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Abstract.  The present study concerns the phase information in the 
complex image resulting from the application of frequency-and- 
orientation-selective Gabor filters. The image phase is made up of a global 
linear part and a local phase. A strong variation of the phase occurs in the 
image when a boundary between two different regions is crossed. Two 
methods using local phase information for segmenting textures have been 
recently advanced. In the first one, the local phase is obtained by 
unwrapping the phase of the filtered image and by computing the global 
linear component. The second method derives the local phase from the 
filtered image without a phase unwrapping. Both methods are rapid but 
cannot be implemented with filters other than horizontal and vertical ones. 
Another method, which uses the phase-gradient information and allows 
filtering in any direction, achieves a more accurate segmentation. This new 
method does not require phase unwrapping since the phase gradient is 
obtained from the convolution of the input image with the filter gradient. 
We propose a method, both robust and rapid, which is a combination of the 
first and the third approaches, allowing use of filters with any orientation. 

1 The phase components in a Gabor filtered image 

The transformation which is supposed to be locally performed by cortical visual cells 
is the following. The Fourier transform Io(u,v) of the input image io(x,y) is f'dtered 
by a function G(u,v) giving the simple product I(u,v). The filter G(u,v), chosen here, 
is the Fourier transform of a complex Gabor function. The inverse Fourier transform 
of I(u,v) is the output image i(x,y) obtained by convolving io(x,y ) and the point 
spread function g(x,y) of the filter in the spatial domain. The output image is a 
complex-valued function. This fact allows us to take into account two important 
parameters: the modulus and the phase. The complex output image can be written: 

i(x,y) = i0(x,y) �9 g(x,y) = Re(x,y) + jIm(x,y), (1) 

where ,  indicates convolution and j = ~fSi, or: 

i(x,y) = ]i0 (x,y~exp[q~(x,y)]" (2) 

where ~(x) is the phase.The phase of the image representation (1) can be found by: 

r = arctan[Im(x,y)/Re(x,y)]. (3) 

The phase q~p.v.(X,y), obtained by Eq.(3), is always expressed, modulo g, with a 
value comprised between -re/2 and x/2. It is the so-called principal value of the phase. 
Thus, there are discontinuities in _+x. In order to estimate the phase values from -x to 
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+~, using cPp.v.(X,y ), we take into account the numerator and denominator signs in 
formula (4). The four possibilities, corresponding to the four quadrants, are: 

arctan(a/b) = %.v.(X,y) if a_>0, b>0 (4 a) 
arctan(a/b) = rr- ~0p.v.(X,y ) if a_>o, b<0 (4 b) 
arctan(afo) = n + q)p.v.(X,y) if a<0, b<0 (4 c) 
arctan(alb) = 2re - q)p.v.(X,y) if a<0, b>0. (4 d) 

On the other hand, the "true value" of the phase q)(x,y), as represented in Eq.(2), is 
comprised between -00 and +oo. We have to change it into a continuous function by a 
procedure which is called the phase unwrapping. A solution of the unwrapping 
problem is generally to add or to subtract 2~x from the part of the function which lies 
just after a discontinuity: 

cp(x,y) = CPp.v.(X,y) + 2rm(x,y) (5) 

where n(x,y) is given integer values. 
This algorithm requires only the knowledge of the principal value of the phase but 

it does not allow fluctuations greater than x between different samples. Thus, if the 
phase difference between two samples is less than -Tr (greater than +n), we just add 2re 
(subtract 2n) to the phase of the first sample [1]. From the point of view of 
information volume, the phase unwrapping is strictly equivalent to the determination 
of the n(x,y) factor which is necessary to get a continuous phase as in Eq.(5). 

The position of a point (x,y) can be inferred from the phase of the filtered image at 
that point. The knowledge of the phase also allows us to estimate the distance which 
separates a point from another one and the amount of shift between two or several 
points. It has been shown [1] that the general form of the unwrapped phase is made of 
a global linear phase component and a local phase component. The former is a 
periodic one, while the latter corresponds to noise acting on the periodical part. For 
texture analysis, the local phase component bears an important information about the 
place where two different regions meet and it plays a very important role for 
segmenting images of textures [1-3]. The local phase is theoretically computed by 
subtracting the linear component from the unwrapped phase. However this would 
assume a solution exists to the "zero-point" problems - discussed below. 

2.  Other methods of texture-image segmentation using the 
information contained in the phase 

When the phase is computed from Eq.(3), it is assumed that the numerator and 
denominator values are not simultaneously equal to zero. A point such that 
Re(x,y)=Im(x,y)=0, is called a zero point. It has been shown that images of the real 
world contain a great number of zero points which confound the application of the 
phase-unwrapping procedure. 

The first stage of an algorithm proposed by Nicoulin [1] consists in locating the 
zero points in the filtered image by integrating the phase gradient over a closed 
contour having a minimum length, made of four neighbouring samples which are on 
the comers of a square: (x,y), (x+l,y), (x+l,y+l) and (x,y+l). The zero points with 
the corresponding discontinuities +2n are then shifted to the edges of the image. The 
second stage consists in unwrapping the phase to get cp(x,y), while the local phase 
A~x,y) is obtained during the third stage by: 

Aq)(x,y) = cp(x,y) - q)lin(X,y), (6) 



449 

where the linear component 9tin(x,Y) is mathematically represented by an inclined 
plane, the orientation of the maximum gradient of tPlin(x,y) being the same as the 
orientation of the filter. This method allows rapid computation of the unwrapped 
phase. However, the algorithm cannot be applied if the filtered image includes too 
many zero points. Moreover, the linear component cannot be computed with other 
filters than horizontal or vertical ones. 

Another method, proposed by Du Buf [2], avoids the problem of zero points 
because it computes the local phase directly from the output image (2) without 
unwrapping the phase. The local phase can be computed even in the presence of a 
great number of zero points. This method is also very fast since it requires only one 
image convolution, but the oriented filters (0<0<re/2, x/2<0<x) cannot be used. 

Bovik et al..[4] use information concerning both modulus and phase for 
segmenting textures. They compute a function of the phase gradient directly from the 
input image previously convolved with the filter gradient. This method avoids the 
problem of zero points. Another advantage is that the phase gradient can be obtained 
with oriented filters. But, at least five image convolutions have to be computed for 
each channel, i.e. for a frequency-orientation pair. Other researchers [5-7] have recently 
investigated the phase information in computer vision. 

3 .  A new method for segmenting texture images by using 
the phase derivative with oriented filters 

It is well known that the phase value varies abruptly at places where different textures 
meet. Therefore, if we use an adequate filtering process, we expect a stable phase 
everywhere except for the boundaries of textures. In principle, the phase gradient is 
more sensitive to a local variation than the local phase itself and the derivative of the 
phase will lake an absolute value much greater on a boundary than in the other places. 
A straightforward method would be to estimate the derivative by means of simple 
differences between the phases of two neighbouring points. But, with that technique, 
we risk of getting a very bad approximation of the phase derivative for two reasons: 
(1) we have to know the unwrapped phase as a continuous function - that is not a 
simple problem in the presence of many zero points - and (2) an awkward noise is 
associated with that operation. In this section, we propose a more precise method 
based on some mathematical developments. Let us recall the classical formula: 

ddx [arctg(x)] 1 
--  +-Srx 

We suppose that a derivative of the phase exists everywhere. Under this 
assumption it can be shown by simple algebra that the phase derivative with respect 
to x at any point (x, y) is: 

tpx (x, y) = O~-~ [r y)] = Im[i*(x'y)ix(x'y)] (8) 

li(x,y)[2 ' 

where li(x,y)l and i*(x,y) are the modulus and the conjugate complex quantity, 

respectively, of the complex filtered output image i(x, y) and ix(x,y)is the derivative 
with respect to x of the complex output image: 

�9 0 
lx(X,y) = ~-x Re(x,y) + j-~xx Im(x, y). (9) 
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The phase derivative with respect to y is computed in a similar manner. Notice 
that the above formulas, which describe the phase derivatives, are computed along two 
directions: the horizontal and the vertical ones. For any other direction, corresponding 
to an angle 0 at which the filter is applied, we can readily deduce the derivative: 

D0[~0(x,y)] = coS0~x 9(x,y)+ sin 0~y tp(x,y)= CPx(X,y)cos0 + toy (x,y) sin 0 

_ 1 {Im[i* (x,y)ix(x,y)]cos0 + In[i* (x,y)iy (x,y)]sin 0}. (10) 
]i(x,y)] 2 

The feature Do[ 0(x,y)] thus provides information for extracting contours of 

texture images. However as D0[tP(x, y)] is arbitrar negative or positive, we have used 

its absolute value. This measure allows us to clearly distinguish the points where that 
value is high from the other points where it is practically constant. Before computing 
the final derived phase, we perform another stage which consists in subtracting the 
mean of the derived phase. Indeed, Nicoulin [1] has shown that the significant phase 
information intended to segment an image is contained in the local phase CPloc (x, y). 

This is obtained by subtracting the linear phase tPlin (x, y) from cp(x, y): 

tPloc (x, y) = cp(x,y) - q~lin(X,y), (11) 
where: 

CPlin(X,y ) = fx x + fyy, (12) 
fx and fy being two constants to be determined. 

The derivative of the local phase is then: 

O-~ tPloc (x, y)= ~x tp(x, y ) - ~ x  tPlin~ tPx(X,y)- f x . (13) 

The values of fx and fy are chosen so that the greatest oscillations of the local 
phase be located principally near the contour, in other words so that we obtain high 
values on the contours and approximately zero values elsewhere. We estimate fx as 
the mean of q&(x,y). 

When we apply a multichannel Gabor filtering, we have to integrate the texture 
characteristics which come from each channel. To do so, we determine the maximum 
value of the feature-vector components at each pixel, as we list in more details below" 

�9 Dk(X,y ) is the value of the derived phase at point (x,y), i.e. the considered 
feature, which is obtained by applying the kth f'dter, k = 1 ..... P, with P=M x N. 

�9 C k is the mean of the values Dk(X,y ) which were computed in all points of the 
kth filter output. 

�9 The P f'dters are applied and the quantity Dk(x,y)-C k is computed for k--1,...,P. 

�9 The characteristic value attached to (x,y) is found as m~X[Dk(X, y ) - C  k ]. 

Then, a classical method for detecting contours is achieved by using an empirically 
determined threshold. For this purpose we use the following family of separable 
fdters [8, 9]: 

Fprni ,0mj (p,0) = Fpm i (p)Fom j (0), (14) 
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p being the radial frequency, 0 the orientation, Prni the ith preferential frequency and 

0mj the jth preferential orientation of the filter (ij), 0~_~M-1, 0<j~gN-1, M and N 
being the considered numbers of frequencies and orientations, respectively, and 
P=MxN. Fpmi(P) is the expression in polar coordinates of the Fourier transform 

(where Ki= (2rcoi)-l): 

Fum i (u)= ex - 2K 2 (15) 

of the complex Gabor function: 

1 x2 " (16) 

The second function of Eq.(14) is the gaussian directional filter: 

F0mj (0) = e x p [ - ( 0 -  0mj )2 / (2o2)]. (17) 

Our algorithm was tested on both natural and artificial textures. Fig. 1 shows 
an example of segmentation in the case of an image made of two parts of the same 
texture which were lightly sh~fted. Other examples can be seen in Fig.2, 3 and 4. In 
some places, especially in Fig.2, the phase value is close to the background and we 
get broken edges. If we lessen the threshold value, the noise is increased. A solution 
might be to calculate the phase more accurately while increasing computation time. 

Fig. 1. An example of texture image and the result of the segmentation process using 
phase information. The frequency of the filter is 22 urn0 and the orientation: 90 ~ 

Fig. 2. Another example of artificial texture image containing circles with different 
shiffings and the resuk. The frequency of the f'tlter is 10 urn0 and the orientation: 90 ~ 
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F~. 3. An example o~ynthetic image made of "L" and "+" and the result of the 
~gmentation N~ess. The frequency of the filter is 24 urn0 and the orientation: 135". 

Fig. 4. An artificial texture image showing an illusory sinuous contour and the result of 
the segmentation process. The frequency of the filter is 21 urn0 and the orientation: 90*. 
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