Gesfi, M. Ferretti, S. Levialdi, R. Negrini, R: Stefanelli: The
Papia System, Journal of VLSI Signal Processing, 2, 1991, pp. 195-217.

2. J. Sklansky, L. Cordelia, S. Levialdi: Parallel detection of concavities in cellular
blobs, IEEE Trans. Computers, Vol. C-25, Feb. 1976, pp. 187-196.

3. G. Borgefors, G. S. di Baja: Filling and analysing concavities of digital patterns
parallelwise, Visual Form - Analysis and Recognition, Plenum ed., 1994, pp. 57-
66.

4. G. Borgefors, G. S. di Baja: Methods for hierarchical analysis of concavities,
Proc. Int. Conf. 1 lth IAPR, Vol C, 1992, pp. 171-175.

5. L. Zangrandi: Strategie gerarchiche di raffinamento in algoritmi per
l'elaborazione di immagini, Thesis, Dipartimento di Informatica e Sistemistica,
Universith di Pavia, 1994.

144

6. R. Klette: On the Approximation of Convex Hulls of finite Grid Point Set, PRL;
vol. 2, 1983, pp. 19-22.

7. M. J. Duff: Propagation in cellular logic arrays, Proc. Workshop on Picture Data
Description and Management, 1980, pp. 259-262

5 0

4 0 ) * i , 4

/

" i / .

20,~ 7"': ~

i i z ! i

0 _ F'l]~2

400 800 J200 1600 2000

Ltnean Image dimension

Figure 3. CPU time, expressed in seconds, as a function o f the image linear
dimension N, for a comparison between algorithms Fill1 and Fill2.

/.
/

................. :. ~.~._,

i i / / / i i

400 BOO 1200 1600

__ F t] 1 3
. Pt.

2000

LineaP ~lage di~ene~on

Figure 4. CPU time, expressed in seconds as a function o f the image linear
dimension N, for algorithm Fill3 and its corresponding planar version (PL).

