
Invariant Features for HMM Based On-Line 
Handwriting Recognition 

Jianying Hu, Michael K. Brown and William Turin 

AT&T Bell Laboratories, Murray Hill, NJ 07974, USA 

Abst rac t .  In this paper we address the problem variability in handwrit- 
ing due to geometric distortion of letters and words by rotation, scale and 
translation. In general, translation has not been a problem because it is 
easy to choose features that are invariant with respect to translation. It is 
more difficult to find features that are invariant with respect to all three 
types of geometric distortion. We introduce two new features for HMM 
based handwriting recognition that are invariant with respect to trans- 
lation, rotation and scale changes. These are termed ratio of tangents 
and normalized curvature. Writer-independent recognition error in our 
system is reduced by a factor of over 50% by employing these features. 

1 I n t r o d u c t i o n  

The principal difficulty in the recognition of patterns by computer is dealing with 
the variability of measurements, or features, extracted from the patterns. There 
are several sources of variability, depending on the type of pattern data  being 
processed. In on-line handwriting recognition these sources include input device 
noise, temporal  and spatial quantization error, and variability in the rendering 
of input by the writer. 

In this paper we address the spatial component of the last source of vari- 
ability, that  is, the geometric distortion of letters and words by rotation, scale 
and translation. We introduce two new features for handwriting recognition that  
are invariant with respect to all three factors of geometric distortion. These are 
termed ratio of tangents and normalized curvature. Similar features have ap- 
peared previously in the literature for planar shape recognition under partial 
occlusion [1]. 

2 I n v a r i a n t  F e a t u r e s  

The concept of invariant features arises frequently in various machine vision 
tasks. Depending on the specific task, the geometric transformation ranges from 
simple rigid plane motion to general affine transformation, to perspective map- 
ping, etc. [1]. In the case of handwriting recognition, the transformation of inter- 
est is similitude transformation, which is a combination of translation, rotation 
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and scaling 1. In our basic HMM based handwriting recognition system [2], we 
used the tangent slope feature which is invariant under translation and scaling, 
but not rotation. In this section we consider features that are invariant under 
arbitrary similitude transformation. 

A similitude transformation of the Euclidear~ plane IR 2 ---+ ]R 2 is defined by 
cos w - sin w ] 

---- , V T w = cUr + v, where c is a positive scalar, U ls inw cos0$ v ---- [Vx y] , 

representing a transformation that  includes scaling by c, rotation by angle w and 
translation by v. We regard two curves as equivalent if they can be obtained from 
each other through a similitude transformation. Invariant features are features 
that have the same value at corresponding points on different equivalent curves. 

Suppose that  a smooth planar curve P(t) = ( x ( t ) , y ( t ) )  is mapped into 
15(t ") = (~(t), ~(t')) by a reparametrization t(t) and a similitude transformation, 
i . e .  

P(t)  = cUP(t ({))  + v . (1) 

Without loss of generality, assume that both curves are parametrized by arc 
length (natural parameter), i.e. t = s and t = g. Obviously, dg = cds. It can be 
shown [1] that  curvature (the reciprocal of radius) at the corresponding points 
of the two curves is scaled by 1/c, i.e. ~(g) = t~ ((g - ~ ) / c ) / c  . It follows that: 

- ( 2 )  - , 

where ~ = d~/d~ and ~ = d~/ds,  thus eliminating the scale factor from the 
value of the ratio. Equation (2) defines an invariant feature which we shall refer 
to as normalized curvature. 

The computation of the normalized curvature defined above involves deriva- 
tive estimation of up to the third order. Another set of invariants that require 
lower orders of derivatives can be obtained by using the invariance of distance 
ratios between corresponding points. Consider again the two equivalent curves 
P(t)  and P(t)  defined above. Suppose P1 and P2 are two points on P(t) whose 
tangent slope angles differ by 0; t51 and/3~ are two points on P(t)  with the same 
tangent slope angle difference. P and/3  are the intersections of the two tangents 
on P(t)  and P(t~, respectively (Fig. 1). Since angles and hence turns of the curve 
are invariant under the similitude transformation, it can be shown that if point 
/31 corresponds to point P1, then points P2 and P correspond to points P2 and 
P respectively [1]. It follows from (1) that: 

/3/32 IPP21 

/31/3 - I P l P t  " (3) 

Equation (3) defines another invariant feature which we shall refer to as ratio of 
tangents. 

1 The same transformation was referred to as similarity transformation by Bruckstein 
et. al. [1]. We have chosen another term to avoid confusion with the well known 
similarity transformation of linear algebra. 
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Fig. 1. Ratio of tangents 

3 Implementation Issues 

3.1 De r iva t i ve  E s t i m a t i o n  

To evaluate accurately the invariant features described above, high quality deriva- 
tive estimates up to the third order have to be obtained from the sample points. 
In the following we describe how to use spline smoothing operators for derivative 
estimation. 

Let y = (Yl, Y2, ..., Yn) T be the noisy input vector obtained bysampl ing  a 
"smooth" function g(t) at t = ( t l , t 2 , . . . , t n ) .  Given an integer m > 1, the 
natural polynomial smoothing spline approximation of order 2m to g(t) is the 
unique solution to the problem of finding f( t)  with m - 1 absolutely contin- 
uous derivatives, and square integrable ruth derivative, which minimizes [3]: 
1 n -~ ~i=1 (f( t i)  - yi) 2 + A f/1 ~ (f(m)(u))2du. Let g be the output vector obtained 
as a result of evaluating the smoothing spline approximation at values of t given 
by t.  Since the smoothing spline approximation is linear we have g = A(A)y, 
where A(A) is independent of the input vector. In a typical application to data  
lengths greater than n, the row k = (n + 1)/2 of A(A) is convolved with the data  
to produce the set of filtered data. Operators for estimating the ~,th derivative of 
g(t) at the sample points can be constructed by evaluating the derivative of the 
spline approximation at the sample points. Since this is a linear functional, the 
result can also be expressed by a matrix-vector multiplication, i.e. gV = A~(A)y. 
Efficient algorithms for the construction of the A ~ (A)'s exist [3]. 

To obtain estimates of third order derivatives, m has to be at least 3, yielding 
a spline of degree 5. The length of the operator is constrained by: n > 4m - 1. 
Given the degree of the spline, a wider operator provides better support for 
the spline estimation but also involves more computation. We chose to use a 
spline filter of degree 5 (m = 3) and length n = 15. The smoothness parameter 
A controls the cut-off frequency fc if the spline smoothing operator is viewed 
as a low pass filter. Since the handwriting signal (with the exception of cusps) 
consists predominantly of low frequencies and the predominant noise sources 
(mostly quantization error and jitter) are of high frequency content, it is easy 
to choose A so that  the spline filter cuts off most of the noise without causing 
significant distortion of the signal. In our system the handwritten scripts are 
parameterized in terms of arc length by resampling at 0.2 mm intervals before 
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feature extraction and ~ = 20 (re _ 0.425mm -1) is used for all our experiments. 
Cusps tend to be smoothed out when such derivative operators are applied. 
However this does not pose a severe problem as long as the resulted ratio of 
tangents and normalized curvature features are used along with the tangent 
slope feature, since information related to cusps can be captured by the last 
feature [2]. 

3.2 Calcula t ion  of  Rat io  of  Tangents  

First we describe how to compute the ratio of tangents with an arbitrary tangent 
slope angle difference. Suppose P1 and P2 are two points along a script whose 
tangent slope angles differ by 0, as shown in Fig. (2). P is the intersection of the 
two tangents. The ratio of tangents at P1 is defined as: Rte(P1) = IPP21/IP1PI. 
Suppose ul and u2 are unit normal vectors at P1 and P2 respectively, using 
the law of sines we get: t~tg(P1) = sinc~/sinfl = [P1P2" ull/IP1P2" u~l. For 
convenience, we shall call P2 the 0 boundary of P1. 

p p" 

"P1 ! P2 

Fig. 2. Calculation of ratio of tangents 

In order to use ratio of tangents as an invariant feature in handwriting recog- 
nition, a fixed angle difference ~ = 00 has to be used for all sample points in 
all scripts. In real applications we normally have only scattered sample points 
instead of the continuous script and, in general, we can not find two sample 
points whose slope angle difference is equal to ~90. Suppose sample point Pi's O0 
boundary is between points Pj and Pj+I, i.e. Pj is Pi's 01 boundary and Pj+I 
is its t92 boundary where ~1 < ~0 < 02,/~te0(Pi) is estimated from Rtel(P~) and 
Rte~ (Pi) using linear interpolation. 

Obviously the choice of 00 greatly affects the tangent ratio values. If 00 is 
too small, the feature tends to be too sensitive to noise. On the other hand, if 
~0 is too large, the feature becomes too global, missing important local shape 
characteristics. Currently this value is chosen heuristically and O0 = 10 ~ is used 
in all our experiments. 

In order to enhance the distinctive power of the feature, we augment the 
ratio of tangents at each point by the sign of the curvature at that point. The 
resulted feature is referred to as signed ratio of tangents, and is used instead of 
ratio of tangents in the experiments described later. 
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3.3 Combined  Scores 

In our discrete HMM system, each feature is quantized into a fixed number 
of bins. To simplify our models, we chose to treat the features as being in- 
dependent from each other. When the three features are used together, the 
joint probability of observing symbol vector Sklk2k3 = [kl, k2, k3] in state j is: 
bj(Sklk2k3) = rI~=l bji(ki), where bji(k~) is the probability of observing symbol 
ki in state j according to the probability distribution of the ith feature. It follows 
that the corresponding log-likelihood at state j is: Lj ( S ~ 1 ~ )  = ~'-~3=1 log[bj~(k~)]. 

In a conventional ItMM implementation with Viterbi scoring, the likeli- 
hood defined above is used directly in training and recognition. In this case, 
each of the three features contributes equally to the combined log-likelihood 
and therefore has equal influence over the accumulated scores and the optimal 
path. However, our experiments with the three features show that when used 
alone, the tangent slope feature gives far better recognition performance than 
each of the two invariant features. This suggests that the tangent slope is a 
more discriminative feature and therefore should have more influence on deci- 
sion making than the other two features. In order to adjust the influence of 
different features according to their discriminative power, we use instead the 
weighted log-likelihood: [~j(Sklk~k3) 3 = ~i=1 wi log(bji(ki)) - log(Nj), where Nj 
is the state normalization factor such that the weighted probabilities, defined by 

= YL=I [bji(ki)]W'/Nl, sum up to 1 for each state. The normaliza- 
tion factor ensures that the weighted log-likelihood is not biased towards any 
particular state. 

4 E x p e r i m e n t a l  R e s u l t s  

The detailed description of our recognition system cart be found in a previous 
paper [2]. A brief review is provided here. 

The handwriting data was collected using a newly developed graphics input 
tablet [4] at 200 samples per second. Writers were asked to write on a lined 
sheet of paper, without any constraints on speed or style. The preprocessing 
steps include cusp detection, smoothing, deskewing and finally resampling at 
0.2 mm intervals. Features are then extracted at each resampled point. 

Sub-character models called nebulous stroke models are used as the basic 
model units. Currently each stroke is modeled by a single HMM state. A letter 
model is a left to right IIMM with no state skipping, constructed at run time 
by concatenating the corresponding stroke models. These ttMM's are embedded 
in a stochastic language model which describes the vocabulary. The current vo- 
cabulary contains 32 words, targeting an underlying application of a pen driven 
graphics editor. 

8595 samples have been collected from 18 writers, with each word in the 
vocabulary written 15 times by each writer. 10 writers were chosen (after data 
collection) to be the "training writers". The training set is composed of about 
10 samples of each word from each training writer, a total of 3180 samples. The 
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test set is composed of all samples not used for training, divided into two groups. 
Group A contains 1592 samples from the 10 training writers, group B contains 
3823 samples from the 8 other writers not used for training. 

Table 1 compares the error rates of the system when a single feature - tangent 
slope was used and when the two invariant features - signed ratio of tangents 
and normalized curvature were added. As shown in the table, by adding the two 
invariant features we have achieved an error rate reduction of 46% for training 
writers, and 54% for non-training writers. 

Table 1. Comparison of error rates 

A (Training Writers) B (Non-training Writers) 
single feature 10.3% 23.4% 
invariant features added 5.6% 10.7% 

5 C o n c l u d i n g  R e m a r k s  

We have introduced two new features for handwriting recognition that are in- 
variant under translation, rotation and scaling. The use of these features in an 
HMM based handwriting recognition system has been demonstrated and sig- 
nificant improvement in recognition performance has been obtained. Invariant 
features have been discussed extensively in computer vision literature. However, 
they have been rarely used in real applications due to the difficulty involved 
in estimating high order derivatives. We have demonstrated that high order in- 
variant features can indeed be made useful with careful filtering in derivative 
estimation. 
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