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Abstract--  We present an automated procedure that can identify the 
contours of the brain from single-echo 3-D magnetic resonance (MR) 
images of the head..A first approximation to the desired contours is 
obtained by combining anatomical and MR imaging characteristics of 
the brain. A priori knowledge about the brain and its surrounding 
structures is then used to refine the original contours. This procedure 
has been successfully applied to various data sets from control patients, 
and a number of potential clinical applications are currently being 
considered. 

1 Introduction 

One of the present challenges in medical image processing is the 
segmentation of MR imaging data. Automated and semi-automated MR brain 
segmentation is relevant because of the large amount of data generated, and 
the need for reproducible brain analysis tools. A wide range of approaches has 
been proposed for the detection of various structures in the head [1-3]. 

In this paper  we contribute a segmentation technique operating on 
single-echo 3-D MR images of the head. Being able to isolate the brain not only 
has the great advantage of reducing the amount of data to consider, but  it is 
also a fundamental step to be carried out before any further classification or 
characterisation of brain tissues, in order to reduce  computation time and 
complexity. Previous approaches include the use of different levels of 
histogram thresholding and morphological operations [5], a radial transform 
consisting of intensity profile analysis and the application of a series of 
heuristics [6], and a combination of 3D filters with watershed analysis [4]. The 
present  approach is conceptually similar to that presented in [5], but  it 
involves only one thresholding step and a smaller set of operations. 

Our approach can be divided into three functional stages: Contrast Map 
generation, Contour Mask formation and Contour Mask refinement. These 
will be described in detail in the remainder of this paper. 
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2 MR Data Sets 

Our brain contour  identification procedure  was deve loped  as a 
preliminary step for further identification of brain tissues and for clinical 
applications such as volumetric measurements of the brain. The data sets used 
for these test runs were acquired using a single echo pulse sequence on a 1.5T 
General Electric Signa scanner. They consist of 124 Tl-weighted coronal slices 
of dimension 256x256. Field of view was 240 mm minimised to encompass the 
head. Slice thickness was 1.5 mm and no inter-slice gap was used. 

3 Contrast Map 

In a MR image of the brain, the ring of high intensity seen around the 
boundary  of the head corresponds mainly to adipose tissue (Fig. 1.(a)). By 
looking at horizontal profiles such as that of Fig. 1.(b), it can be seen that the 
adipose tissue is represented by the two largest peaks located on both sides of 
the profile. The width of such peaks is directly proportional to the amount of 
adipose tissue present. Due to the shape of the head, these peaks appear as 
high contrast pulse edges on a nearly semicircular fashion. 
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Fig. 1 
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(a) Brain MR mid-coronal slice and (b) horizontal profile at indicated 
location. 

Based on the magnitude, width and location characteristics of these 
edges, it should be possible to apply a suitable edge detector to automatically 
map out these high contrast points of interest. Such an edge detector should 
be rotationally invariant to take into account the different orientations of the 
edges and have a response proportional to the edge contrast. It should also be 
possible to tune the detector to be sensitive to pulse edges of the desired 
width. 

The Laplacian-of-Gaussian or LoG operator first proposed in [8] has 
these characteristics. It has been widely used in medical image analysis 
applications [3,4]. Although it tends to dislocate edges not complying with 
certain characteristics [9], we don't  need to worry about this, as we are only 
interested in locating pulse-type edges of a certain width. Moreover, our 
concern is not the usual zero crossings detection, but  analysing the actual 
values of the filtered image to extract the desired contrast information. 
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Consider the intensity profile of an ideal pulse edge of width d = b - a 
such as that of Fig. 2.(a), and a LoG operator of size M = 3w, where w is the 
width of the excitatory region of the operator. The expected response obtained 
by performing the 1-D convolution of Eq. 1 and 2 is presented in Eq. 3 and 
graphically shown in Fig. 2.(b) for the case when w < d < M. It has been 
shown [9] that for this case the resulting zero crossings will represent 
accurately the position of pulse edges. 

I x2 
v2c(x) = l - - j -  exp --~.-~j (1) I ( x )=  i f x >  b , x  < a 

ifa< x< b (2) 

a - x  =h- b -x  __aZx 
C(x):h.exp((X_O02 [ exp((2_~2)2) exp((2_~)2 (3) 
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As seen in Eq. 3, the magnitude of the peaks in Fig. 2.(b) is directly 
proportional to the edge contrast h. To detect pulse edges of the desired 
width d, we select a value for the scale constant cr large enough to guarantee 
only one positive peak at the mid-point of the pulse edge, but not so large as 
to dislocate the zero crossings from their expected positions. In other words, 
the magnitude of C(x) at points a and b should be as close to zero as 
possible, and at point d / 2  should have the largest possible magnitude. From 
our experiments, we know that d lies in the range of 10-15 pixels. Considering 
the min imum value of d =  l0  and plotting the magnitude of C(x) at the 
expected zero crossing locations of x = a and x = b (Fig. 2.(c)), and at the 
pulse mid-point  of x = d / 2  (Fig. 2.(d)), we see that a value of or=3 
represents a good compromise. This value of o- is the one used in the present 
paper, where the separable property of the LoG operator has been exploited as 
in [10] to implement  the LoG filtering operation with  considerable 
computational savings. 

-i~ 

x(x )  

O.g 

O.4 

O.2 

-g  

c(x) 

-~o - o 

x 
10 

Fig. 2 

(a) (b) 

eCx}; * , , , x * b  *CI); x .~tZ 

~ ~  0 4  

(c) (d) 
(a) Edge profile with a = 0, b = 10, h = 1, (b) Response of a LoG operator 
with re < d,  M > d,  and Magnitude of C(x) at (c) expected zero crossing 
locations and(d) pulse edge mid-point. 
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By consider ing only the largest positive and negative peaks we 
concentrate on pulse edges having maximum contrast. Using the characteristic 
that pulse edges of interest will be located in a nearly semicircular fashion 
around the brain, and the fact that most  of the brain is contained in the top 
half of a typical coronal slice, we can effectively generate a Contrast Map 
containing only those high contrast points of interest. An example of an 
absolute value LoG filtered image and its corresponding Contrast Map is 
illustrated in Fig. 3.(a) and (b). 

4 C o n t o u r  M a s k  

A Contrast Map shows locations in the original image where there are 
pulse edges of high contrast having a certain spatial configuration with 
respect to the brain. The expected positive peaks from the adipose tissue 
surrounding the brain almost form a closed path. It is not the same situation 
for the negative peaks that should indicate the skin/skul l  boundary  (Fig. 
3.(b)). Because these contours are not closed, they can not be directly used to 
identify the brain boundaries. Hence, two tracking/closing algorithms have 
been designed to obtain a binary Contour Mask that can be used to isolate the 
brain from the rest of the image. 

Fig. 3 (a) Absolute value LoG filtered image, (b) resulting Contrast Map, (c) 
Positive peaks Contour Mask and (d) negative peaks Contour Mask. 

The first algorithm closes the positive and internal negative peaks paths 
for the top half. This p rocedure  is repeated for the negat ive peaks,  
constraining its path to follow the same direction as the closed positive path, 
whenever a connection can not be made using a set of pre-defined templates. 

The second algorithm approximates the brain contour for the bot tom 
half. In this case there is no simple anatomical information to aid the tracking 
procedure.  Therefore we make sure that no part of the brain is left out by 
finding its lowest point  and using this as a landmark for the algorithm. An 
estimate for this lowest point  is found by applying a peak differencing 
method  to locate large bright to dark transitions in a number  of equidistant 
vertical intensity profiles of the bot tom half. An average location is obtained 
from transitions larger than a previously determined threshold, and it is used 
as the desired estimate. Fig. 3.(c) and (d) show the resulting Contour Masks 
for the positive and internal negative peaks of the Contrast Map in Fig. 3.(b). 
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5 Contour Mask Ref inement  

The brain is predominantly located in the superior portion of the head. 
By analysing the histogram of Fig. 4.(a) we can determine suitable thresholds 
for pixels located within the grey and white matter distributions. These 
thresholds are automatically obtained by using a parametric least squares (LS) 
fit of a sum of two Gaussians [11]. A bounded grey-value range limited on 
either side by the grey-value distance at one standard deviation from each 
peak is used to perform the fit. Upper and lower thresholds are calculated at 
two standard deviations away from each estimated mean. An example of the 
resulting LS curve fit is shown on Fig. 4.(b). 
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(a) (b) 
Fig. 4 (a) Grey-value histogram of top half obtained using negative peaks Contour 

Mask and (b) LS fit of sum of two Gaussians. 

This thresholding procedure results in binary threshold masks including 
mostly brain pixels, but also pixels from other structures. Moreover, low- 
intensity pixels in the brain appear as holes in the threshold masks (Fig. 5.(a)). 
Morphological operations that allow us to match information from the shape 
and location of the different structures, with knowledge about anatomy and 
the imaging process are used to solve these problems. Finally, the brain is 
isolated from the remaining structures by selecting the region with the largest 
area. The result of applying this procedure to the binary threshold mask of 
Fig. 5.(a) is shown in Fig. 5.(b). Fig. 5.(e) presents the extracted brain. 

Fig. 5 (a) Binary threshold mask, (b) refined Contour Mask and (c) extracted 
brain. 

6 R e s u l t s  and  d i s c u s s i o n  

A total of 4da ta  sets were used for testing the identification procedure. 
Fig. 6 shows the final result for various slices of the different data sets. 
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Overall ,  the results of these test runs  are encouraging and  similar to those 
p rev ious ly  r epor t ed  b y  other  au thors  [4-6]. The p rocedu re  was  successful  in 
80% of the slices. Most  p rob lems  occurred in anterior  and  poster ior  slices, and  
in slices wi th  large regions of  visible bone  mar row .  Fur ther  i m p r o v e m e n t s  
c o n t e m p l a t e d  inc lude  us ing  the th i rd  d imens ion  b y  p r o p a g a t i n g  the b ra in  
contours  obta ined  f rom the midd le  slices, the use  of a fixed distance to obtain 
the Con tou r  Mask  f rom the pos i t ive  peaks  contour  in order  to discard large 
b o n e  m a r r o w  regions ,  and  a reg ion  combina t i on  s t r a t egy  tha t  cons iders  
addi t ional  informat ion  to select bra in  regions f rom the labelled image  

The  p r o c e d u r e  p r e s e n t e d  has  b e e n  succes s fu l ly  u s e d  as a p re -  
segmenta t ion  step in a MR bra in  segmenta t ion  sys tem [7]. A m o n g  the clinical 
app l i ca t ions  be ing  cons ide red  to fu r the r  eva lua te  ou r  a p p r o a c h  are the 
m e a s u r e m e n t  of total  b ra in  m a s s  a n d  m e a s u r e m e n t  of total  in t racran ia l  
v o l u m e .  Both of these m e a s u r e m e n t s  can be  d i rec t ly  ob t a ined  f r o m  the 
Contour  Masks  presented  in this paper .  

Fig. 6 Final contours of the brain obtained for various slices of the different data 
sets. 
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