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Abstract. The paper describes a method for texture classification in noise by using third- 
order cumulants as discriminating features. The problem is formulated as a test on K 
hypotheses and solved by a Maximum Likelihood (ML) criterium applied in the third-order 
cumulant domain. Since in the case of image processing complete third-order cumulant 
computation is not feasible, we reduced the estimation to a limited number of cumulant 
slices and lags. This reduction makes the classification algorithm suboptimal. Thus, a 
criterion for the choice of cumulant samples to be computed is introduced in order to 
guarantee the selection of those lags which better identify the different textures in the 
training phase of the classifier. 
Experimental tests are carried out to evaluate third-order cumulant performances on noisy 
textures and the importance of lags selection. 

1 Introduction 

The aim of texture classification algorithms is to produce a set of measures that 
make it possible to discriminate between different classes of textures so that each 
class may be described by parameters that can be used by a segmentation algorithm 
to partition an image into homogeneous regions. When images are affected by 
noise, this purpose can be strongly compromised and it is necessary to produce 
robust measures for each class of texture. In the paper, a Maximum Likelihood 
(ML) classifier working in the domain of Higher Order Statistics (HOS) [1] is 
proposed; in particular, third-order cumulants are estimated as texture features, 
thanks to their insensitivity to symmetric and independent, identically distributed 
(i.i.d.) noises. In order to reduce computation efforts and to determine an 
appropriate set of cumulant samples to be included in the feature vector, the 
number of outliers for each class is evaluated during the training phase. Cumulant 
samples inconsistent with the expectation produced by each class population are 
ranked out by assigning them small efficiency weights. 
In section 2, the classifier scheme is presented, and, in subsection 2.1, the adopted 
criterion for lag selection is discussed. Section 3 describes the experiments 
performed on natural textures corrupted by i.i.d, as well as coloured Gaussian 
noise; in this section, a comparison with an autocorrelation based classifier is also 
made. Some conclusions are carried out in section 4. 
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2 The Classifier 

The problem of classifying signals corrupted by noise can be reduced to a test of K 
hypotheses, and, for additive noise, can be expressed as: 

Hk: x(i)  = n(i) +sk(i  ) i = 01,i2) =I . . .R ;  k = I . . .K  (1) 

where n(i) denotes noise samples, sk(i ) is the image template belonging to the 
class k, x(i) are observation samples, and i=(il,i2) are the pixel indexes. 
As alternative to energy classifiers/detectors, schemes based on higher-order 
statistics have been proposed, which are insensitive to additive Gaussian noise and 
have the characteristic of preserving phase information (i.e,, they exhibit sensitivity 
to signal shape) [2] [3]. In (1) the observation vector x(i) can be replaced by the 

Nxl vector 3~N, which contains all estimated HOS samples and the ML classifier 
can be implemented, as follows: 

~>"k lnp(j~ N ~Hi) (2) In p(3~N / Hk,<.l 

From [4], it derives that such probabilities are normal. 
In the proposed classification scheme, in order to obtain a classifier robust to a 

large class of noises, we replace fN with N lags of the third-order cumulant, that is 
defined for zero-mean signals as: 

~ ( . q , z 2 )  = E { x ( i ) x ( i + z l ) x ( i + ~ 2 )  } (3) 

where we assume "~'1 =('~11 ,Z12) and ~'2 = ('/721, ~'22) as the spatial lags in the two 

image directions, and reduce test (2) to a minimum-distance or minimum-HOS- 

energy classifier (by setting the covariance matrix Z(t_/k )= I). We choose the 

Ax -Sk 2 ^x -Sl 2 
hypothesis H k iff c3-c 3 < c3-% (4) 

Due to computational efforts, only some cumulant lags can be computed in practice, 
thus exploiting the HOS potentiality only partially. These drawbacks make HOS 
performances comparable to those of energy-based classifiers, in some practical 
cases where few samples are available. 
Within the context, a considerable improvement can be obtained by performing the 
classification process after selecting the most effective lags for discrimination [3]. 

2.1 Feature Selection 

From an initial set of lag samples, estimated on noise-free images, N lags can be 
selected to obtain an appropriate feature vector by assigning larger penalties to lags 
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with larger numbers of outliers and interclass-overlapping regions, according to the 
following scheme: 

K K K 
W(lagi)= ~,,ouliers(lagi,classk)+ ~ ~ ~ { ~ c h ~ }  

k:l k:lj:~+l (5) 

where outlier(lagi,class k) is a cumulant sample outside the range 

[m~ - 2 .  ~ ,  m~ + 2. o~ ] for cumulant sample i of class k, C L is the set including 

all estimated lags i for class k, and 6{ C~ n Cj }=1 if ~ n ~ ~ ~ and it is equal 

to 0, otherwise. 

3 Experimental Tests 

Test Case #1: The classification algorithm defined by relation (4) was applied to 
the first image set (Fig.l). Each 256x256 image was divided into several sub- 
images. I.i.d. Gaussian and coloured Gaussian noises were superimposed upon each 
sub-image. Coloured noise was obtained as the output of a linear filter driven by 
i.i.d. Gaussian noise. The leave-one-out strategy was adopted for the classification 
process. Each sub-image was presented to the classifier, after training it by using 
the remaining noise-free images. The classification probability was evaluated by 
using 50 noise realizations for different SNR values (calculated as 

f r~i71 
10.1ogl0~E/S~nz[~) for each test. The classification results obtained by the 

third-order cumulants, according to the minimum-distance criterion, were 
compared with antocorrelation results. In the absence of noise, 100% classification 

results were obtained by both classifiers, k~ yielded better results than k~ on noisy 
images, thanks to the insensitivity of the former cumulant to noise with zero 
skewness (Tables 1 and 2). 

In both experiments, a limited number of lags were used. For ~c, the feature vector 

was the set {c~(~11,s = 0;~12 = 0,1;0 N ~21,~-22 < 3}. 

For ~ ,  the feature vector included { c~ (s s = 0 ..... 5}. 

Then lag selection for ~c was performed to reduce the number of parameters 
necessary for an efficient classification. According to (5), the first N lags were 
extracted from the initial set: 

{C3C(s163163163 : s = 0 ;  s = 0 ;  0 _< s163 -< 20} 
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estimated on clean images. Improvements obtained in classification results are 
shown in Table 3. 

Test Case #2: A new image set (Fig. 2) was tested to evaluate ~ insensitivity when 
i.i.d, is replaced with coloured noise. Unlike the previous test, lag selection was 

also performed for ~ samples in the set {c~(v): ~:=0,...,19}. Although ~c 

performances were strongly improved by eliminating lag outliers, ~ sensitivity to 

coloured noise was verified. Figure 3 compares the ~c and ~ probability of correct 
classification in the presence of i.i.d. Gaussian noise and coloured Gaussian noise, 

for different SNRs and different numbers of features (N). ~ classifier resultsed 

completely inneficient in the presence of coloured noise, whereas ~Cperformances 
remained unchanged. 

Fig.l: On the right: five original textures of test set #1: coffee, cloth, wall, naphtha, 
tweed, and synthetic noise. On the left: test set #1 corrupted by coloured Gaussian 

noise (SNR=-10 dB). 

4 Conclusions 

An image classification scheme that exploits eumulant features has been proposed. 
The HOS reduced sensitivity to i.i.d, and coloured Gaussian noise and the 
capability of characterizing non-Gaussian signals justify the use of HOS in 
classification problems. The adopted cumulant-based method, even though 
suboptimal, is computationally efficient and yields good results, especially for very 
noisy images. A considerable improvement in classification results can be obtained 
by performing a cumulant sample selection, i.e. by removing from the feature set all 
samples that may lead to class overlapping. 
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Results show that the proposed classification features are robust to very critical 
signal-to-noise ratios (SNRs); in particular, a correct classification is invariant to 
both i.i.d, and coloured Gaussian noise. Moreover, combination of third and 
second-order statistics can provide effective parameters for a noise-robust 
segmentation algorithm. 

Table 1: Probabilities of correct classification ( 32 lags of c~ )  

SNR (dB) Gaussian Coloured 
Noise Gaussian 

Noise 
-15 .611 .481 
-10 .859 .748 
-5 .961 .934 
0 .977 .974 
5 .992 .986 

^ X  
Table 2: Probabilities of correct classification (36 lags of C 2 ) 

SNR (dB) Gaussian Coloured 
Noise Gaussian 

Noise 
-15 .200 .200 
-10 .304 .220 
-5 .989 .950 
0 1 1 
5 1 1 

Fig. 2: Test set #2. From left to right From left to right and from top to bottom: 
cork, gauze, ice, mica, ricepaper and wicker. 
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Table 3: Probabilities of correct classification (N selected lags of c~ ) 

SNR 
dB N=IO N=20 
-15 .445 .5 
-10 .775 .83 
-5 .94 .97 
0 .995 .985 
5 1 .995 

Gaussian Noise 
N=30 

.64 
.9 

.955 

.975 
.98 

Coloured Gaussian Noise 
N=IO 

.39 
.725 
.915 
.995 

1 

N=20 N=30 
.51 .59 
.85 .87 
.96 .96 

.985 .975 
1 .98 

c2 c2 

0. 0. 

3 0 ~ 2 0  3 0 ~ 2 0  

N 10-20 SNR N 10-20 SNR 
c3 c3 

1 

3 0 ~ 2 0  

N 10-20 SNR 

1 

3 0 ~  20 

N 10-20 SNR 

Fig. 3: Classification probabilities in the presence of i.i.d. (left) and coloured (right) 

Ganssian noises vs. SNR and number of lags, for ~ and ~c. 
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