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Abs t rac t .  Perhaps one of the most common low-level operations in 
computer vision is feature extraction. Indeed, there is already a large 
number of specific feature extraction techniques available involving trans- 
forms, convolutions, filtering or relaxation-type operators. Albeit, in this 
paper we explore a different approach to these more classical methods 
based on non-parametric in-place covariance operators and a geometric 
model of image data. We explore these operators as they apply to both 
range and intensity data and show how many of the classical features can 
be redefined and extracted using this approach and in more robust ways. 
In particular, we explore how, for range data, surface types, jumps and 
creases have a natural expression using first and second-order covariance 
operators and how these measures relate to the well-known Weingarten 
map. For intensity data, we show how edges, lines corners and textures 
also can be extracted by observing the eigenstructures of similar first- 
and second-order covariance operators. Finally, robustness, limitations 
and the non-parametric nature of this operator are also discussed and 
example range and intensity image results are shown. 

1 I n t r o d u c t i o n  

We have explored the use of covariance operators for the computation of local 
shape measures relevant to range and intensity (surface) image data. The covari- 
ance approach dispenses with surface parameterization and provides invariant 
descriptions of shape via the eigenvalues and eigenvectors of covariance matrices 
of different orders. The aim of this paper is to summarize the properties and 
results of the covariance approach as they can are applied to feature extraction 
in both types of surface image data. 

Following Liang and Todhunter [1] we define the local (first-order) surface 
covariance matr ix  (CI) as: 

Z = , _ , (  - - , ( 1 )  

4=1  

where ~i = (mi, yi, z~) correspond to the image projection plane (z, y) and 
(z~) corresponds to depth or intensity values at position i; ~ = 1/n ~=1 ~ to 
the mean position vector; n to the total number of pixels in the neighborhood 
of ~ used to compute Eqn.(1). 
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The eigenvalues and eigenvectors of Oi determine three orthogonal vectors 
two of which define a plane whose orientation is such that it minimizes, in the 
least square sense, the (squared distance) orthogonal projections.of all the points 
(n) onto the plane. Liang and Todhunter[1] originally proposed this plane as a 
reasonable approximation to the surface tangent plane and, so long as the two 
eigenvectors are chosen to preserve the '%idedness" of the surface points, it can 
be viewed as an analogue to this. That is, the eigenvectors corresponding to the 
two largest eigenvalues (~z and ~2) form this "tangent plane" if "sidedness" is 
preserved, otherwise the plane must be formed by the eigenvectors correspond- 
ing to eigenvalues ~2 and )~3. This "sidedness"-preserving or topology preserving 
principle, can be seen as a replacement of surface parameterization. It is impor- 
tant to note that the eigenvalues of Uz are already invariant to rigid motions 
and they also define the aspect rations of oriented spheres which determine the 
strengths of directional information in the neighborhood of a pixel. As we will 
see, from a geometric perspective such eigenvalues and vectors define surface 
types while, from an intensity image perspective, they can be used to infer edge, 
corners and other local shape structures in an image. First, the geometric inter- 
pretation. 

2 L o c a l  g e o m e t r i e s .  

Prom a Differential Geometry perspective, Cz defines local tangent planes and 
surface normals (defining the first fundamental form) in the least-squares sense. 
Prom this an analogous definition of the second fundamental form follows. We 
define, about a point 50 on a surface, a two-dimensional covariance matrix in 
the following manner: 

c .  = _1 y ~ ( ~  - ~,~) �9 (~  - ~,~)~, (2) 

with the two dimensional vectors yi defined by the projection: 

~ : ~ .  (~~ - ~o)v.oj, (3) 

where x~ is in a small neighborhood of zo �9 We project the difference vector 
which points from zo to ~ onto the "tangent plane" as determined by Eqn.(1) 
and weight the resulting two--dimensional vector by distance s~ which measures 
the orthogonal distance from the "tangent plane" to point ~ .  Given both tangent 
vectors ~'1 and t2 and the normal vector ~ at point ~o derived from Eqn.(2) we 
may write yi explicitly as: 

_ 

�9 , \ ( ~  ~ o ) ~ . ~  (4) 
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We can then define the quadratic form 

lzc = (s) 

as a "second fundamental form" based on covariance methods with the de- 
fined covariance matrix according to Eqn. (2) and a chosen unit vector v in 
the tangent plane. Analogous to classical computations of surface geometry we 
define the pr inc ipa l  di rect ions  as those directions which are given by the eigen- 
vectors of this covariance matrix. The eigenstructures of CH capture how the 
surface points, in the neighbourhood of a pixel, depart from the estimation of 
the tangent plane. 

Further to this, we have an analogous operator to the Gauss map of classical 
Differential Geometry[2]. That is, we can determine how the estimated surface 
normals, in the neighborhood of a pixel, project onto the estimated tangent plane 
by the two-dimensional covariance matrix: 

?1 

i=1 

with the two dimensional vectors v, being defined by the projection: 

( T-rl) 
= oJ = r2 ' ( 7 )  

where tl , t2 are the estimated tangent vectors obtained from Eqn.(1) and 
assigned to the point (~, y, z) at the center of the current window and ni is the 
normal vector obtained by Eqn.(1) at a position (z,, y,, z,) in the neighborhood 
of y, z). 

In all, then, the operators CI, CII and C a determine local geometric char- 
acteristics of surfaces without the use of Calculus and with the constraint that 
such eignestructures correspond to least squares estimates of different order ori- 
entation fields. They can be used in identifying different surface types - including 
discontinuities - in the following ways (using appropriate thresholds, see [2]: 

Jump-edge detection: The covariance matrix CI, according to Eqn.(1), is cal- 
culated in a 5 x 5 pixel neighborhood at each pixel of the range image. Pixels 
with values of the maximal eigenvalue larger than a certain threshold are labeled 
as jump. The eigenvectors calculated in this stage are used for the next step. 

Crease-edge detection: The covariance matrix Ca, according to Eqn.(6), is 
calculated in a 5 x 5 pixel neighborhood at each pixel of the range image. The 
maximal eigenvalue of this covariance matrix Cp is utilized as a crease-edge 
detector. Pixels not already labeled as jump and with values of the maximal 
eigenvalue larger than a certain threshold are labeled as crease. 

Region segmentation: Pixels neither being labeled as jump nor crease are 
labeled as planar, parabolic (developable) or curved. In order to do so the covari- 
ance matrix Cz according to Eqn.(1) is calculated in a 7 • 7 pixel neighborhood 
at each pixel of the range image. The eigenvectors of this covariance matrix are 
again used as input for the next stage which calculates the covariance matrix Cp 
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according to Eqn.(3) from the projected normal vectors in a 7 x 7 pixel neigh- 
borhood where only pixels which have not been labeled so far as jump or crease 
are taken into account. Two thresholds for each of the two eigenvalues of this 
covariance matrix are applied. Pixels with smaller values of both eigenvalues 
than the thresholds are labeled as planar. Pixels with a smaller value of the 
smaller eigenvalue than the threshold but with values of the larger value beyond 
the corresponding threshold are labeled as parabolic. Pixels not meeting above 
conditions are assigned the label curved. 

We have obtained experimental results for the proposed segmentation tech- 
nique using many synthetic range images - one of which is shown in Figure 
la. The range images have neither been filtered nor preprocessed in any way. 
However, we have computed surface Mean and Gaussian curvatur~es using the bi- 
quadratic surface algebraic form proposed in [2]. We have also used the jump-and 
crease-edge detection technique presented in [3]for comparison. Together these 
region and boundary detection methods are termed the Smoothed Differential 
Geometry, or SDG method. 

3 Image features 

Viewing intensity images as surfaces is not that common but is natural to this co- 
variance approach. Indeed, form this perspective, "edges", "corners" and "linear 
segments" all can be described by different types of surface types [5] including 
jumps, creases and non-planar region types. Further, we can even provide first- 
and second-order descriptions of "textural" features in terms of the associated 
eigenstructures of the covariance operators (Figure lc). Figure lb and c shows 
examples of such interpretations. Lines were determined by first-order eigenvalue 
ratios, corners by second-order eigenvalue strengths. 

4 Discussion 

The aim of this paper was to simple expose and demonstrate the covariance 
approach to feature extraction. It contrasts with more classical methods - and, 
in particular, differential and filter-based techniques, in two ways. One, there is 
no use of parameterization or differentiation directly. Two, there is an implicit 
optimization criterion: orthogonal least squares approximations of linear struc- 
tures of different orders. Furthermore, we have been able to define analogous 
operators to the classical Weingarten map (second fundamental form) and the 
Gauss map on the basis of covariance matrices. The eigenvalues of the covariance 
matrices are invariant to rigid motion as well - since the computation operates in 
the tangent plane only. In addition, we have shown how the covariance method 
treats discontinuities in a very natural manner. 

Finally, since covariance methods do not rely on a consistent local surface 
parameterization, the spectrum of the covariance matrix (the full set of eigen- 
values) provides us with a type of smooth transformation between lines, surfaces 
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and volumes. One non-zero eigenvalue defines merely linear components while a 
solution of three equal eigenvalues corresponds to data of uniform density in a 
volume about a point - analogous to fractile-dimensionality. 

It should also be noted that covariance methods provide ideal ways of treating 
signals embedded in additive Gaussian or white noise.In these cases the total 
covariance matrix decomposes into the sum of the signal and noise covariance 
matrices. These covariance models also provide linear approximations to the local 
correlations or dependencies between pixels. Consequently, they are related to 
techniques for modeling the observed (local) pixel "cliques" or "support" kernels 
defined in Markov Random Fields and determined using Hidden Markov Models. 
However, space prohibits more detailed analysis of these connections. 
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F igu re  1 - Fol lowing Page  

Top: Shows input range image; second row:jumps(white), creases(grey) for 
SDG(left) and covariance(right) methods; third row: region segments from. SDG(left) 
and covariance(right) methods. 

Middle :  Input textures(left) and rotation invariant segmentation based on 
first-order covariance eigenvalues(right) and 2-class K-Means clustering. 

B o t t o m :  Input intensity image(left)lines(centre), and corners(right) using 
first and second-order covariance eigenvalues respectively. 
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