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Abs t rac t .  In this paper, we consider how machine learning can be used 
to help solve the problem of identifying objects or structures composed 
of parts as they occur in complex scenes. We first discuss an automatic 
conditional rule generation technique (CRG) that is designed to describe 
structures via part attributes and their relations. It does so by generating 
part-indexed decision trees where the branches define the types of pat- 
tern structures necessary to identify and to generalize from the different 
training examples. We then show how the resultant rules can be used for 
region labeling, and we examine grouping and constraint propagation 
techniques that are required for the identification of objects in complex 
s c e n e s .  

1 I n t r o d u c t i o n  

Though the literature abounds with techniques for the recognition of isolated 
2D patterns and 3D objects, the problem of efficiently detecting and recognizing 
such structures in complex scenes has not received as much attention. A number 
of authors have incorporated machine learning techniques to increase the robust- 
ness and efficiency to these methods, i.e. to improve their ability to generalize 
from training or known object data, and to improve their efficiency in searching 
scene data. For example, evidence-based methods have been used recently in 3D 
object recognition [4, 2] where object model views and parts are used to auto- 
matically generate rules (attribute bounds) which evidence different models. In 
such systems, generalizations to new views or to distortions are defined in terms 
of the rule at tr ibute bounds and evidence weights. However, they typically have 
not encoded relational information and have not been adapted to recognition in 
complex scenes. This paper addresses both issues, the generation of rules encod- 
ing relational information and the application of rules to the interpretation of 
complex scenes. 

* Supported by Grant OGP38521 from the Natural Sciences and Engineering Research 
Council of Canada. 
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2 L e a r n i n g  S t r u c t u r a l  D e s c r i p t i o n s :  C R G  

Conditional Rule Generation (CRG) is a technique devised by the authors for 
learning structural descriptions of patterns as trees of hierarchically organized 
rules [1]. The rules are defined as dusters in conditional feature (attribute) spaces 
which correspond to either unary features of pattern parts or binary features of 
relation between parts. The dusters in a given attribute space are generated 
by splittlng attributes (partitioning feature spaces) in such a way that each 
selected splitting operation creates new regions. (defining rule bounds) which 
contribute better evidence for fewer classes. In our approach, such rules are 
generated conditionally through controlled decision tree expansion and a duster 
refinement procedure. 

More formally, each pattern sample (a 2D pattern or a view of a 3D object) is 
composed of a number of parts (pattern components). Each part ;,~, r = 1 , . . . ,  N 
is described by a set of unary features u(p~), and pairs of parts (p~, p0) belonging 
to the same sample (but not necessarily all possible pairs) are described by a 
set of binary features b(p~,p,). Below, S(p~) denotes the sample to which a 
part p~ belongs to and Hi refers to the information, or duster entropy statistic 
Hi = - ~ j  qij In q~j where qij defines the probability of dements of duster i 
belonging to class j. We first construct the initial unary feature space for all parts 
over all samples and classes g = {u(p~), r = 1, .., N} and partition this feature 
space into clusters gi. Clusters that are unique with respect to class membership 
(with entropy Hi = 0) provide a simple classification rule for some patterns. 
Each non-unique (unresolved) duster Ui is further analyzed with respect to 
binary features by constructing the (conditional) binary feature space UB~ = 
{b(p~,p,) I u(pr) 6 Ui and S(pr) = S(ps)}. This feature space is partitioned 
with respect to binary features into dusters UB~j. Again, dusters that are unique 
with respect to class membership provide classification rules for some objects. 
Each non-unique cluster UBij is then analyzed with respect to unary features 
of the second part and the resulting feature space UBU~j = {u(p,) I b(P, ,P,)  e 
UB~j} is clustered into dusters UBU~j~. 

Uniqueness of pattern classification rules can be achieved either by repeated 
conditional clustering involving additional pattern parts or through duster re- 
finement. Refinement of a cluster C is achieved by finding the feature dimension 
F and the feature threshold T that minimizes the partition entropy Hp(T): 

Hp(T) = niH(Pi) + n2H(P2) �9 (i) 

where P1 and P2 denote the two partitions obtained using the threshold T. In 
addition, rather than splitting only leaf dusters, one can split the cluster tree at 
any level, and the duster minimizing (1) is considered optimal for refining the 
cluster tree. 

It should be noted that each feature space in the cluster tree corresponds to 
a standard decision tree [5]. CRG thus produces a tree of decision trees that is 
indexed by sequences of pattern parts, i.e. it is "part-indexed", whereas decision 
trees are purely "attribute-indexed". The dynamic expansion of duster trees 
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constitutes a major advantage of CRG over decision trees: CRG can expand 
trees to the level optimized for a given data set whereas decision trees operate 
on fixed sets of features that have to be chosen a priori (see [1] for more details). 

3 S c e n e  L a b e l i n g  a n d  R e c o g n i t i o n :  S U R E  

Once CRG has generated rules from training samples, the problem of scene la- 
beling reduces to that of instantiating rules in data, grouping labels and checking 
for their compatibilities. Indeed, the very purpose of the CRG method has been 
to "pre-compile" the types and number of parts, their attribute and relational 
attribute states that are necessary and sufficient for recognition. The problem 
remains, however, how to apply such rules to scenes composed of multiple ob- 
jects. Of particular difficulty in such problems is the grouping of features or parts 
for rule evaluation. This problem has been studied by Grimson [3] and others 
in the context of model-based vision. Here, we discuss a solution in the context 
of a rule-based system that makes only weak and general assumptions about 
the structure of scene and objects. Our solution is based on the analysis of the 
relationships within (intra) and between (inter) instantiated rules. The solution 
method, termed SURE (Scene Understanding using Rule Evaluation), is based 
on the sequential evaluation of constraints described below. 

In i t ia l  Rule  Evalua t ion .  The first stage in SURE involves direct activation 
of the CRG rules in a parallel, iterative deepening method. Starting from each 
scene part, all possible sequences of parts, termed snakes, are generated and 
classified using the CRG rules. Expansion of each snake S -- < sl, s2 , . . . ,  s,~ > 
terminates if at least one of the following conditions occurs: 1) the part sequence 
sl, s2 , . . . ,  sn cannot be expanded without creating a cycle, 2) all CRG rules 
instantiated by S are completely resolved, or 3) the binary features b(s,~, s,~+l) 
do not satisfy the features bounds of any CRG rule. If a snake S cannot be 
expanded, the evidence vectors of all rules instantiated by S are averaged to 
obtain the evidence vector E(S) of the snake S. Further, the set ,~p of all snakes 
that start at p is used to obtain an initial evidence vector for part p: 

1 
ECp)-  #(S~) ~ E(S) . (2) 

SE6~ 

where #(S)  denotes the cardinality of the set S. Classification of scene parts 
based on (2) has one major problem. Snakes that are contained completely within 
a single "object" are likely to be classified correctly, but snakes that "cross" two 
ore more objects are likely to be classified in an arbitrary way, and they therefore 
distort the classification in (2). 

Snake P e r m u t a t i o n  Cons t ra in t .  Every CRG rule encodes a set of model 
snakes {M~ = < rn~l,m~2,...,m~,~ >,1 _< k _< K}. When a snake S = < 
s i s2 . . ,  s,~ > instantiates such a rule each image part s~ indexes a set of model 
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parts Ad(sr = {m~i, 1 _< k _< K}. The snake permutation constraint is based 
on the assumption that  rule instantiations are invariant to permutations, i.e. 
if two snakes are permutations of each other, for example $1 = < A, B, C > 
and S~ = < B, A, C >, their parts must index the same set of model parts, 
independent of snakes and independent of instantiated rules. 

Single  Class i f ica t ion  C o n s t r a i n t .  The single classification constraint is based 
on the assumption that  at least one snake among all snakes starting at a scene 
part does not cross an object boundary and that  at least one insta~tiated rule 
indexes the correct model parts. Given this, if there is any scene part that  initi- 
ates a single snake S~ and this snake instantiates a single classification rule then 
the model parts indexed by Si can be used to constrain all snakes that  touch S~. 

These two deterministic constraints are very powerful in terms of eliminating 
inconsistent (crossing) snakes. Their usefulness breaks down, however, for cases 
where the assumptions formulated earlier are not met for a given training and 
test data  set. 

I n t e r - s n a k e  C o m p a t i b i l i t y  Ana lys i s .  The idea of the inter-snake compati- 
bility analysis is as follows. The less compatible the evidence vector of a snake 
Si is with the evidence vectors of all snakes that  Si touches, the more likely 
it is that  Si crosses an object boundary. In this case Si is given a low weight 
in the computation of (2). More formally, let Si = < sil, s i2 , . . . ,  si,~ > and 
Sj = < s j l s j 2 . . ,  sj,~ > be touching snakes, and let ~ j  be the set of common 
parts, i.e. Tq : {p ] 3k p : si~ and 3l p : sjz} with # (Tq)  > 0. The compati- 
bility of S~ and Sj, C(Si,  Sj)  is defined as 

c(s,,s~) _ ~ ~ #(M(plS,) n M(pI%)) 
#(T,s) ~ , . .  #(M(pIS,) u M(plss)) " 

(3) 

The overall compatibility of a snake Si is then defined with respect to the set 
ST of snakes that  touch S~, i.e. ST = {Sj [ ~ ( ~ j )  > 0}: 

1 
~int~ -- #(S~) ~ C(S,, S). 

S68m 

(4) 

Using the inter-snake compatibility, the averaging of the evidence vectors in (2) 
changes to 

~ s ~ 8 ,  ~into,(s) ' (5) 

where S~ is defined as in (2). 
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In t r a - snake  C o m p a t i b i l i t y  Analysis .  The last rule for detecting boundary- 
crossing snakes is based on the following idea. I fa  snake Si = < Sil, si~, . . . ,  si,~ > 
does not cross boundaries of objects then the evidence vectors E(s~l), E(s~2), 
. . . ,  E(s~,~) computed by (5) are likely to be similar, and dissimilarity of the 
evidence vectors suggests that Si may be a "crossing" snake. Similarity of any 
pair of evidence vectors can be measured by their dot product, and similarity of 
all intra-snake evidence vectors is captured by the following measure 

1 n n 
Wintr.(S) -- r~(~-- 1) ~ ~-~ECsi~)" E(sil) �9 (6) 

~--1 I~e~ 
1--1 

With the incorporation of the intra-snake compatibility analysis, the part evi- 
dence vectors are computed using the following iterative (relaxation) scheme: 

E(t+l)(p) = e ~ ~ UJinter(S)~intra(S)E(S ) , (7) 
L ses, j 

where Z is a normalizing factor and �9 a logistic function. Iterative computation 
of (7) is required since recomputation of E(p) affects the intra-snake compatibil- 
ity (6). As indicated above, the four rules presented in this Section are evaluated 
sequentially, and the final part classification is given by the iterative scheme (7). 

4 An  Example  

Due to space limitations, we present a single example involving the recognition 
of 2D patterns in complex scenes. The line configurations are simplified versions 
of patterns found in geomagnetic images that are used to infer the presence of 
different precious metals. The training set consisted of four classes, correspond- 
ing, for example, to the presence of different types of metals, with four training 
patterns each, and each pattern consisted of three lines (see Fig. la). Patterns 
were described by the unary features "length" and "orientation", and the bi- 
nary features "distance of line centers" and "intersection angle". CRG was run 
with maximum rule length set to the UBUBU-form, and it produced 35 rules, 3 
U-rules, 18 UB-rules, 2 UBU-rules, and 12 UBUB-rules. 

The SURE procedure was then run on the montage of patterns shown in Fig. 
lb. Unary features were extracted for all scene parts (lines) and binary features 
were extracted for all neighboring scene parts, i.e. for pairs of lines whose center 
distance did not exceed a given limit. Results of the classification procedure are 
shown in Fig. lc where 35 out of 42 scene parts are classified correctly. 

5 Discuss ion 

In the present paper, we have addressed two major issues. First, given that CRG 
represents structural descriptions in terms of sets of independent pattern snakes, 
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Fig. 1. (a) Four classes of patterns with four training patterns each. Each pattern is 
composed of three lines. (b) Montage of line triples. (c) Result of the pattern classifi- 
cation. Class labels for each line are shown on the left. 

we have studied how interdependence of these snakes can be analyzed. Second, 
and more pertinent to this paper, we have studied how these interdependencies 
can be used to group pattern parts or image regions into groups that  are likely 
to be associated with a single object. 
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