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Abstract.  We present a segmentation method using fuzzy sets theory 
applied to remote sensing image interpretation. We have developed a fuzzy 
segmentation system in order to take into account complex spatial 
knowledge involving topologic attributes and also relative position of 
searched areas in membership degrees images. A membership degrees image 
represents the membership degrees of each pixel to a given class and is 
supposed obtained by a previous classification (involving simple contextual 
knowledge). To improve this previous classification, we introduce structural 
rules which allow us to manage with region characteristics. These structural 
characteristics are obtained by using a fuzzy segmentation technique. 

1 Introduction 
We present a knowledge-based approach for satellite image interpretation taking 

into account structural knowledge about searched classes In a first step, we use a 
locally existing knowledge-based system [1] which gives us membership degrees to 
each searched class for each pixel. Non-structural expert knowledge describing the 
favourable context for each class in terms of out-image data (elevation, roads, rivers, 
types of soils .. . .  ) is at that step already taken into account. This type of knowledge 
is based on pixel information independently of the neighbourhood. 

So we have n images (if we look for n classes) representing the membership 
function to each class i: {~ti(x,y)}). We have now to introduce expert structural 
knowledge and out-image data to update the ~ti functions in order to give the final 
classification. As we have to manage with regions and relations involving different 
regions or objects and as we have only membership functions ~ti, we produce a fuzzy 
segmentation of each image {~ti(x,y)}. We have now to produce n sets of fuzzy 
regions (with their fuzzy geometric attributes) and to compute fuzzy relations 
involving regions of different classes or objects defined on out-image data. 

For each image {~ti(x,y)} the fuzzy regions are defined by their level-cuts. Note 
that if a level-cut gives more than one connected crisp region, we define new fuzzy 
regions. Geometric attributes are computed for fuzzy regions (surface, perimeter, 
degree of compactness, shape...). We define relations (inclusion degree, distance .... ) 
between fuzzy regions of different classes or out-image items (roads, rivers, soils .... ). 
So our fuzzy segmentation splits the n images {~ti(x,y)} into hierarchical structures of 
fuzzy regions with their geometric attributes. 

The structural knowledge concerning the searched classes is now introduced in 
order to update the n membership functions I-ti and finally an improved classification 
is obtained. 
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2 Fuzzy Segmentation 

2.1 Convex Combination of Sets 

Using fuzzy sets theory [7] we can define a fuzzy set by a random sets 
representation (also called convex combination of  sets) [2]. This combination is 
composed of n included crisp sets Ai (A 1DA 2 DA 3D...) with m(Ai) 
corresponding positive weights [5]: 

n 

E m(Ai) = 1 (1) 

i=1 
Assume n values aie[0,1] and (xi<ct2<...<Ctn. We can compute 

A={CUTa1,CUT~, ...,CUTa,} with COTcq=Ai is the crisp set obtained with the 
level-cut t~ i. A level-cut is defined as the set of pixels which g(x,y) is greater than 

0~ i . 

The weight assigned to the set Ai is computed as follows: 
m(Ai)=t~i-ai-1 and ft.0=0 (2) 

The membership function of a fuzzy set is obtained from its "convex combination 
of sets" representation. This property allows us to manage fuzzy regions only by 
using their level-cuts (which are crisp regions). 

2.2 Application on a Membership Degrees Image 

Fuzzy Sets Supports.We consider the Euclidean plane of the image as the fuzzy 
sets referential. Fuzzy sets suppo~s are computed by using a threshold r obtained 
from the membership degrees image histogram, in order to process only the 
significant pixels (fig. 1&2): 

Threshold Fuzzy set supports 

local histogram of the fuzzy sets 

~ ~aumber of 
pixels 

O l  1 ~'~ Membership 
a t  ct2 ~m degrees 

Factors judged not 
sif~nificant 

Fig. 1. and 2. 

Fuzzy Region. An ordinary region is a set of connected pixels (with a non-zero 
membership degrees value) obtained from a level-cut on the A1. fuzzy region support. 
All the crisp sets (included in the support) with corresponding weights define a fuzzy 
region (fig. 3) 
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A2: p(x,y)~ O.'q 

Re, f minutia1: 
M ~ d ~  d ~ r e w  i m ~ e  A4:~(x,y)= I 

Fig. 3. Fuzzy Region 

The level-cuts values can be computed by a constant step or by a thinness 
threshold as follows (defining the thinness of each level-cut): 

Min ( f~XH(x)dx>Thinnessl (3) r : oc> c~i a n d  r d ot i 

With : cxi: level-cut i; cxi+l: next level-cut; H0: local histogram function. 

So an image is described as a set of K fuzzy regions and a fuzzy region is defined 
as a concentric set of crisp regions. 

Fuzzy Characterist ics.  A crisp region Ai is a set of connected pixels. Then we 
can compute topologic attributes for this region such as: Perimeter, Compactness 
degree, Moments of order one and two, Surface, ..: 

The value of one particular topologic characteristic for each crisp region is co..mputed 

separately by using a measurable function F. The final measurable function F of the 
fuzzy region, characterizing the topologic attribute, is obtained by the following 
formula [3]: 

n 

F(A) = ~. m(Ai) F(Ai) (4) i=l 
We obtain a general aspect of the fuzzy set. Therefore, the image is described as a 

hierarchical structure of fuzzy and ordinary regions with their geometric attributes. 

Fuzzy Relations Between Fuzzy Regions. Moreover we can also determinate 
fuzzy relations between fuzzy regions such as: distance, at which degree two regions 
are oriented in the same direction, at which degree one region is included in another 
one, ... 

The realisation degree of a relation between two crisp regions is computed by using a 

measurable function F. We can also define a measurable function F for the relation 
between two fuzzy regions [3] A and B, 

_ A which is composed by the crisp regions set {AI, A2, ..., An} 

. B which is composed by the crisp regions set {B1,B2, .--,Bp} 

- and a function F(Ai, B j) which links the crisp regions A i and Bj. 

The relation between the two fuzzy regions A and B is computed as follows [3]: 

I:(A,B) = ~ s m(Ai) m(Bj) F(Ai, Bj) (5) 
i = l  j = l  
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3 Structura l  K n o w l e d g e  Appl icat ion  

3.1 Local Rules (Pixels) 

Local rules characterize the expert's local knowledge describing the favourable 
context for each class in terms of out-image data (elevation, roads, rivers, types of 
soils,...). This type of knowledge [1] is based on pixel information independently of 
the neighbourhood. For example: "class X: frequently elevation >1000m and on north 
slope". So we obtain n images (if we look for n classes) representing the 
membership function to each class i: {l.ti(x,y)} (the membership degrees images). 
Let's suppose A is a fuzzy region extracted in membership degrees image for one 
particular class, we define: 1-l(A)={cq,~2, .. .,t~n} (with t~ 0 < t~ 1 < ...< t~ n and 
~0 = 0). A level-cut t~ i defines a crisp region and the associated weight is computed 
(section 2.1) to obtain a convex combination of sets. 

3.2 Structural Rules 

These rules introduce expert structural knowledge and out-image data to update the 
~ti functions in order to give the final classification. 

For example: "the class X appears principally as elongated shapes along big rivers". 
We have in this rule three structural information: 

-e longated (characteristic of a region) can be computed from the fuzzy 
compactness topologic information, 

-along (relation between two regions) can be computed from the distance 
variations between regions' skeletons (or supports), 

- bl_jg (characteristic of a region) can be computed from the fuzzy surface topologic 
information. 
Principally can be considered as the frequency degree for the class to be in this 
context. 
As we have to manage with regions and relations involving different regions or 
objects and as we have only membership functions I.ti(x,y), we produce a fuzzy 
segmentation of each membership degrees image {Ixi(x,y)}. 
In fact, in our application, after applying the fuzzy segmentation method, we 
determine topologic characteristics (such as compactness, perimeter,...) and relations 
(such as distance, adjacency degree...) for two fuzzy regions. Then we introduce the 
structural information given by the rule concerning the class i in order to update the 
membership degrees image { kti(x,y)}. In fact each { kti(x,y)} will be modified 
relatively to the structural knowledge concerning class i. 

3.3 Application of the Rules 

Assume P is a property (associated to a production rule concerning class C) and 
fp( ) the real function which associates at each crisp region its realization degree. 

fp(A) will be the realization degree for the fuzzy region A. 
For example: 

Rule: If <Class C> Then elongated shape 
(Property P: "elongated region"). 
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For all crisp region Ai, fp(Ai) is the elongated degree of Ai. This degree, which 
must be a value in the ]0,1] set, may be computed from the following ratio: perimeter 
/ surface. 

Let's suppose A is a fuzzy region (included in a membership degrees image and 
characterizing a class C)with A={A1,A2, ..-,An} the level-cuts set on A. So, we 

define the weight function rap( ) as follows: 

VAic_A 
mp(Ai) = fp(Ai) (6) 

In our method, all the new weights are normalized ([0,1] se0. So the combination 
m(ni) hy mp(Ai): 

- increases the Ai regions' weights which best verify the property P, 
- reduces the Ai regions' weights which worst verify the property P. 
We modify the weight attached to each crisp region: 
VAic_A 

m'(A,) = m(A,)-m,(A~) m(A,).f,,(~) _ m(A,).fp(A,) 
A~m(A,).rn,(A,) = A.~m(Aj).f~(Ai) - ~(A) (7) 

So, the weight assigned to a crisp region Ai which verify property P will be 
increased. 

In the formula (7), the expert knowledge is considered as sure. But, generally, we 
have both an expert rule and a frequency degree 13 for the rule (-1<13_<1 ; from - 1 for 
"never" to 1 for "always"). Then we define a new weight function to manage with this 
frequency degree ~: 

k/Aic_A 

mp(Ai) = fp(Ai) 13 (8) 
We obtain a new fuzzy region: 

VAic_A 

" m(Ai)-mp(Ai) mtAi'LffAi~tl 5 ,  ' 'P '  J (9) 
m'(Ai) = ~m(Aj) .mp(Ai ) = Em(Aj).fp(Aj)~ 

AriA 

At this step, we use a MYCIN-based combination function [6] Fmy~ (see annex) 
to obtain the final fuzzy region: 

1 + F~y~i~(2m'(Ai)-1,13.fp(A))(10) 
VAi c A ,  m"(Ai)= 2 

The final weights m"(Ai) associated to all crisp regions A i are defined with the 
MYCIN-based combination [6] and from the two following values: 

- m'(Ai): weight for region Ai~[0,1] 

~.~(A): - [3 frequency degree of the mle. 

~(A) realisation degree of 
property P for the fuzzy region A. 
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4 An example of Fuzzy segmentation and structural 
knowledge application 

Membership degrees Image Segmented Image Fuzzy regions display 

If <Class C> Then compacted Image: "Distance to roads" New membership Image 
shape - A - If <Class > then roads 
( + property "compacted region"). (combined with - A -) 

5 Conclusion 

We have proposed a new method to introduce structural knowledge for image 
interpretation based on fuzzy logic and fuzzy segmentation. Our method splits the 
membership degrees images in a set of atomic fuzzy regions. In a second step, we use 
structural rules to update the membership degrees images and then to give final 
classification. We have applied this method on geocoded images and achieved 
interesting results. The application to satellite image classification is going on. 
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