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Abstract. We present a complete object recognition system for 3-D objects using a viewer- 
centered object description, so-called surface normal images (SNIs), recently introduced by 
Park et al. [3]. Based on this representation we utilize a weak active technique (the 
Photometric Stereo Method (PSM)) to extract 3-D features from the objects. We combine 
surface orientations with an approximated line drawing to build 2.5-D models. 
Furthermore we develop an accumulator based matching method, which is adaptive and toler- 
ant regarding the measurement errors. This includes a module to analyze the composition of 
the actual object library, that supports the construction of the index hierarchy. An effective 
technique is proposed that combines the results of the sequential feature matching of the 
rotated 2.5-D scene model set, Both the reconstruction level and the matching level of the 
object recognition system were tested successfully with synthetic and real object data bases. 

1 I n t r o d u c t i o n  

Viewer-centered approaches [2] develop models that represent the information visible from a 
certain view point. The projective relation between the 3-D object and the image is not con- 
sidered during the matching process. 

i 

Fig. 1. Instances of our object recognition system. 

The surface normal image (SNI) model [3] is a new and promising representative of  this 
approach. It groups a set of  views defined as follows: A view is represented as a 2-D line 
drawing. In the SNI set each view is a normal view. A normal view is defined by the align- 
ment of  the surface normal of a base face parallel to the line of sight. A SNI model of a 3-D 
object contains each object face as base face exactly once. In the scene domain a SNI is 
matched with so-called rotated input images (RII). The RIIs are generated from a 2.5-D 
scene model in the same manner as the SNIs. Following these descriptions the demand of  an 
especially adapted matching strategy is obvious. 

2 2 . 5 - D  m o d e l  r e c o n s t r u c t i o n  

For  generating the RIls the first partial derivatives generated from PSM [5] have to be 
transformed to a height map or a geometrical 2.5-D model. This can be done for a large class 
of  diffuse and hybrid reflecting surfaces [4]. We have developed a method, that combines 
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dense gradient information and a line drawing of the object. The method consists of two 
steps. The projected object is taken apart in planar and curved patches. Then these parts are 
fitted together to a 2.5-D surface. First the gradient images .are segmented with region grow- 
ing. Using this kind of segmentation technique planar as well as curved patches can be ex- 
tracted without additional effort. Curved patches are approximated by planar patches. These 
planar patches are attributed as belonging to a curved region. This is necessary for the treat- 
ment of occlusions and the elimination of approximation edges in the recognition part. Since 
region boundaries in the interior of curved patches are determined by the growing process, 
these patches are post-processed with a balancing algorithm. Pixels on region boundaries are 
reclassified, if the average orientation in an adjacent region has a smaller angular deviation 
than the original region. The reclassification process is done iteratively until an equilibrium is 
reached. Subsequently to this process the boundaries are approximated polygonaly. 
Consequently, for the next steps consistent region boundary information is available. 

2.1 Part Assembler 

Now, from the region and boundary data a winged edge model is generated. The model in- 
cludes the vertices, edges, faces and the face orientations from the 2-D structure. This struc- 
ture must be modified, if concave objects with partially occluded boundaries occur. In this 
case, we have to assign more than one depth value to some vertices. To prepare the depth 
calculation, such occluding edges have to be detected. Occluding boundaries are detected by 
using the face orientations. Since an orthogonal projection (denoted by Ol)) is assumed, the 
expected edge orientation depends on the adjacent face orientations ~1 and ~ as follows: 

(x y)r=(q2-q t pt-p2)T=op(~lx~),  with ~l=(pt ql -1) T, n2=(P2 q2 -1) T. 

If this orientation is inconsistent with the line drawing, the edge becomes an occluding edge. 
Vertex splitting is done, if 1. both adjacent edges are occluding edges, or 2. one edge is oc- 
cluding and the other is a 3-D boundary edge. 

2.2 Determination of Depth Values 

The depth is calculated locally for each vertex. Since a fixated depth of a vertex constrains 
the depth values of each adjacent face vertex, five cases have to be distinguished: 
I. No adjacent vertex depth values are available: This vertex is neither constrained with re- 
spective to its 2-D coordinates nor with respective to its depth value. The depth value can be 
chosen arbitrarily. 
II. For exactly one of the adjacent faces a fixation is made: The 2-D coordinates of the 
vertices can be substituted in the plane equation. This determines the depth values of these 
vertices. 
IIL For exactly two of the adjacent faces a fixation is made: 2-D inconsistencies of vertices 
can arise. Therefore an orthogonal projection onto the line of intersection of the two planes is 
determined. Thereafter the point of intersection is substituted into the plane equation. 
IV. For exactly three of the adjacent faces a fixation is made: Consistency and the depth can 
be attained simultaneously by calculating the intersection of the planes. 
V. More than three faces are fixed: If there is more than one point of intersection, than this 
inconsistency cannot be repaired. Therefore the order of depth calculation is made to be 
dependent on the number of adjacent faces. Such accidental events are less likely, especially 
for objects in general orientations and poses. 
This procedure ensures that face orientations determined by the shape recovery method leave 
the assembling process unchanged. The edge structure in this process is variable. Surface 



295 

slopes on and nearby edges are less reliable than in the interior of regions due to physical, 
non-ideal object edges. Accordingly it is appropriate to let the edge structure alterable. 
Surface orientations are measured over the whole region for each face, as a result the surface 
orientation associated with a face is sufficiently stable. 
The above scheme is applied to each vertex in the described order. When the process is fini- 
shed, the 2-D winged edge model derived from the line drawing is transformed to a 2.5-D 
model. 

3 Accumulator based adaptive matching 
Park et al compare sequentially all RII sets with the model data base. The sole recognizable 
optimization of  this trivial matching strategy is the ordering of  the RIIs' by base face 
attributes as face size and face type. They classify RII faces in not occluded and occluded to 
manage inexact data. This data is then especially treated during the matching procedure. 
We introduce an adaptive inexact matching strategy. It gains an optimal matching scheme, 
that is adapted to the actual object data base, the a priori knowledge about the current sensor 
configuration, see [1], and the measured sensor errors. This article regards the processing of 
unavoidable sensor tolerances. The CAD-data processing modeling component computes a 
set of  SNIs for each object. Weak perspective projection or scaled orthographic projection is 
assumed. The SNI sets of all model objects build the object data bases. Feature extracting 
functions generate feature vectors that describe the particular SNIs. For each SNI one feature 
vector exists. During the matching procedure the RII set is processed by comparing RIIs'  
feature vectors one by another with the complete SNI set feature vectors. The matching 
algorithm consists of  an adaptive hierarchical indexing scheme, that contains an inexact 
matching module and that is enlarged by a learning module. 

Maximal tolerance space TSS -TSS 

weighting curve ! / [ \ 
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Fig. 2. Index layer showing the tolerance space dimesion and a Gaassian distributed voting function. 

The indexing process consists of a relation from the area of the scene features into the area of 
the index space. If a set of n scene features exists, then a vector of g (g -< n) feature attributes 
determine an index Is. The values of  the index depend on the content of  the feature at- 
tributes. An index vector specifies exactly a point in the index space. The hierarchical system 
organizes g features of interest in g index layers. Each feature is represented by a certain layer 
in the layer model. The layer model is adapted for the data base and the used sensors. Layers 
delineate the index space of a feature. The Iayer indexes point to accumulators of those SNIs, 
that contain similar feature attributes. 
In the case of inexact data a method has to be found, that relates the data to comparative mo- 
dels. The proposed inexact matching strategy increases the accumulators of several SNIs by 
the value e--~/:12, with k = 0 . . . . .  krnax denoting the deviation of a model feature to the mea- 
sured data. That means the accumulator of  an object with a feature value close to the mea- 
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sured data is increased more than an accumulator of  an object view with a less similar feature 
value. This is called Gaussian distribution method. The exact method is denoted as spike 
distribution method. The accumulator values determine the ranking of the SNI best list. 
The following conditions constrain the indexing procedure, see Fig. 2: 
�9 The width of  the Gaussian curve used to calculate the vote value is adapted for the stan- 

dard deviation of the regarded feature trf multiplied by a scale factor s. For s = 2.0 it is 
well known, that ca. 95% of the deviations caused by measuring errors are covered by 
the curve. Pursuing this, the absolute amount of deviations remains relatively small. 

�9 A tolerance space, that is larger than s- trf,  causes an assignment of  the smallest possi- 
ble vote v(k)= tp(r) to the nodes outside the Gaussian curve. SNI candidates with 
larger errors in particular features are allowed to concur the matching race. 

�9 A SNI is omitted from searching if a feature value drops out of  the layer's tolerance 
space. Initially the tolerance space size (TSS) is 50%. 

Fig. 3. The RII list matching algo- 
rithm concludes the resulting SNI 
lists: A SNI is marked by an object la- 
bel (A, B . . . .  ) and a number for the 
concerning SNI set. For each RII a list 
of SNI's is generated. This list is 
sorted with respect to the accumulated 
votes of the observed features. 

In the proposed system a list of  RlI's is compared with the object data base. This process 
calculates a list of the most voted SNI for every RII. Some regulation has to be done to con- 
clude the particular lists into a single object ranking list. The following constraints constrict 
SNI lists as shown in Fig. 3: 
�9 The objects best list integrates only the best matching SNI of a particular object for each 

RII: This constraint prevents, that objects with many faces are privileged for objects 
with fewer faces. 

�9 A SNI, that votes for a RII is removed from the remaining best list. This constraint dis- 
misses the possibility, that a particular object's SNI votes for several RIIs. 

�9 If no object SNI matches an especial RII, then this object is excluded from the matching 
process. This constraint solely controls the elimination of  objects from the matching 
process. 

3.1 Learning by integration of  measured sensor accuracies 

A technique to improve the performance of the matching is to adapt the tolerance space size 
(TSS) on the feature attribute distribution of the measured data. The system performs an On- 
line adaptation by integrating the sensor accuracy: The matching strategy generates a list of 
the best matching SNI sets. A localization function verifies or discards the hypothesis of the 
matching procedure. Correctly selected view sets are compared with the RII sets. 
The accuracy is measured by comparing of the correct result feature vector Xs~ and the vector 
xpa~ of the corresponding RII. This process repeats for all feature vectors of  the two view 
sets. For each feature attribute (element of the feature vectors) the maximal difference be- 
tween the real and the measured feature value is stored in a learning map. This learning map 
supervises the mean standard deviation and maximal deviation value maxde v of the particular 
features. After t successfully processed recognition tasks the TSS and the tyf of  each index 
layers adapt. The learning map calculates the standard deviation for a feature g after the n+l 
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recognition task. The TSS is calculated by the maxae v of  the features. Since the TSS ex- 
cludes object views from the matching procedure, the learning algorithm allows the expan- 
sion of the TSS by incrementing maxae v by maxae v./3. The algorithm decreases the TSS by 
deleting the current maxae v after t recognition tasks and choosing the. next smaller 
rnax2devaS new m a X d e  v .  

Fig. 4. Two data base objects and their reconstructed 2.5-D models. 

3.2 The accuracy probability of  results 

In the following we estimate the accuracy of object propositions depending on the calculated 
votes of the SNI features. The sizes of the Gaussian curves of the several features rely on the 
standard deviations of  the features' errors. Pursuing this, it is possible to regard votes as 
function values of the proportion z. This z represents the proportion between the actual featu- 
re difference of  the RII and SNI and the standard deviation of the regarded feature. To get an 
estimation of  the matching probability of a proposed model to an object, we calculate the in- 
verse function z = v -1 of the used Gaussian weight voting function: z(vote) = ~[ '2ln(vote) .  
We use the results of  z to calculate the probability of the accuracy of a model proposition, on 
the assumption of normal distributed feature errors. The probability, that a measured feature 
deviates at Ax from the correct feature value follows the Gaussian error integral: 

p(z (vo te ) )= 2.~-~* e -t /2dt; t = z t x / ~ n a n d z = a l ~  n 

For a deviation ~ :  with zlx I fin >- z(vote) (a < Ax) the value pi = 1 - p(z(vote)) delineates 

the probability for this Ax. For z(vote) = 0 it follows pi = 1.0. 

Fig. 5. Shaded image of reconstructed real objects. 

4 R e s u l t s  

We have examined the shape recovery scheme (PSM) and the proposed face assembling 
method with several synthetic and real objects. We have analyzed several PSM realizations, 
including analytic, LUT based and discrete solution finding approaches. Our 2-D-LUT 
technique has proved to give the best results with respective to calibration expenditure and 
accuracy. Fig. 4 shows single PSM input images of two objects in the data base. For each 
object two aspects are shown. Since only a 2.5-D model can be derived from the input ima- 
ges two faces are missing in the second aspect of the L-shaped object. Also, the F-shaped 
object has been reconstructed in a reliable manner, although there arise shadows and mutual 
illuminations. Fig. 5 shows the Lambertian shaded versions of the derived 2.5-D models of 
the real objects in the data base. It can be seen, that the 2.5-D models of  some objects are not 
complete due to cast and self shadowing effects. To verify the recovered surface orientations 
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the angle between right-angled faces has been measured. For most face pairs the angular 
difference was not higher than three degrees. 
To test the recognition system we used a model data base with 14 objects. The objects are 
categorized in the classes convex, concave and smooth. We demonstrate six Jest series with 
varying parameters. The following features are calculated for the experiments: 
�9 junction types, edge types, relations of the length of edge pairs, classes of  edges with 

the same length, face number, face relations, angle types. 

experiment # 

1 

adaptation steps c o n v e x  

0% II--- 

cm~ed 

O~ !J--- 

~neave s u m  

0%11--- 0%11--- 

2 4 100 % II 0.92 50 % II 0.82 57 % II 0.80 66 % II 0.85 
3 21 100 % II 0.92 75 % II 0.83 71% II 0.77 80 % II 0.83 
4 39 100 % 11 0.92 75 % II 0.82 86 % !1 0.74 87 % II 0.81 
5 56 100 % I10.91 75 % II 0.80 8 6 % II 0.72 87 % II 0.80 
6 --- 100 % II 0.93 50 % II 0.87 86 % II 0.82 80 % II 0.86 

Tab. 1. Recognized real objects in percent and their recognition probability. 

The experiment results shown in Tab. 1 depend on the variation of the tolerance parameters: 
�9 Experiment 1: The TSS and the standard deviation for all features are zero. These set- 

tings correspond to the exact matching method. 
�9 Experiment 2-5: The parameters are adapted stepwise. Distinct objects cause the gen- 

eration of a distinct number of RIIs. This explains the non continuos growing of the 
adaptation steps. The recognition rate of the system grows continuously. 

�9 Experiment 6: The system runs with extremely large TSS and standard deviation. 

5 C o n c l u s i o n  

It has been shown, that a shading based shape recovery method (Photometric Stereo) leads 
to sufficient 2.5-D models for application in an elaborate object recognition system. Particu- 
larly this is appropriate, if the derived 3-D shape information is combined with an approxi- 
mated line drawing. The line drawing is necessary, if occlusions have to take into considera- 
tion. We have shown, that good results are reached when combining PSM, the SNI model 
and the adaptive matching strategy. In the future, the shape recovery part of the project will 
be focused on making use of shadow information and mutual illuminations. The matching 
will be extended by an automatic verification module. 
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