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Abs t r ac t .  In this paper, we propose an unbiased minimum variance es- 
timator to estimate the parameters of an ellipse. The objective of the 
optimization is to compute a minimum variance estimator. The exper- 
imental results show the dramatic improvement over existed weighted 
least sum of squares approach especially when the ellipse is occluded. 

1 I n t r o d u c t i o n  

The methods of est imation of the parameters  of quadratic curve can be classified 
into two categories, the least squares curve fitting [1, 5, 7, 8], and the Ka lman  
filtering techniques [3, 6]. The general quadratic curve can be written as follows: 

Q ( X , Y )  = aX 2 + b X Y  + cY 2 + dX + eY + f = 0, (1) 

with b 2 < 4ac corresponding to the ellipses. Supl~ose that  points (xi, yi), i = 
1, 2, ..., n are the detected elliptical points, then the least sum of squares fit- 
ting method finds the ellipse parameters  (a, b, c, d, e, f )  by minimizing following 
objective function: 

n 

Ci -= ~ ( a x ~  + bxiy, + cy~ + dxi + ey, + f ) .  
i----1 i = 1  

(2) 

The da ta  points have a non-uniform contribution to the above objective function 
[1]. In order to achieve better  performance, the weighted least squares approach 
has been used [7]. However, the opt imal  weights would be highly involved, com- 
plex and computat ional ly  expensive. 

Ka lman  filtering is a sequential technique in the sense that  the observation 
data  are sequentially fed into the algorithm, and new estimates are recursively 
computed from previous est imates and the current new observation. The per- 
formance of the sequential techniques is relatively poor for nonlinear problems. 
Typically, the Ka lman  filter requires many  data points to converge to an accept- 
able solution. 

* This work has been supported by Delphi Interior & Lighting System, General Motor 
Corporation 



472 

In this paper,  we propose an opt imal  unbiased min imum variance est imator  
using the objective function based on the normal distance of a data  point to the 
ellipse to est imate parameters  of the ellipse. The error function is non-linear. 
We use a parameter  space decomposition technique to reduce the computat ion 
costs. 

2 Est imat ion  Criteria 

Suppose that  an observation vector y is related to a parameter  vector m by an 
equation y = A m  + 6y, where 6y is a random vector with zero mean, E6y = O, 
and eovariance mat r ix  Py : E6~ 6~. The unbiased, min imum variance est imator  
of m (i.e., that  minimizes EIl~h - roll ) is also the one that  minimizes 

(y - Am)t F~-l(y - Am).  (3) 

(see, e.g.,[4]). The resulting est imator  is 

dn : (At F y l A ) - l  A t P y l y  (4) 

with an error covariance matr ix  

F~ = E(rh - m)(m - m) t = (AtF~-IA) -1. (5) 

With  a nonlinear problem, the observation equation becomes 

y = f ( m )  q- 6y (6) 

where f (m)  is a nonlinear function. As an extension from the linear model, we 
minimize 

(y - f(m))tF~-~(y - f (m)) .  (7) 

In other words, the opt imal  parameter  vector m is the one that  minimizes 
the matrix-weighted discrepancy between the computed observation f (m)  and 
the actual observation y. At the solution that  minimize (3), the est imated ~n has 
a covariance mat r ix  

= E(m - - m)' 

_~ o/(m)o  (s) 

One of the advantages of this min imum variance criterion is that  we do not 
need to know the exact noise distribution, which is very difficult to obtain in 
most  applications. The above discussion does not require knowledge of more 
than second-order statistics of the noise distribution, which often, in practice, 
can be estimated. 
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Fig. I. Illustraion of five ellipse parameters (x0, y0, A, B, 0). 

3 T h e  O b j e c t i v e  F u n c t i o n  

The ellipse can be represented by the following equation: 

( - x s i n O  + ycosO + xosinO - yocosO) 2 (xcosO + ysin 0 - xocosO - yosinO) 2 + = 1, 
A 2 B 2 

(9) 
with m = (A, B, 0, x0, y0) as five free parameters. Fig. 1 illustrates the meaning 
of the parameters. Let ul,j denote the j th  component of 2D vectors of the ith 
point (j  = 1 for X coordinate and j = 2 for Y coordinate). Let the true two- 
dimensional position of the ith point Pi be defined by parameter  (~i, where 
P~(o~) = (Acosa~ + xo, Bs ina~ + yo), and the collection of all such parameters 
be ao. The set of direct observation pairs consists of all noise corrupted versions 
~ o  = (xi, yi) of ui with i from 1 to n. Suppose that  the noises between different 
observation points are uncorrelated and that  the correlation between the errors 
in different components of the image coordinates is negligible. Without  loss of 
generality, we also assume the same error variance in the different components of 
image points, which has the same variance (r 2. According to the criteria discussed 
in the above subsection, the objective function to minimize is 

n 2 
= A 

i = 1  j = l  

(10) 

where ui , j (m ,  ol,) is the noise-free projection computed from m and so. 

4 M i n i m i z i n g  t h e  O b j e c t i v e  F u n c t i o n  

The objective function in equation (10) is neither linear nor quadratic in m and 
C~o and an iterative algorithm is required to get a solution: m and c~~ Instead 
of performing a computationally expensive direct optimization, we reduce the 
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dimension of the parameter space first. Since the objective functions are contin- 
uous 1 w e  h a v e  

where 

min f(m, c~.) -- min{min f (m,  a . )}  = ming(m) 
ml(3~ o m 13( 0 

(11) 

g(rn) = min f (m ,  a . )  (12) 
13~ o 

is the smallest "cost" computed by choosing the "best" points a . ,  with a given 
ellipse parameter vector m. As illustrated in Fig. 2, this means that  the space 
(m, c~.) is decomposed into two subspaees corresponding to rn and c~., respec- 
tively. In the subspace of m, an iterative algorithm (e.g.,the Levenberg-Marguardt 
method or conjugate gradient method) is used. The subspace a .  can be further 
decomposed. Each individual ai can be computed noniteratively for any given 
m. According to the decomposition shown in equation (12), the search space in 
min,~ g(m) is just  five-dimensional. 

Space :  (m,  (x.) 

a, subspace  

Fig. 2. Decomposition of parameter space. Iterative algorithm is used only in a small 
subspace corresponding to m. Given each m, the best c~i is computed indiviually. Since 
the dimension of c~. is very large ( n-dimensional with n points), this decomposition 
significantly reduces computational cost. 

Now we consider how to compute the best c~i given rn. The problem can be 
defined as follows: Given a point P = (xi, yi) and an ellipse with parameters m = 
(A, B, 0, x0, y0), find the point P~ on the ellipse which minimizes the distance 
IIPP'II  For the details of computing P', the reader is referred to [2]. 

5 S i m u l a t i o n  R e s u l t s  

The simulation experiments carry out a comparative study of three different es- 
t imation approaches, which are the least sum of squares fitting approach, Safaee- 
Rad etc.'s weighted least sum of squares fitting approach [7] and our unbiased 
minimum variance estimator. The measure for "Goodness" of fit is defined as 
"the sum of normal distances of all the data points to the optimal ellipse", which 
is considered as an objective and independent measurement [7]. 
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A perfect ellipse is defined by given the ellipse parameters, (A, B, 0, x0, Y0)- 
The two-dimensional edge points were generated randomly for each trial. The 
noise was simulated as the digitization error. Three kinds of experiments were 
conducted during the simulation. The first set of experimental data was based 
on the edge points which are uniformly distributed on the entire curve of the 
ellipse. In the second and third set of experiments, the given edge points only 
covered one-half or one-quarter of the ellipse respectively. During each set of 
experiments, different numbers of data points were used. 
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Fig. 3. Relative error of the sum of normal distances of all the data points to the 
optimal ellipse. (a) Edge points are uniformly distributed on the entire ellipse, (b) 
Edge points are uniformly distributed on the half of the ellipse, (c) Edge points are 
uniformly distributed on the quarter of the ellipse. 

Fig. 3 shows the average error of the sum of normal distances of all the data 
points to the optimal ellipse based on 100 trials. The error is plotted as a relative 
ratio, where the error of the least sum of squares fitting is treated as the base. 
Fig. 3(c) presents the simulation results when the edge points are coming from 
one quarter of the ellipse. The improvement of the optimal approach is dramatic. 
This is because that  least squares fitting is statistically biased, the estimation 
results of these approaches based on the edge points from partial ellipse are far 
from accurate. 

6 E x p e r i m e n t s  w i t h  R e a l  I m a g e s  

The optimal unbiased minimum variance estimation approach has been applied 
to a project investigating posture in automobile seats. The body posture of 
the human driver is estimated by recovering the three dimensional structure 
of natural  body feature points using multiple calibrated cameras. The body 
feature points are marked with round targets, which appear to be ellipses due to 
perspective projection. The approach proposed by Wu and Wang [8] was used 
to detect the boundary points. 

After the boundary detection, the optimal estimation approach was used to 
obtain (x0, Y0, 0, A, B). Fig. 4 shows the results of two input images. The results 
are quite good despite the facts: 1) very noisy boundary since the nonplanar 
feature of the surface of the human body makes the surface of the tag no longer 
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planar ;  2) preprocessing errors, such as quant iza t ion  errors, the  edge detect ion 
errors and b o u n d a r y  detect ion errors. 

Fig.  4. Detected ellipses are highlighted with dark curves. 

7 Conclusions 

In this paper ,  we propose  a new unbiased m i n i m u m  variance e s t ima to r  for the 
ellipse p a r a m e t e r s  (x0, Y0,0, A, B).  The  compara t ive  s tudy  shows tha t  this ap- 
proach  can achieve much  be t te r  pe r fo rmance  than  least sum of squares  f i t t ing 
and weighted least sum of squares fi t t ing especially when the edge points  are 
coming f rom the par t ia l  bounda ry  of the ellipse and the n u m b e r  of  the edge 
points  is relat ively small .  
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