
E d g e D e t e c t i o n F i l t e r s B a s e d o n
A r t i f i c i a l N e u r a l N e t w o r k s

Armando J. Pinho 1 and Lufs B. Almeida 2

1 Dep. Electr5nica e Telecomunicaw / INESC
Universidade de Aveiro, 3800 Aveiro, Portugal
(Fax +351-34-370545, Email ap@•

2 INESC / Inst. Superior T~cnico
R. Alves Redol, 9, 1000 Lisboa, Portugal

(Fax +351-1-525843, Email lbaO•

Abst rac t . This paper presents quantitative results on the problem of
edge detection using neural network filters. These results axe compared
with the results provided by the derivative of the Gaussian edge detection
filter. A new figure of merit for edge quality, based on Pratt's figure of
merit, is introduced. The results displayed in this paper give evidence
that neural network edge detection filters can perform better than the
linear "optimal" filters.

1 Introduction

In [1] some qualitative results were presented on the subject of edge enhancement
using artificial neural networks. It was shown that this type of non-linear filters
can provide good localization and low distortion of edges and also a good response
to corners. In this paper we further extend that work and we present a more
systematic and quantitative evaluation of the properties of these filters.

As in [1] the representation adopted for the edge elements is based on the
inter-pixel cracks [2]. This type of edge representation offers an unambiguous
placement of edge elements, an effective region separation and also a potentially
greater capacity to retain information.

The evaluation of the quality of edges is often a subjective operation due to
the lack of knowledge of the correct answer. The work reported here is based on
synthetic images which allow us to access the respective edge maps. Therefore,
in this case we can use an objective measure to evaluate the quality of the edges
generated by the detectors. Pra t t proposed a figure of merit [3] defined as

1 EAc 1
Fp tt

maxIE D, EA+) 1 +

where EID and EAC represent the number of ideal and actual edge points,
is a scaling parameter which penalizes offset edges, and d is the distance from
the actual edge to its correct location. This figure of merit although useful does
not correctly penalize spurious responses, due for example to noise or blur. As
stated in (1) every actual edge is matched with one ideal edge. This means that

160

_ _

Fig. 1. The neural network input values are the first differences of the context pixels. As
can be seen, the eight context pixels (represented as squares) generate nine differences
(the rectangles), which form the input of the neural network used to process the central
crack (the gray rectangle). The horizontal cracks are processed in a similar way, due to
symmetry properties.

if EAC is greater than EID there are some ideal edge elements that have to match
more than one actual edge element. This results in a lack of explicit and effective
accounting of false edges.

To improve Prat t ' s figure of merit we propose the following formulation:

F = 1 1 1
1 + a d 2 • . "~EFA

1 "]-PEID /
(2)

The first term in parentheses is a modified version of Prat t ' s figure of merit,
differing only in the direction of matching. While in (1) each actual edge element
is matched with one ideal edge element, in the modified version each ideal edge
looks for one, and only one, actual edge element. Also, an actual edge element
can, at most, be allocated to an ideal edge element. All un-allocated actual
edges are considered false edge elements and are handled by the second term in
parentheses of (2). EFA denotes the number of false (unmatched) edge elements.

The two parameters included in (2) (a and /3) are responsible for a good
balance between the missing and misplaced edge error types (a) and false edge
error type (fl). For the first one (a) we adopted the value 1/9, suggested by
Pratt . For the second parameter (fl) we used the value 1, which seems to be a
reasonable choice. This means that if the number of false edge elements is equal
to the number of ideal edges the second term in parentheseswill be 0.5.

2 Neural Network Filters for Edge Detect ion

In this work we used the same type of neural network topology as described in
[1], i.e. feed-forward multi-layer perceptrons trained with back-propagation [4],
improved with the acceleration technique proposed by Silva and Almeida [5].

The input of the neural networks is formed by the nine first differences cal-
culated using adjacent pixels, as shown in Fig. 1. This figure also displays the
topology of the eight pixels used as the input context (i.e. the support of the
filter), which was inspired on early work of Hanson and Riseman on image seg-
mentation based on relaxation labeling [6].

161

Fig. 2. a) Synthetic image used to train the neural networks and b) its desired contours.

Fig. 3. Synthetic test images (T1, T2, T3).

The neural networks were trained and tested using synthetic images. On one
hand this provides a better control of the training and test data and also an easy
access to the desired edge maps. On the other hand the variability of the synthetic
data can be considered poor when compared to data Obtained from real images.

Figure 2a shows an image of 256 • 256 pixels, with 8 bits per pixel, com-
posed of disks of diameters randomly drawn from the set {10, 20 , . . . , 60}. The
gray level inside each disk is constant and was obtained randomly from the set
{0, 10, 2 0 , . . . , 250}. Figure 2b depicts the desired contours, obtained by construc-
tion. To test the behavior of the neural network filters we used three synthetic
images which are displayed in Fig. 3.

All images (training and test) were blurred using the 3 • 3 low pass mask

aaa]
aba~
aaaj

with a -- 0.075 and b = 0.4. This provides more realistic data since edges are

162

rarely step like. Also, four levels of additive Gaussian noise were used to degrade
the images: a = 3, (r = 5, a = 10 and a = 20. The objective is to obtain filters
robust to noise (from the training point of view) and also to test their noise
rejection capabilities.

To provide a simple way of referencing the images (training and test) sub-
jected to the different levels of noise we adopt the following notation: nameSnn,
where name is the name of the image (Tr, T1, T2 and T3) and nn refers to the
standard deviation of the noise (03, 05, 10 and 20).

3 S i m u l a t i o n R e s u l t s

Four neural network configurations were tested. We denote them as H0, H2, H4
and H8, which stands for 0, 2, 4, and 8 units in the hidden layer. Note that the
H0 network degenerates into a single layer neural network, which can be viewed
as a linear filter followed by a non-linearity.

All networks were trained using 10000 examples, randomly extracted from the
training image. Each training was performed during 2000 epochs 3, and was re-
peated with three different random initializations. The training process was con-
trolled periodically (every 100 epochs) through the processing and evaluation of
the training image. This procedure can be considered a kind of cross-validation 4,
which is used to ensure that the optimal training point is not missed. The best of
the three neural networks (which resulted from the three random initializations)
was then retrained until the optimal point of the cross-validation curve.

We compared the results obtained with the neural network filters with the
results given by the derivative of the Gaussian filter (for short, we will refer to
it as the Ln filter), which is considered a good approximation of some optimally
derived linear filters for step edges [7] [8]. The Ln filter is defined as

Ln(x) = - ~ e x p -

where af is the scale of the filter. For each image we determined the a i that
provided the largest figure of merit. Also, since we need binary edge maps to
compute the figure of merit, we always used the best possible threshold, both for
the Ln and neural network filters.

Table 1 shows the figure of merit of the test images, after processing by the
neural networks obtained from the various network topology and training data
combinations. In addition, it also shows the results obtained with the Ln filter,
using the best af for each image. Note that the test images were never used during
the process of neural network training, including the cross-validation operation.
Only the training image was used for that purpose.

Figure 4 shows image T3S05 processed by the Ln filter (F = 0.53) and also
processed by the H4 neural network trained with image TrS05 (F = 0.67).

3 One epoch is a complete pass through the training set.
4 Note that only a small part of the training image is actually used for training.

163

Table 1. Comparison of the figures of merit calculated for T1, T2 and T3 after processing
by the Ln filter and the filters resulting from the several combinations of neural network
topology and training sets. The af line displays the scale of the Ln filters that offered
the best result (maximum F) for each image.

II IITiSO31TIS051TiSlOiTlS2OIIT2s031T2s0SlT2Sl01T2S2011T3S031T3S0SIT3Sl01T3S201t
0.4710.4710.44 0.38 o.54 0.5310.5010.42

0.35 0.55 0.65 0.70 0.10 0.20 0.30 0.60 0.05 0.05 0.30 0.55
Neural networks trained with image TrS03

H0 0.44 0.36 0.27 0.19 0.55 0.53 0.41 0.25 0.64 0.61 0.49 0.33
H2 0.49 0.41 0.26 0.17 0.66 0.59 0.38 0.20 0.71 0.65 0.47 0.29
H4 0.63 0.46 0.28 0.19 0.70 0.60 0.40 0.22 0.74 0.68 0.49 0.31
H8 0.63 0.45 0.27 0.19 0.69 0.59 0.38 0.21 0.74 0.67 0.48 0.31

Neural networks trained with image TrS05
H0 0.43 0.38 0.30 0.23 0.47 0.47 0.44 0.31 0.54 0.53 0.50 0.39
H2 0.41 0.40 0.29 0.18 0.64 0.59 0.45 0.22 0.67 0.63 0.51 0.31
H4 0.57 0.49 0.34 0.24 0.64 0.62 0.48 0.29 0.70 0.67 0.56 0.38
H8 0.57 0.50 0.35 0.24 0.66 0.63 0.51 0.35 0.71 0.67 0.57 0.42

Neural networks trained with image TrS10
H0 0.37 0.37 0.32 0.27 0.39 0.39 0.39 0.37 0.42 0.41 0.42 0.41
H2 0.36 0.36 0.33 0.25 0.49 0.48 0.45 0.34 0.51 0.50 0.47 0.40
H4 0.52 0.46 0.37 0.25 0.59 0.58 0.50 0.33 0.63 0.61 0.56 0.42
H8 0.46 0.42 0.36 0.26 0.61 0.59 0.52 0.37 0.65 0.63 0.57 0.44

4 Discuss ion and Conclusions

Analyzing globally the results of Table 1, it is evident that neural network edge
detection filters can outperform linear filters. Some other important observations
can also be drawn from that table.

As a first observation we note the degradation of performance of the neural
networks for images of high level of noise. This should be expected since the
input support of these filters is small (only 4 pixels in the direction orthogonal
to the edge) when compared to the support of at least 7 pixels used for scales
a / _> 0.5. Image T3, which needs smaller scales, is the least affected by this
behavior (compare the T1S20, T2S20 and T3S20 columns of Table 1).

Another important observation is the variation of performance with the choice
of the noise level in the training image. Low noise during training offers a good
performance on low noise images, as would be expected, but at the expense of
poor performance on medium and high noise images. If the noise level of the
training image is increased then we obtain a somewhat lower performance on
low noise images but the medium and high noise images axe improved.

The variation of performance due to the complexity of the neural networks
(i.e., with the number of hidden units) is more or less as expected. I t increases, in
general, with the increase in network complexity. However, we could not explain
why it decreases when we pass from a H0 to a Hn, n ~ 0 topology, for high noise
images (see the T1S20, T2S20 and T3S20 columns of Table 1).

164

: V : ,.; " - - " . ' ',,', . 7

a) b)

Fig. 4. a) Image T3S05 processed by the Ln filter (F = 0.53); b) Image T3S05 processed
by the H4 neural network trained with image TrS05 (F = 0.67).

The study that we present in this paper is focused on small input support
neural networks. Using only these results we are not able to extrapolate about
the behavior of this kind of filters for large input supports. However, we believe
that the improvement in performance that we observed here will also show for
large input supports.

References

1. A. J. Pinho and L. B. Almeida. Some results on edge enhancement with neural
networks. In Proc. of the 1st IEEE Int. Conf. on Image Processing (ICIP'9~),
Austin, Texas, U.S.A., 1994.

2. D. H. Ballard and C. M. Brown. Computer vision. Prentice-Hall, Inc., 1982.
3. W. K. Pratt. Digital image processing. Wiley-Interscience~ 1978.
4. D. E. Rumelhart, J. L. McClelland, and PDP Research Group. Parallel Distrib-

uted Processing - Explorations in the Microstructure of Cognition: Foundations.
Volume 1, MIT Press / Bradford Books, 1986.

5. F. M. Silva and L. B. Almeida. Acceleration techniques for the backpropagation
algorithm. In L. B. Almeida and C. J. Wellekens, eds., Neural Networks, Proc.
EURASIP Workshop, Sesimbra, Portugal, Springer-Verlag, 1990.

6. A. R. Hanson and E. M. Pdseman. Segmentation of natural scenes. In A. R. Hanson
and E. M. Riseman, eds., Computer Vision Systems, pp. 129-163, Academic Press,
1978.

7. J. Canny. A computational approach to edge detection. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 1986, 8, pp. 679-698.

8. S. Sarkar and K. L. Boyer. On optimal infinite impulse response edge detection fil-
ters. IEEE Trans. on Pattern Analysis an Machine Intelligence, 1991, 13, pp. 1154-
1171.

