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Abs t rac t .  Most recent advances in fractal image coding have been con- 
centrating on better adaptive coding algorithms, on extending the variety 
of the blocks and on search strategies to reduce the encoding time. Very 
little has been done to challenge the linear model of the fractal transfor- 
mations used so far in practical applications. In this paper we explain 
why effective non-linear transformations are not easy to find and propose 
a model based on conformal mappings in the geometric domain that are 
a natural extension of the affine model. Our compression results show 
improvements over the linear model and support the hope that a deeper 
understanding of the notion of self-similarity would further advance frac- 
tal image coding. 

1 Introduction 

Barnsley's i terated function systems (IFS) and the collage theorem have provided 
the motivation for a class of fractal image compression techniques [1]. However, 
the collage theorem gives no hint of how to find an IFS that  would approximate 
a given image and in general, a coverage of an image in terms of contracted 
copies of itself under reasonably simple transforms seems unlikely to exist. 

The first practical approach to fractal image compression was proposed by 
Jacquin [2]. With this method, the image is split in small square blocks that  
tile the image, called range blocks. A pool of larger size square blocks, called 
domain blocks, that  may be located anywhere in the image is also created a 
priori. The IFS consists of a set of transformations - one per range block. Every 
such transformation tries to match the range block with a domain block under 
a mapping that  is a composition of a scaling from domain size to range size, a 
square isometry and a linear transformation in the gray level. This is a main 
departure from the spirit of the collage theorem: the image is covered with 
contracted copies of larger parts of the image, rather than the image itself. In 
practical terms, this search for a distributed self-similarity at microscopic level 
increases the chances for finding a good fractal code. It also has the negative 
effect of leading to long encoding times, to a point where, with any a t tempt  to 
extend the model, a mechanism for efficient block matching becomes imperative. 

Focusing our attention on one domain block - range block transformation, 
we notice that  it is the composition of two linear transformations, one in the 
gray level domain and the other in the geometric domain. It is normal to ask 
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whether the use of 3 bits only for the geometric transformation (8 isometries of 
the square) and some 12 to 16 bits for the gray level one represents an optimal 
code allocation. 

In this paper we investigate the virtually unexplored field of non-linear trans- 
formations and address the question of whether increasing the number of geo- 
metrical transforms would increase the probability of a good match for larger 
blocks to a point where it would compensate for the extra code and result in 
higher overall compression ratios. 

2 G e n e r a l i z e d  s q u a r e  i s o m e t r i e s  

Several at tempts with continuous and one-to-one mappings which were not 
smooth have failed to improve the compression ratio, those transformations be- 
ing "naturally rejected". We turned our attention to conformal mappings, which 
produce no angular distorsion. 

If the range and domain blocks were disks, not squares, the geometric trans- 
formations could be extended by allowing rotations of arbitrary angles, rather 
than multiples of 90 ~ Nevertheless, a square can be mapped into a disk with 
minimal distortion and preserving angles. This would further allow the construc- 
tion of transformations that  rotate squares into squares with arbitrary angles. 
It is easier to understand the continuous model of this transformation acting in 
the complex plane C as the functions involved have a simpler form as functions 
of a complex variable. We denote by 77 the set of all integers, by i the imaginary 
unit (i 2 = - 1 )  and also make the following notations for some subsets of C: 

C_ = {z[z E C, Irnz  <_ 0}, the lower semiplane; 
7) = {z]z E (~, ]zl < 1}, the unit disk and 
S Q  = {z lz  E (~, 0 ~ Rez  ~_ 1, 0 ~_ I m z  ~ 1}, the unit square. 

The Weierstrass ~ function: 

1 
p(z) (1) 2_, ( z  - 2 k  - 2 1 .  

k,lET"/ 

is a conformal one-to-one mapping of the unit square into the lower semiplane [5]. 
Denote by z0 = fa(0.5 + 0.5i) ~ -1.718796i and by ~ the complex conjugate of 
z0. Then: 

= - ( 2 )  
Z -- Z 0 

is a one to one conformal mapping of C-  into the unit disk. It follows that  

~, : ~SQ ~-~ 7) 

= w o t0 (3) 



639 

is a one-to-one conformal mapping of the unit square into the unit disk. The 
effects of p are illustrated in Figs. 1 and 2, where the square of Fig. 1 is mapped 
into the disk of Fig. 2 by p. 

Fig. 1: Initial square Fig. 2: Mapping of Fig. 1 by ~o 

For any angle ~,~ C [0,360 ~ we denote by re the usual clockwise rotation of 
angle ~ : 

re : O ~ 7 )  

re(z)  = e - ~ o i . z  (4) 

A square rotation of angle ~ is defined as the transformation 

sqro : S Q  ~-* S Q  

s q r o =  - l  o r e o ~  (5) 

Figs. 5-7 show the results of mapping the square of fig. 1 by square rotations of 
300 , 550 and 700 . 
Square antirotations are defined similarly by compositions with a flip over the 
real axis. Finally, we define the set 27 of generalized square isometries as the set 
of all square rotations and antirotations. 

Fig. 3: Mapping of 
Fig. 1 by rsq3o o 

Fig. 4: Mapping of 
Fig. 1 by rsq55o 

Fig. 5: Mapping of 
Fig. 1 by rsqToo 
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3 T h e  d i s c r e t e  m o d e l  

3.1 Discrete generalized square isometries 

Only a finite number of generalized square isometries will be used in practice. 
They are calculated only once according to the previous formulas and the hard- 
coded patterns of their discrete equivalents are known both at the encoder and 
the decoder. To understand how these discrete hardcoded patterns are gener- 
ated without going into unimportant details we shall consider an analogy with 
classical isometries. A 900 rotation of a discrete block of n x n pixels is given by 
the mapping 

(x, y) ~ (n - 1 - y, x) (6) 

It says that  the new pixel at (0,0) is computed from the old pixel at (0,n-l) ,etc. If 
the mapping is followed by a spatial contraction of (say) factor 2, from a 2n • 2n 
domain block to a n • n range block we would have that  the gray level of the pixel 
at (0,0)is obtained by averaging the pixels at (0,2n-1),(0,2n-2),(1,2n-1),(1,2n-2), 
each with the weight 0.25. It is clear that  the transformation can be described 
either by giving the set of "weighted lists" or by applying formula (6) and both 
approaches are computationally fast. The "weighted list" approach works with 
the formulas of chapter 2 as well even if the "real-time formula" approach similar 
to (6) would be impractical in terms of computational complexity. 

3.2 A filtering mechanism 

The critical part of this fractal image compression technique is the encoding 
process. For each range block, it requires a search through the pool of domain 
blocks for the best match under all available transformations. If we denote by 
Nr, Nd, Nt the number of range blocks, the number of domain blocks and the 
number of transformations, then an exhaustive search has a computational com- 
plexity O(N~ . Nd" Nt). 

However, with the method we propose, moment features can be defined for 
each block. They are computationally unexpensive and they have to be calculated 
only once for each block - which means a complexity O(N~ + Nd). The first 
order moments define the barycenter orientation which is invariant to a linear 
gray scale mapping and moves consistently with the geometric transformations. 
Only the best geometric transformations are attempted, typically 2 per range 
block/domain block pair. If the domain block and the geometric transformation 
are fixed, the parameters of the linear transformation in the gray level can easily 
be found by an autoregression formula [3]. Because of this tight control, the 
increased number of transformations does not result in a significantly increased 
computational complexity. The search complexity is reduced to O(Nr �9 Nd). 

We use a generalization of an idea presented in [5] to further reduce the 
search for a matching domain block. We define two moment features, Adl and 
M s ,  associated with (the disk equivalent l) of) each range and domain block as: 

f �9 (x + y )dxd  tier(b) 
.]~l(b) : f / 2 )  dxdy (7) 
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f fo  g(~,u)--~(b) dev(~) " (x2 + Y2)-Z dxdy 
M2(b) = f f v  dxdy (8) 

where re(b), dev(-b) are the mean and standard deviation of block b and g(x, y) 
is the gray scale level at position (x, y). The absolute values of Adl and A42 are 
invariant under any linear transformation in the gray level and any geometric 
mapping of 27. When looking for a good match for a given range block, only 
domain blocks with similar features would be investigated. Discrete equivalents 
of A41 and A42 that are computationally unexpensive can be defined. 

4 E x p e r i m e n t a l  r e s u l t s  

We use an adaptive coding scheme that splits the image into non-overlapping 
square range blocks, according to a tree structure. This tree structure is more 
flexible than a quadtree, with smoother transitions in block sizes [5]. It uses 4 • 4, 
6 x 6, 8 • 8 and 12 x 12 size range blocks. 

Fig. 6: Decoded image using 
8 classical isometries 

Fig. 7: Range block distribution 
for Fig. 6 

Fig. 8: Decoded image using 
gen. square isometries 

Fig. 9: Range block distribution 
for Fig. 8 
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Figs. 6 and 8 show two compression results of the 256 • 256 Lena image using 
this adaptive partitioning scheme. For the reconstruction of Fig. 6 only the 8 
classical affine transforms have been used for all range blocks. The reconstruc- 
tion of Fig. 8 was obtained using 8,16,32 and 32 generalized square isometries for 
4 • 4, 6 • 6, 8 • 8 and 12 • 12 size range blocks, respectively. The PSNR for both 
reconstructions is 32.8 dB. Since the quality of the reconstruction is pretty high, 
the PSNR is a good measure of the visual degradation, so we can consider the 
two reconstructions of equivalent quality. Figs. 7 and 9 display the range block 
allocation for the reconstructions of Figs. 6 and 8, with 4 • 4 blocks colored in 
white, 6 x 6 blocks in light gray, 8 • 8 blocks in dark gray and 12 • 12 blocks 
in black. Intuitively, the darker the area, the higher is the (local) compression 
factor. It is noticeable that in Fig. 9 the darker areas "take over" the corre- 
sponding lighter ones in Fig. 7. Even if the extra bits necessary to encode more 
transformation reduce this gain, the compression factor for the reconstruction in 
Fig. 8 is 9.77 versus 8.97 for the reconstruction in Fig. 6, an 8.9% improvement 
of the compression factor. 

5 C o n c l u s i o n s  

In this paper we have developed a non-linear model for fractal image compression 
based on a set of conformal mappings of the square into itself. A discrete model 
of these transformations and a filtering mechanism to reduce the encoding time, 
both of which are easy to implement, have been proposed. Our compression re- 
sults with an adaptive scheme show improvements over the linear model. In a 
broader sense, the whole experiment gives ground to hope that a better under- 
standing of the self similarity governing natural patterns could lead to further 
advances in fractal image compression. 
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