
Scene Understanding 



Analysis of Scenes Containing Multiple Non-polyhedral 
3D Objects 

Mauro S. Costa 1 and Linda G. Shapiro 1,2 * 

I Department of Electrical Engineering, FT-10 
Department of Computer Science & Engineering, FR-35 

University of Washington 
Seattle WA 98195 

U.S.A. 

A b s t r a c t .  Recognition of generic three-dimensional objects remains an 
unsolved problem. Scenes containing multiple nonpolyhedral 3D objects 
are particularly challenging. Conventional object models based on straight 
line segments and junctions are not suitable for this task. We have de- 
veloped an appearanced-based 3D object model in which an object is 
represented by the features that can be most rellably detected in a train- 
ing set of real images. For industrial objects with both fiat and curved 
surfaces, holes, and threads, a set of useful features has been derived; and 
a recognition system utilizing these features and their interrelationships 
is being developed. The recognition system uses small relational sub- 
graphs of features to index the database of models and to retrieve the 
appropriate 3D models in a hypothesise-and-test matching algorithm. 
This paper describes the new models, the matching algorithm, and our 
preliminary results. 

1 Introduction 

Recognition of general, non-polyhedral 3D objects remains an active area of 
research in computer  vision. Many feature-based systems have been developed 
and proven useful in the recognition of polyhedral objects. However, due to the 
nature  of the features they utilize, namely points and lines, these systems are 
not suitable for recognizing generic 3D objects. Our philosophy is that  to accom- 
plish this task, it is necessary: to divide the general-object case into classes of 
objects; to utilize the appropriate  sensors for each object class; and to make use 
of the appropr ia te  features that  can be reliably extracted using those sensors. 
We are currently working towards accomplishing this kind of generic recognition 
in scenes containing multiple 3D objects. The following work is most  related or 
impor tan t  to our own. 

* This research was supported by the National Science Foundation under grant number 
IRI-9023977, by the Boeing Commercial Airplane Group, and by the Washington 
Technology Center. 
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The work conceptually closest to ours is that of Gremban and Ikeuchi [6]. 
They introduce a paradigm called appearance-based vision, in which a new step 
in the recognition process is introduced. This step predicts and analyzes the 
appearances of the object models based on the CAD data and on the physical 
sensor models. The prediction can be either analytical or baaed on synthesized 
images of the objects in the model database. The predicted appearance is the set 
of features that are visible under a specific set of viewing conditions. The analysis 
of the predicted appearance allows for the generation of an object recognition 
program, to be used in the on-line phase of the recognition process. This method 
is also known as VAC (Vision Algorithm Compiler) because it takes a set of 
object and sensor models and outputs an executable object recognition program. 
The framework is general in the sense that it does not require any specific type 
of sensor. Their system has successfully recognized simple objects from range 
data in a bin-picking environment. The major drawbacks of this approach are: 
I) analytical prediction is impractical in some domains; and 2) synthetic images 
are not yet realistic enough for general use. 

The PREMIO system of Camps et. al. [3] utilizes artificially rendered images 
to predict object appearances under various environmental conditions (sensor, 
lighting and viewpoint location). The predictions generated by the system did 
not agree weU enough with the real images acquired under the same set of 
conditions. In order to improve PREMIO's predictions, Pulli [10] developed the 
TRIBORS system. He initially attempted to improve the predictions by using 
a better ray tracer, but that was also insufficient. The solution he found was 
to bootstrap the prediction process with synthetic images and to train on real 
images. These new predictions led to better and faster object recognition. 

Despite the fact that it only deals with two-dimensional objects, Bolles and 
Cain's Local-Feature-Focus Method [2] is very relevant to our work. This method 
automatically analyzes the object models and selects the best features for recog- 
nition. Typical features include holes and corners. The basic principle is to locate 
one relatively reliable feature and use it to partially define a coordinate system 
within which a group of other key features is located. If enough of these secondary 
features are located and if they can uniquely identify the focus feature, then the 
hypothesized position and orientation of the object (of which this feature is a 
part) is determined. A verification step that utilizes template matching is then 
performed to prove or disprove the hypothesis. The system has been proven to 
efficiently recognize and locate a large class of partially visible two-dimensional 
objects. 

The work of Murase and Nayar [9] also involves appearance of objects. They 
argue that since the appearance of an object is dependent on its shape, its re- 
flectance properties, its pose in the scene, and the illumination conditions, the 
problem of recognizing objects from brightness images is more a problem of 
appearance matching than of shape matching. They define a compact represen- 
tation of object appearance that is parametrized by pose and illumination only, 
since shape and reflectance are intrinsic (constant) properties. This represen- 
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ration is obtained by acquiring a large set of real images of the objects under 
different lighting and pose configurations, and then compressing the set into an 
eigenspace. A hypersufface in this space represents a particular object. At recog- 
nition time, the image of an object is projected onto a point in the eigenspace 
and the object is recognized based on the hypersurface on which it lies. The ex- 
act location of the point determines the pose of the object. The major drawback 
of this method is that it cannot handle multiple-object scenes. Occlusion also 
adversely affects the performance of the system. 

Though the work of Bergevin and Levine [1] on generic object recognition 
does not make use of the specific model-based paradigm, it is related to ours 
in philosophy. They utilize coarse, qualitative models that represent classes of 
objects. Their work is based on the recognition by component (RBC) theory of 
Biederman. The system is divided into three main subsystems: part segmenta- 
tion, part labeling, and object model matching. The part segmentation algorithm 
is boundary-based and it is independent of the specific shape of the parts mak- 
ing up an object. The part (geon) labeling algorithm makes use of the concept 
of faces to further categorize the geons into generalized solids. At the match- 
ing stage, the labeled geons are used to index into the database of models. A 
measure of similarity is defined in order to discriminate between the models. An 
important observation made by the authors themselves is that it is not clear that 
suitable line drawings may eventually be obtained from real images. All their 
examples and tests have made use of ideal line drawings. 

The evidence-based recognition technique proposed by Jain and Hoffman [8] 
defines an object representation and a recognition scheme based on salient fea- 
tures in range images. The objects are represented in terms of their surfaces, 
boundaries, and edges. The recognition scheme makes use of an evidence rule- 
base, which is a set of evidence conditions and their corresponding weights for 
various models in the database. The similarity between a set of observed im- 
age features and the set of evidence conditions for a given object determines 
whether there is enough evidence that the particular model is in the image. The 
model features must be carefully chosen in order to make possible the distinction 
between object classes. 

2 Appearance-Based Models 

The appearanee-b~sed model of an object is defined as the collection of the fea- 
tures that can be reliably detected from a training set of real images of the 
object. If a well-defined procedure exists through which a computer program 
can extract a given feature, this feature is said to be de~ec~able. Even though 
appearance-based models can be full-object models, we choose to use ~ie~-elass 
models in which an object is represented by a small set of characteristic views, 
each having its own distinct feature set [11]. Since we are currently only dealing 
with intensity images, all of our features are 2D features which may or may not 
directly correspond to a 3D feature, as in the case of limb edges. 
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Let SV, M be a set of training images for view class V of object model M. 
Each image I E SV, M is processed to yield a set of features Fz. A feature/~ 
from image I is equivalent to another feature/~ from image J if they have the 
same type and are judged to have come from the same 3D source. The set of 
features that represent the view class is the set FV, M of equivalence classes of the 
union of the feature sets. The feature types we are investigating for use in our 
system are: coaxial circular arcs (two-cluster, three-cluster, and multi-cluster), 
ellipses, triples of line segments (U-shaped and Z-shaped), junctions (V-junction, 
T-junction, Y-junctlon, and Arrow), parallel line segments (close and far apart). 

A natural extension to the use of features in a recognition task is the use 
of their properties and the relationships among them. In order to incorpo- 
rate that, we define a view-class model by its s~r~ct~rsl descrip~io~t DV, M = 
(Fv, t~, PV, M, RV, M), where Pv, M is a set of the properties of the features, and 
RV, M is a set of the relationships among the features. 

(a) Light source at the IeR of camera (b) Light source at the right of camera 

Fig. I. Example of intensity image pair used by the system. 

Our system works with pairs of intensity images. The two images are taken 
from the same viewpoint, but with two different lightings, one with the light 
source at the left and one with the light source at the right, as illustrated in 
Figure 1. By combining the two images, shadows can be elim~uated and a more 
reliable edge image can be obtained. Figure 2 shows the features that were ex- 
tracted by processing the sample image pair of Figure 1. Edges are detected using 
a Canny operator and the segmentation into lines and circular arcs is obtained 
using the Object Recognition Toolkit (ORT) package [5]. The line features (pair 
of parallel lines and the two V-junctions), the cluster of three circular arcs and 
the ellipse are detected by our system from the more primitive ORT features. 
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(a) Combined edges (b) Straight lines (c) Circular arcs 

0 

(d) Line features (e) Arc cluster (f) Ellipse 

Fig. 2. A set of features extracted ~om the sample pair of Figure 1. 

3 S c e n e  A n a l y s i s  U s i n g  A p p e a r a n c e - B a s e d  M o d e l s  a n d  

R e l a t i o n a l  I n d e x i n g  

We have created a database of appearance-based object models for a set of 
mechanical parts that have both fiat and curved surfaces, holes, and threads. 
The structural descriptions Dr of all the model-views were derived from a 
large set of training pairs of real images. We currently have 280 image pairs of 7 
models. Our scene analysis paradigm makes use of the appearance-based models 
database and of a matching technique we call relg~ional indezing. 

The idea behind relational indexing is to utilize the structural description 
Dr and represent each model-view as a relational graph Gr of the features 
Fr and relations Rv, M. The indexing principle is the same as in the original 
geometric hashing technique [7]. The method has two main phases: preprocess- 
ing and matching. The first one is an off-line phase in which the information 
contained in the entire database of models DB, is converted into a different rep- 
resentation that allows for a rapid retrieval This is done in the following way: 
for each Gr in DB, smaU relational subgraphs of size n are encoded and used 
as indices to access a hash table. The bin corresponding to a particular encoded 
subgraph stores information about which model-views gave rise to that particu- 
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lax index. This is done for all possible subgraphs of size n and for all the models 
in the database. Figure 3 shows a partial graph representing a view class of one 
of our objects (the "hexnut') and all the subgraph indices of size n = 2 for the 
given relational graph. 

MODEL-VIEW 

a: erlck~Gs 
b: is enclosed by 
c: coaxial 
1: coaxials-multi 
2: ellipse 
3: parallel lines 

PARTIAL GRAPH 
nodes: features 
arcs: relations 

b 

SUBGRAPH INDICES 

OF S171~ n=2 

Fig. 3. Sample graph and corresponding subgraph indices of size 2. 

In the second phase (performed at recognition time), a relational graph Gz 
of the input image pair is constructed using the features and relations detected 
in the scene. As in the off-line phase, all the subgraphs of size n are encoded 
and used to index into the hash table. Votes are cast for each model-view class 
stored in the bin indexed by each encoded subgraph. After all possible subgraphs 
have been used to index the table, the model-views with sufficiently high votes 
are taken as possible matching hypotheses. Details on the implementation of the 
hash table and the hashing scheme used can be found in [11]. 

Since some model-views share features and relations, it is expected that some 
of the hypotheses produced will be incorrect. This indicates that a subsequent 
verification phase is essential for the method to be successful. It is important to 
mention that the information stored in the hash table is actually more than just 
the identity of the model-view that gave rise to a particular subgraph index. It 
also contains information about which specific features (and their attributes) are 
part of the subgraph. This information is essential for hypothesis verification. 

4 M u l t i - L e v e l  I n d e x i n g  

In the case of single-object scenes, where there is no occlusion, one expects 
to extract most of the features and relations detected in the model-generation 
training phase. Therefore, the larger the subgraphs used, the more reliable and 
efficient the matching will be. However, in the case of multi-object scenes, only 
unoccluded objects will match to large subgraphs. Typically, in such scenes, 
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features are missing or are only partially detected, and may even become different 
features due to occlusion. Consequently, their original relations are also greatly 
affected. Thus, it is more appropriate to use relational subgraphs of small size (a 
low level of indexing), which will include only a couple of features and relations, 
since these are more immune to the adverse effects occlusion has on both the 
features and the relations. 

Taking the above into consideration, it seems natural to consider a multi- 
level indexing approach to matching. Without any knowledge of the degree of 
occlusion in the scene, the system starts at the largest subgraph level and goes 
down to lower levels as necessary to recognize all objects in the scene. Objects 
that are unoccluded are expected to be recognized at the higher levels of indexing 
while highly occluded objects may only be recognized at the lowest levels. 

5 R e s u l t s  a n d  D i s c u s s i o n  

In order to illustrate our scene analysis methodology, we matched the image of 
a scene containing four objects to the database of model-views. The database 
of models was created by encoding all relational subgraphs of size n = 2 for 
each of the model-views. The test image pair was processed, features and re- 
lations were detected, the relational graph was built, and aU subgraphs of size 
n = 2 were encoded. The relational indexing was then performed and the gen- 
erated hypotheses were normalized and ranked in order of strength. Among the 
five significantly high-ranked hypotheses, four were correct and they are shown 
in Figure 4. These hypothesized models were taken through pose computation 
(affine correspondence of appearance-based model features and scene features) 
without verification. The fifth strong hypothesis (not shown) matched the object 
"hexnut" to an incorrect view of the corresponding object model The subgraph 
indices shown in Figure 3 are among those that were used in the matching pro- 
cess. 

As it can be seen, the method produces promising results. A verification 
procedure is being designed in order to effectively rule out incorrect hypotheses 
that may be generated. Future work includes the development of a Bayesian ap- 
proach to the relational indexing paradigm, along the same lines as our previous 
work on indexing [4], and the exploration of the proposed multi-level indexing 
technique applied to the case of scenes with a large degree of occlusion. 
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Fig. 4. Right image of a test scene overlaid with the appearance-based features of the 
hypothesized model matches. 
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