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Abstract: In this paper, we present a fast fractal image encoding algorithm 
which is based on a refinement of the fractal code from an initial coarse level 
of the pyramid. Assuming that the distribution of the matching error i~s 
described by an independent, identically distributed(i.i.d.) Laplacian random 
process, we derive the threshold sequence for the objective function in each 
pyramidal level. Computational efficiency depends on the depth of the pyramid 
and the search step size and could be improved up to two orders of magnitude 
compared with the full search of the original image. 

1. Introduction 

Fractal image compression is based on the observation that all real-world images are 
rich in affine redundancy. That is, under suitable affine transformations, large blocks 
of the image look like smaller ones of the same image. For a given image block, the 
compression algorithm needs to search through the whole image to find the best 
matching domain block under an affine transform. This search process is very 
computationally intensive as compared to the JPEG algorithm. Jacquin[1] used a 
classification scheme, which restricts the domain block search to the same class as the 
range block. As the number of the classes is only 3, the computational savings are 
relatively small. We therefore propose a fast encoding scheme based on pyramidal 
image representation. The search is first carried out on an initial coarse level of the 
pyramid. This initial search increases encoding speed significantly, because not only 
the number of the domain blocks to be searched is reduced, but also the data within 
each domain block are only 1/4" of those in the finest level, where m is the pyramidal 
level. Then, only a few numbers of the fractal codes from the promising domain 
blocks in the coarse level are refined through the pyramid to the finest level with little 
effect. 

2. Fast Pyramidal Domain Block Search Algorithm 

Pyramidal image models employ several copies of the same image at different 
resolutions. Let f(x,y) be the original image of size 2Mx2 M. An image pyramid is a set 

of image arrays fk (x, y), k=0, 1 ..... M, each having size 2kx2 k. The pyramid is formed 
by low pass filtering and resolution subsampling of the original image. The pixelfk (x, 
y) at level k is obtained from the average of its four neighbours fk§ (x', y ')  at 
level (k+l): 
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L (l' J) = ' ~ E  E L+I (2X +r ,2y+s)  (1) 
r--'0 s=0 

The coarsest level (k=0) image has size 1 and represents the average grey level of 
the original image. The finest level imagefM is the original image of size 2M• M. As 
the number of the levels decreases, the image details are gradually suppressed and 
spurious low spatial frequency components are introduced due to the effect of aliasing. 
Because the pyramidal structures offer an abstraction from image details, they have 
been proven to be very efficient in certain image analysis and image compression 
applications[2]. 

Our encoding process starts with partitioning y(x,y) into a set of nonoverlapping 
range blocks of size 2"x2". Similarly, the same image is partitioned into a set of 
overlapping domain blocks that are larger in size than range blocks to meet the 
contractivity condition. The previous study[3] showed that the general optimization 
objective function for the best matched domain block search can be written as: 

T"-I 2"-1 
E=--~ E E [D(x,y,s,t) -R(x,y)] 2 (2) 

"4 x=O y=O 

where D(x, y, s, t)=s fM.l(X, y)+t is an affine of the scaled domain block and R(x, 
y)=f(x, y) is the range block to be encoded. The fractal code is fully specified by 
parameters: (1)0~: the index of rotations/reflections; (2)D~, D~ the position of domain 
block D~; (3)s~: contractive factor; (4)t~: grey level shift. 

Instead of a constant contractive factor s, a nonlinear contractive function s(x, y, a, 
b, c) can be used for fast decoding [3]: 

1 s(x, y, a, b, c)= -+ (3) 

where (a, b, c) are parameters of the contractive function. From the original image a 
pyramid is created, the depth of which is determined by the range block size. Because 
the range block is defined in the image, the range block pyramid will be contained in 
the image pyramid with the k-th level of the range block pyramid corresponding to the 
(M-m+k)-th level of the image py~:amid. Instead of a direct search of the minimum 
of the objective function at the finest level m, we propose a fast algorithm by 
introducing a smaller, approximate version of the problem at a coarser level k of the 
range block pyramid: 

2~-1 2~-1 
E k = l  ~_, ~_,[D k(x,y, s k, t k) -R k(x,y)~ (4) 

4 k x--o y--O 

for k o < k .<_m. Therefore, at range block pyramid level k, the encoding amounts to 
finding the best matching domain block of size 2kx2 k in the image of the size 2M"§ 
2 M"'§ For example, for an original image of size 512• (M=9) and range block size 
64x64 (m=6), the search complexity at ko=2 is that of the image size 64x64 and the 
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range block of size 4x4. The k=ko level of the range block pyramid is said to be initial 
and every location of the image from the (M-m+ko)-th level of the image pyramid 
needs a test. Now, generate a 2k+lx2 m promising location matrix Gin: 

(ak§ u ,  if Ek(u'v)<Tkotherwise ( 5 )  

where (u, v) is the upper left corner coordinates of the domain block an d /*  is the 
threshold at level k. Matrix G k§ is used as a guide in the search of the domain location 
at the next level k+l. Tests are to be performed only at the locations (i, j) for 

k+l ( G ) i , j  =1 and its neighbour locations. Other parameters P~ of the promising locations 
are also propagated to pk§ for further refining at level k+l. For the of affine mapping, 
we have 0m=0 k, Dk§ D~+~=2D~y, s k§ and t t§ need to reevaluate. In the case 
of nonlinear contractive functions, the initial parameters at level (k+l) are: ak§ k, 
bm=Vd9 k, Ck*~=C k and tm=t k. The �89 gain before the a k and bkis due to the resolution 
increase in the x and y directions. The algorithm provides a gradual refinement of the 
fractal code. The process is repeated recursively until the finest level m is reached as 
shown in Fig. 1. The iterations are over the promissing locations. At the finest level, 
if  there exist more than one locations (u, v) such that (GU),.~l, select the parameters 
with the smallest match error as the fractal code. An important feature of the 
algorithm is estimating of the threshold T k. The next section shows how to estimate 
these thresholds under certain assumptions. 

3. Determination of Thresholds 

Let x~ denote the grey level difference of a pixel between an affine transformed 
domain block D and a range block R at the finest level m, i.e., x~ = D i - Ri, for 
i=0,1 ..... (2"~x2"-1). At the match location (u', v* ), x~ is significantly less correlated. 
Thus, w e  may consider xi as independent, identically distributed(i.i.d.) random 
variables with an approximately Laplacian density function: 

f(x) has mean/10=0 and variance 02=2/0~ 2. Our experimental data showed a reasonable 
approximation to the density function. Then, it can be shown that the function of the 
random variable y~=x 2 is exponentially distributed and has mean/A=r~ and variance 

2 4 r~y=5O o. The next step towards the goal is to find the distribution of the mismatch 
measure as in (2) which can be rewritten as: 

1.-1 2 1 n - 1  

E= xi = " ~ E  Yi (7) 
�9 t ,~  i=0 

where n=2mx2'L By the central limit theorem, which says that the density of the sum 
of n independent random variables tends to a normal density as n increases, regardless 
of the shapes of the densities of the given random variables[4], E is approximately 
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normal with: 

(8) 

Let P~ be the probability of finding the best match (u*,v*), i.e. P(E < Tin)= P~, then 
the threshold will be: 

T m--~tE+Xa~g=Xr~(1 + _ ~  a) (9) 

where x~, is the P~ point of standard normal distribution. For example, when P~,=0.9, 
x~=1.28. 

It can be shown[5] that the thresholds at a coarse level k are: 

(y2 
k_ 0 + Xcr 2 T - . ~ ( 1  ~ )  (10) 

2 ~ 

for k=ko ..... m-1. 

4. Computational Efficiency 

The computational efficiency of the pyramid algorithm can be evaluated based on the 
following theoretical considerations. For a given range block, assume each domain 
block needs the same number of operations to determine the parameters. Then the 
computational cost is proportional to the product of the number of domain blocks 
searched and the number of pixel in each block. For an original image of size 2ex2 M 
and range block of size 2"x2", when D~ is chosen in each dimension twice the size 
of the R~, the search domain image is 2M'lx2 MI with the contracted domain block of 
size 2"x2". This number becomes: 

2M-1 _ 2 m 
C1=8 ( +1) 2 22m (11) 

h 

where h is the step size of the domain block search. When a pyramidal search is 
applied, the computational resources for the algorithm are determined by the average 
number of the promising locations np on every pyramid level and the number of the 
shiRs n, around each promising location: 

2(M-m§ 2 ~ +1 )z 22ko ~ 2 2i (12) 
C2= 8 ( h(ko) + npn i.ko~l 

where the first term corresponds to the initial step of the algorithm, testing every 
domain block on the initial range pyramid level/Co. The search step size h(ko) is related 
to th finest level step size h as follows: 
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h(ko) = max(l ,  h ) (13) 
2(m%) 

where we assume only the integer search step is used in level ko, although, in general, 
the search with sub-pixel accuracy is possible. 

The number of operations required to create an image pyramid will be proportional 
to the number of pixels: 

M-1 
C3=K1 E 2Z(M-i) (14) 

i=M-m+k o 

Compared with the optimization operation during the domain block search, this part 
can be neglected. 

The benefit in computational saving using pyramids relative to the full search of the 
original image is estimated as: 

C 1 C 
Q= =_..2. ~ (15) 

c2+c, c2 

For a given image and range block size, the value of Q depends on the depth of the 
pyramid and the search step size. For example, for the image of size 512x512, range 
block 32x32, when h=2, n~=20, n,=16 and ko=2, the computational saving factor will 
be 194. The actual Q value is expected to be smaller than the theorical one. For 
example, encoding a 32x32 range block with affine contractive mapping needs 95.89 
CPU seconds by full search and 0.79 seconds by pyramidal search (Serial 
implementation on KSR1 parallel computer without optimization of codes), which 
gives Q=121. 

5. Experimental Results 

Fig. 2 is 512x512x8 bits original Lenna image. Quadtree partition is used for range 
blocks. The initial range block size is 64x64. The mean square error was determined 
for each range block. Blocks which had an error exceeding 81 (corresponding rms 
value 9.0) and were larger than 8x8 in size were split. Fig.3 shows our reconstructed 
image using nonlinear contractive function by full search algorithm at bit rate 0.2 bpp 
(compression ratio 40:1) and PSNR=30.2 dB. Fig. 4 is the result of this paper at the 
same bit rate and PSNR=29.9 dB. Thus, the pyramid search algorithm is quasi-optimal 
in terms of minimizing the mean square error. The main advantage of the pyramid 
algorithm is the greatly decreased computational complexity, when compared to full 
search. 
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Fig. 1. Refining the fractal code 
from coarse to fine level 

Fig. 2. Original image 

Fig. 3. Full search, 0.2 bpp, 30.2 dB Fig. 4. Pyramid search, 0.2 bpp, 29.9 dB 


