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Abs t rac t .  The characterisation of tumours from Magnetic Resonance 
(MR) images of the brain is still a challenging task. In this paper we 
present an approach based on a K-Means clustering algorithm com- 
bined with textural feature information as opposed to intrinsic MR para- 
reenters T1,T2 and PD. This is due to the fact that MR parameters may 
exhibit significant alterations in the presence of pathological conditions 
and, therefore lead to incorrect classification. We also address two im- 
portant aspects of clustering: the selection of the optimum number of 
classes (Cluster Validity) and the most effective features (reduction of 
the feature space). 

Index  Terms:  Tissue Charac ter i sa t ion ,  Tex ture  Analysis,  Cluster ing,  F e a -  

t u r e  Reduc t ion ,  Clus ter  V a l i d i t y .  

1 I n t r o d u c t i o n  

Considerable work has been done on the characterisation of normal and abnormM 
human brain tissue based on quantitative Magnetic Resonance Imaging (MRI), 
ie the analysis and interpretation of its intrinsic parameters Proton Density 
(PD) and the relaxation times T1 and T2. It has also been shown that  these 
parameters vary from tissue to tissue [Fos 84; Tay 86] but  may exhibit significant 
alterations in the presence of pathological conditions, not allowing classification 
to be carried out exclusively on PD, T1 and T2 values. 

The approach presented in this paper regards the classification of MRI brain 
tissues as a pattern recognition task [Bez 93], which combines features extracted 
from the original image - textures - with a classification procedure - clustering 
- to devise the classes, or tissues. 

Texture analysis plays an important  role in the segmentation of images which 
do not exhibit a clear boundary between different objects within the image. This 
can be observed in MR images of the brain, especially if oedema or tumour  is 
present. 

The main reason for using clustering, as opposed to supervised classifiers, is 
tha t  the former does not require a training data  set. The imaged physical values 
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in MRI vary from machine to machine due to different magnetic field values. 
Consequently, a training data set which is taken from a particular machine and 
then used to tune the classifier, may give misleading results if the classifier is 
applied to a different set of images - with the same physical characteristics as 
the training data set images - acquired from a different scanner. Moreover, an 
unsupervised classifier may reveal unnoticed structures within the image; also, 
no a priori number of classes needs to be defined. 

We also discuss two important aspects of clustering: cluster validity and 
feature reduction. The former is concerned with the optimum number of clusters 
and the latter with redundant and/or undesirable features in the feature space. 

2 Tex ture  
When the discrimination of classes based on the grey level differences is ineffec- 
tive, textural features can be considered. Texture is a neighbourhood property 
of an image and, therefore, it conveys properties such as fineness, coarseness, 
smoothness, granulation and randomness. Each of these nouns translates into 
some properties of the tonal primitives and the spatial interaction between pixels. 
As defined in [Goo 85], this interaction can be either deterministic or statistical. 

For MR images, the nature of texture is typically statistical. The two methods 
described in this section aim at the characterisation of stochastic properties of 
the spatial distribution of the grey level in the image. 

2.1 Spat ia l  G r e y  Level D e p e n d e n c e  Ma t r ix  ( S G L D M )  

The SGLDM describes the spatial distribution and spatial dependence among 
the grey tones in a local area based on the estimation of second order conditional 
probability density functions f(/,  j, d, t~). Each of these functions are the probabil- 
ity of going from grey level i to grey level j separated by a distance d and aligned 
to the angle 0. The estimated values (which are grey-tone spatial-dependence 
frequencies) can be written in matrix form, the so-called co-occurrence matrices. 

A number of texture features can be computed from the horizontal (0~ 
vertical (90~ left diagonal (45 ~ and right diagonal (135 ~ matrices. Haralick 
[Hat 73] proposed 28 features extracted from 14 equations, but usually only 5 of 
them are used. They are angular second moment(ASM), contrast, correlation, 
inverse difference moment(IDM) and entropy. 

2.2 Grey  Level R u n  Leng th  M e t h o d  ( G L R L )  

The GLRL method is based on the calculation of~the number of grey level runs 
with different lengths. A grey level run is a set of consecutive, co-linear pixels 
having the same grey level values. The length of the run is the number of pixels 
in the run. 

Given an image and a direction "(0% 45 ~ 90 ~ 135~ a GLRL matrix can be 
computed. The GLRL matrix element (i, j) specifies the number of times the 
picture contains a run of length j ,  in the given direction, consisting of points 
having grey level values i, or within the grey level range i. Textural information 
can now be extracted from the GLRL matrices. A set of six functions used in 
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this work can be seen in [Loh 88]. They are second moment with respect to run 
length, first and second moments with respect to grey level, grey level and run 
length non-uniformity and sum of variance. 

3 C l u s t e r i n g  

The objective of cluster analysis is to separate the features into groups so that the 
members of any one group differ from each other as little as possible, according 
to a chosen criterion. The clustering used in the work which underlies this paper 
is based on the K-Means clustering algorithm of Coleman and Andrews [Col 79] 
and comprises three major steps: (a) initialisation, (b) distribution of feature 
vectors among existing clusters, (c) cluster validity. 

(a) Ini t ia l isat ion:  consists of splitting the input data set into two initial 
clusters. The input is given by a set of m feature vectors v = ( f l , f 2 , . - - , f , )  
where m is the number of pixels in the image, n is the feature vector dimension 
and f i ( i  = 1, . . . ,  n) is a texture feature. The two initial clusters are created by 
computing the mean and variance over the m feature vectors. Cluster centres 
are then calculated to be evenly spaced on the diagonal of positive correlation 
of + 1 standard deviation in the hyperspace of the feature set. 

(b) Di s t r ibu t ing  inpu t  among  clusters: Having established the new clus- 
ter centres, the M feature vectors must be assigned to the existing clusters until 
the algorithm converges. This is done by assigning each feature vector to the 
closest cluster centre through the Euclideaa Distance [Fuk 72]. 

This step is repeated until all the cluster centres remain unchanged, ie until 
the algorithm has converged. At this point a new cluster can be devised by se- 
lecting amongst all clusters the feature vector which presents the largest distance 
from its cluster centre. 

(c) C lus te r  Validity: One of the central points in clustering is to define the 
"correct" number of clusters for a given feature space. One possible approach is 
to obtain a measure of clustering quality represented by a parameter/3 derived 
from the within-cluster and the between-cluster scatter matrices [Fuk 72]. 

The within-cluster scatter matrix shows the scatter of samples about the 
cluster means and is expressed by: 

1 g 1 
= - - . t ` ) r  ( 1 )  

= ~i6Sk 

where /zt` is the mean of the kth cluster; Mt` is the number of elements in the 
kth cluster; z~ is an element in the k t h  cluster (the set of such elements given 
by St,) and K is the total number of clusters. 

The between-cluster scatter matrix shows the scatter of clusters in relation 
to the overall input set: 

K 

1 ~-'~(/zt` -/Zo)(/~} -/~o) T (2) 
t ` = l  

where/Zo is the overall mean vector of the input set and/~t` is the mean vector 
of the kth cluster. 
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The/3 value which has produced the best results in this work is given by: 
/35 = trSb- trSw, where tr(.) indicates trace (sum of the diagonal elements of a 
matrix). Note that when the number of clusters is equal to 1, trS~ -- a s (the 
variance of the input data set), trSb = 0 and/35 = 0. When the number of clusters 
equal M (M is the total number of feature vectors), trSw = 0 and trSb = cr 2, 
hence, /35 = 0. This measure is 0 at the limiting points of the clustering and 
greater than 0 in the interval. Therefore, it must convey at least one maximum 
value somewhere in the interval. 

4 Reduction of Feature Space 
Another fundamental problem in clustering is the selection of features which are 
most effective in producing an optimum class or cluster separability. This also 
reduces the computation time while improving the quality of the classification by 
discarding noisy, redundant and less useful features. The Bhattacharyya Distance 
(B-distance) is a measure of how much each feature contributes to the cluster 
separability for a pair of clusters ($1, S~) and is given by 

where n refers to the nth dimension of the feature 
variances of the ith and j th  cluster data in dimension 
respective means. 

space and ~ri and zy are 

n, and ~i and ~y are their 

The greater the differences in variance and mean for each pair, the larger 
the distances will be. The feature rejection criterion would be to retain those 
features which produce large B-distance measures. However, so that feature 
reduction can retain the best features, the input data set should be decorrelated 
(Hottelin Transform [Col 79]). That will rotate the features and orient them in 
the direction of those with higher eigenvector and, therefore, produce higher 
Bhattacharyya Distance. These features should then be retained and clustering 
performed again on the reduced feature set. 

5 Application 
We will now show the method applied to real MRI data. The data for this 
purpose is a pathological coronal Tl-weighted image of the brain and is the 
78th slice of a set of 124 images acquired from a 1.5 TESLA scanner, with 
TR=3500 and TE=5000. Seven textural measures have been selected using a 
7 • 7 overlapping window: four from the GLRL method (first and second soment 
with respect to grey level, grey level non-uniformity and sum of variance) and 
three measures are functions from the SGLDM (contrast, correlation and inverse 
difference moment). 

Figure 1 shows the normalised Bhattacharyya distance for each of the seven 
features. Both graphs show reasonably consistent behaviour of the distance mea- 
sures as the number of clusters varies. Thus, selection based on this measure is a 
consistent procedure. The best of the rotated features (first moment with respect 
to grey level) was higher in Bhattacharyya distance than any other feature. 
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Fig. 1. Bhattacharyya Distances - Feature Reduction 

In order to identify the optimum number of clusters, the procedure is carried 
out with a fixed and excessive number of clusters: 15. Figure 2 plots the resulting 
/3 values against the number of clusters. Plot (a), shows 7 clusters as being the 
optimal value for all features. In plot (b), only the best feature has been selected 
and the optimum number of clusters was 5. 
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/~|g. 2. Evaluation of the best number of clusters 

At this point, the algorithm is again executed. It can be observed from fig- 
ure 3 that the segmentation in (c) - although with misclassified regions - is more 
detailed than in (b). This shows that a reduction in features space has improved 
the classification. Also, it shows that a reduction in the number of clusters - from 
7 in (b) to 5 in (e) - does not worsen the resulting classification. Note that in (d), 
the tumour has been partitioned in two cluster (a darker area, sorrounded by a 
lighter region). Finally, image (e) presents the classification for all seven features 
and 15 clusters. In (f), the isolated cluster corresponding to the extracted tumour 
is shown. Notice that the tumour is entirely extracted (with some misclassified 
regions though), despite the large pre~defined number of clusters. 

6 Discussion and Conclusions 

In this paper we have presented an approach to the extraction of tumours from 
MR images of the brain based on clustering and texture. The advantages of clus- 
tering and texture as features which convey important pathological information 
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(a) Original (b) All Feat. - 7 (c) Best Feat. - 5 

(d) Best Feat.-7 (e) All Feat.- 15 (f) Tumour (e) 

Fig. 3. Examples of tumour extraction by clustering 

- as opposed to overlapping MRI parameters - have been described. The benefits 
of techniques for reducing the dimension of the feature space and estimating the 
appropiate number of clusters have also been discussed. 

Finally, the segmentation procedure can be further improved by careful at- 
tention to window size and shape for feature acquisition, and the capacity to 
recognise the shape of regions in addition to their own texture. 
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