
Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 173 (1997) 235-252

Situated simplification

Andreas Podelski”T*, Gert Smolkab

” Max-Plan&Institut Informatik, Im Stadtwald, D-66123 Saarbriicken, Germany
bProgramming Systems Lab, German Research Center for Artificial Intelligence (DFKI),

Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany

Abstract

Testing satisfaction of guards is the essential operation of concurrent constraint programming
(CCP) systems. We present and prove correct, for the first time, an incremental algorithm for
the simultaneous tests of entailment and disentailment of rational tree constraints to be used
in CCP systems with deep guards (e.g., in AKL or in Oz). The algorithm is presented as the
simplz+ztion of the constraints which form the (possibly deep) guards and which are situated at
different nodes in a tree (of arbitrary depth). The nodes correspond to local computation spaces.
In this algorithm, a variable may have multiple bindings (which each represent a constraint
on that same variable in a different node). These may be realized in various ways. We give
a simple fixed-point algorithm and use it for proving that the tests implemented by another,
practical algorithm are correct and complete for entailment and disentailment. We formulate the
results in this paper for rational tree constraints; they can be adapted to finite and feature trees.

1. Introduction

One idea behind concurrent constraint programming (CCP) is to base the satisfac-

tion of guards (which is the condition driving the synchronization mechanism) on

constraints. In this model, a constraint store is connected with several nodes ~1. Each

of them is associated with a constraint cpol (its guard) and with a guard check. The

guard check consists of the tests of entailment and disentailment of (p2 by the con-

straint store. (If one of the two tests succeeds, an action may be triggered from that

node.) The constraint store grows monotonically; upon each augmentation, the tests are

repeated until one of the two tests succeeds. In the deep-guard model, each constraint

qr may itself be a constraint store which also grows monotonically and which is itself

connected with “lower” nodes, and so on. That is, at each instance one has a tree

of nodes (or, local computation spaces) with constraints; a constraint in a node c(is

visible in all nodes lower than CI. The problem is to determine which of these nodes

are entailed [disentailed] by their parent node. At every next instance, this test will be

* Corresponding author. E-mail: podelskitipi-sb.mpg.de

0304-3975/971$17.00 @ 1997-Elsevier Science B.V. All rights reserved
PZZSO304.3975(96)00197-l

236 A. Podelski, G. Smolkai Theoretical Computer Science I73 (1997) 235-252

repeated for a tree with augmented constraint stores in the nodes. Thus, an algorithm

implementing the test has to be incremental. In this paper, we first define formally the

general scheme of such an algorithm for an abstract constraint system as situated sim-

plification. We then give a concrete algorithm for the case of constraints over rational

trees in two different presentations, a high-level one based on fixed-point iteration and

a more concrete one with more refined control and with implicit data representation.

We prove the correctness of this algorithm in both presentations, relying on our concise

formal account of the logical properties of rational-tree constraints.

CCP [14] comes out of concurrent and constraint logic programming, which orig-

inated with the Relational Language [4] and with Prolog-II [5], respectively. The

computation model of concurrent logic programming languages [151 is based on

committed-choice, a particular guard operator. In [lo], the commit condition was

analyzed as logical entailment. (The delay mechanism in Prolog-like languages as

MuProlog [12, I l] and functional residuation in LIFE [1,2] are based on entailment as

well.) AKL [7] and Oz [8,9] are two practical systems providing both for concurrent

(as in multi-agent) and constraint logic programming in one uniform framework. Here,

deep guards constitute the central mechanism to combine processes and (“encapsu-

lated”) search for problem-solving.

The first formal account (with proof of correctness) of an incremental algorithm

for the simultaneous tests of entailment and disentailment is given in [3], for flat

guards and a constraint system over feature trees. This algorithm is an instance of

a general scheme called relative simplification. An abstract machine for the check of

flat guards for constraint systems over trees is given (and proven correct) in [161. It

reflects the present implementations in AKL and Oz. The algorithm is guard-based

in the sense that for every guard to be revisited (i.e., whose test is resumed), the

entire local binding environment is re-installed (and removed afterwards, if the test

still suspends). Its on-line complexity is quadratic, whereas it is quasi-linear for the

Beauty & Beast algorithm given in [131. That algorithm is variable-based in the sense

that the bindings are installed for each variable independently and only when needed.

The bindings are indexed by the guard; thus, they may remain being installed (i.e.,

this avoids re-installing/removing the local binding environment each time the test of

the guard is resumed). The algorithm given in this paper picks up that idea, namely of

indexing the bindings of the same variable by the different nodes (where each of the

bindings represents a constraint on the variable in a different node). This provides for

a high-level presentation. It now remains a matter of implementation how a variable’s

multiple bindings are realized. This may be done, for example, by re-installing/removing

the guard environment as mentioned above, or by using lookup tables, which seems

more efficient.

In this section, we have stated the problem informally and put it into a general

context. In Section 3, we formalize it and give the general scheme called situated

simplification for incremental algorithms solving the problem over an abstract con-

straint system. Before that, however, we discuss a motivating example informally, in

Section 2. Section 4 lists those properties that are important for the tests of satisfiability

A. Podelski, G. Smolkal Theoretical Computer Science 173 (1997) 235-252 231

and entailment over rational trees and that we need here. We give their proofs in a

concise way. We then present a concrete situated simplification algorithm for constraints

over rational trees in two different ways. The first one, in Section 5, is high-level in

the description of its control strategy (which is by fixed-point iteration) and of its

data representation. The second one, in Section 6, avoids redundant computations and

data representations as much as possible using a task stack and using a store with

implicit representations of constraint conjuncts. We close with a conclusion section.

2. Motivating example

The execution of the Oz program given in Fig. 1 will build up a tree of 5 computation

spaces. The constraints are equations between terms, interpreted over the domain of

rational trees. The effect of line 1 is to put the constraint X = f(a, Y) into the (“global”)

constraint store at the root of the tree; we note this node /?, Lines 2 to 11 code a

disjunction consisting of two disjuncts. These have to be tested simultaneously for

entailment and disentailment (the disjunction is suspended until one of the disjuncts is

entailed or disentailed, i.e., “determined”). ’ The tests of the two disjuncts are done in

the two local computation spaces at and CQ which are directly below /?.

The constraint X = f(a, Y) does not determine the constraint Y = c. That is, the

constraints in the computation spaces above ~(2 (here, only p) do not determine the

constraint in ~2 (which forms the second of the two disjuncts, given in line 10). This

might change during the execution of other, not shown parts of the program, say, if

Y = c was added to p (then ~2 would be entailed), or if Y =d was added to fi (then

~12 would be disentailed).

The first of the two disjuncts (coded by lines 3 to 8) is a conjunction of the constraint

X = f(Z, Z) and another disjunction. The variable Z is quantified existentially over this

conjunction, or: a1 is the “home” of Z (whereas j is the home of X and Y). The

computation space a1 is above the two computation spaces yt and y2 for the tests of

the disjuncts Y = Z and Y = b, respectively.

Now, 72 is disentailed since the conjunction X = f(a, Y) A X = f(Z,Z) of the

constraints in computation spaces above ~2, here a1 and /I, disentails the constraint

Y = b. On the other hand, yt is entailed since the conjunction X = f(a, Y) A X =

f(Z, Z) of the constraints in computation spaces above yt, here also al and ,!3, entails

the constraint Y = Z.

Finally, we observe that a1 itself is not determined. The constraint X =f(a, Y) does

not determine 32 X = f(Z, Z). This might change, for example, if the constraint Y = a

was added to p. This last case touches the issue of detecting “implicit equalities,” here,

between the first and second argument of the term f(a, Y).

’ In the following, we will use “determine” as a synonym of “entail or disentail”

238 A. Podelski, G. SmolkaITheoretical Computer Science 173 (1997) 235-252

I X=f(a Y)

2 01
7

;;

Z in X=f(Z Z)

01

5 Y=Z

6 [I
7 Y=b

8 r0

9 [I

IO Y=c

II ro

Fig. 1. Oz program and corresponding tree of 5 computation spaces

How does our algorithm perform a test on the five computation spaces? It will

simplify the constraint in each computation space to a new constraint, hereby taking into

account the constraints in all the computation spaces above. This simplified constraint

signals (by its syntactic form) whether the computation space is entailed or disentailed

or neither.

For example, the simplified constraint in yi is T (for true) and thus signals entail-

ment (T is a special case of a constraint signaling entailment). The one in 72 is -L

(for false) and thus signals disentailment. The one in ai is Z = Y A Y = a and, since

it binds a variable (here Y) from a computation space above, it does not determine ~1.

(It would be further simplified to Z = Y if the constraint Y = a was added to /?, and

this would signal entailment; note that 32 Z= Y is equivalent to T.) Finally, the sim-

plified constraint in c12 would be Y = c and thus signals “not determined”. (It would

be further simplified to -L if Y = a was added to /I, and then signal disentailment.)

Intrinsic difficulties of tree-ordered constraint stores. The algorithm will compute with

suitable representations of the constraints, namely by bindings on variables. These

representations must specify to which node the binding belongs. Also, there might be

several bindings on the same variable (in the example, two on X and three on Y).

This will be handled by allowing multiple bindings and by indexing the bindings with

the nodes. For a fixed node, the algorithm must accumulate the constraints in all

the computation spaces above; i.e., it must represent their conjunction. What if there

are several bindings on the same variable in this conjunction (in the example, if we

take either of yi or 72 as the fixed node, there are two bindings on X)? Could they

be contradictory? Which one to choose? Also, if the test on a node depends on all

nodes above it, then this means that each modification of the constraints of a node

(by. incremental adding of a conjunct) concerns potentially all the nodes below it.

That is, their suspending tests may have to be resumed. Furthermore, acyclicity of

bindings going through nodes above and below has to be rechecked. An additional

difficulty, algorithmically and for proving correctness, comes from the fact that for the

manipulation of constraints over rational trees, bindings previously considered must be

memorized in order to avoid infinite loops and in order to prove the entailment of those

A. Podelski, G. Smolkal Theoretical Computer Science 173 (1997) 235-252 239

bindings (as in the proof that X = f(Y), Y = f(X) and Z = f(Z) together entail X = Z;

here, the repeated encounter of X = Z upon iterative application of the decomposition

rule indicates the entailment of X =Z).

3. Situated simplification

In this section we will introduce some notions whose context is as follows. The

algorithm to be presented in this paper is an instance of a new general scheme (called

situated simplijcation) which is parameterized by the constraint system. An algorithm

in this scheme will take a constraint tree as input. For each of the nodes of the

constraint tree, the algorithm will determine whether the node has one of the two

properties which we will introduce below, called inconsistent or entailed, or neither

of them. It will do this by transforming the constraint tree into a normal one.

We assume a constraint system, i.e., a first-order theory A (the theory can be given

as the set of all sentences valid in a given structure; e.g., of rational trees) and a set Con

of first-order formulae called constraints. The set Con must be closed wrt. conjunction. 2

The set of variables is Var. For cp E Con, free_var(cp) is the set of all free variables

of q.

We also assume a finite tree-ordered set 3 Nodes whose elements we refer to as

nodes (or, local computation spaces). We note the tree-order “ 6 “. We read fl < c(as

“b is above CL” (which means, b is closer to the root in the tree order). In the notation

in this paper, we will try to keep the order /3 <c~<y when we choose letters CI, p,;j to

name nodes.

Finally, we assume a function home:Var H Nodes which assigns each variable x

one node IX as its “home”. We call the variables in home-‘(u) the local variables of

the node LX We often write them in a tuple &. Thus,

X, = {local variables of IX} = home-‘(

The variables x with home in nodes strictly above E are the global variables of ~1.

Thus,

{global variables of M} = U{home-‘(j3) I/3 < ct}.

We may use “global” and “local” referring only implicitly to a fixed node c(. The local

and the global variables are the ones “visible in a”. Thus,

{variables visible in LX} = U{home-‘(j3) 1 p<ct}.

2 As usual, we identify a conjunction with the multiset of its conjuncts (and A with U) in our notation.

Thus, X = t E cp means that X = t is a conjunct in q, and U{ cp 1 cp E M} is the conjunction of all constraints

cp in the set M.

3 A tree-ordered set is isomorphic to a prefix-closed subset of some free monoid, where “G” corresponds

to the relation “is prefix of”.

240 A. Podelski, G. Smolkal Theoretical Computer Science 173 (1997) 235-252

The set Nodes and the assignment home of variables to their “home” nodes are

fixed throughout the rest of this paper. We are interested in labelings of the nodes

by constraints (hence the name “constraint tree”) which respect the partition of the

variables according to their home nodes in the following sense.

We define that a constraint tree T is a mapping

T : Nodes H Con, a I+ cpa

such that the free variables of each constraint cpor are visible in its home node CI, i.e.,

free_var(q,) 5 U{ home-’ 1 /I < a}.

We will write T also as the sequence (qU)aE~oees.

We refer to the constraint (P@ as the “constraint situated in CI”. We define the “context

of LX” as the constraint (P<~ which is the conjunction of the constraints situated in nodes

strictly above a; i.e.,

cp <z=UGP~lB-M.

The constraint “visible in LX” is noted cpGU and defined accordingly.

The node a is inconsistent (or, disentailed) if qGa is unsatisfiable, which is the

same as

A I= (~<a --+ -3x,(p,.

Note that this may also be expressed by A k (P<~ -+ (3, (Pi ++ I).

The node ~1 is entailed if (1) it is consistent and (2) the constraint situated in c(is

entailed (modulo local variables) by the context of LX Condition (2) is formally

Note that condition (2) may also be expressed by A k (P<@ -+ (3X, (Pi c) T). The

constraint tree ((PU)XENO&S is normal if it satisfies conditions 1 and 2 below:

1. If LX is inconsistent, then the constraint cpX is the constraint false.
2. If c(is entailed, then the constraint 3X, cpcc is equivalent to true.
Formally, this means the same as the following:

1. If A /= (P<~ + 4X,cp,, then (Pi = 1.

2. If A + (3)cp<, and A k (P<~ + 3X, cpcc, then A + 3X, cpcc.
Two constraint trees are equivalent if for every node c(, the two constraints visible in

c(in each constraint tree are equivalent. Formally, for two constraint trees (pO,),ENodes

and ((P;)aENodes, if

Al=cp <a * cp’<,.

Note that the two constraint trees have the same set of nodes, namely Nodes, which

is fixed (as is the home mapping on variables).

We name situated simplijication a procedure which transforms a constraint tree into

an equivalent normal constraint tree.

A. Podelski, G. Smolkal Theoretical Computer Science 173 (1997) 235-252 241

Situated simplification implements the simultaneous tests of entailment and dis-

entailment of cpz by the context of c1 for every x E Nodes.

4. Rational trees

We assume a signature containing the function symbols (or constructor symbols)

which we note f, g, h, a, b, c, etc. (we assume the existence of at least two different

symbols but nothing else on the signature; in particular, it may be finite or infinite).

We call constructions the terms of the form f(i) and note Struct the set that they

form. Here, X denotes an ordered tuple (XI,. . . ,x,) of length IZ according to the arity

of the function symbol f, with pairwise difSerent variables XI,. . . ,x,.

The set of constraints Con is the set of possibly existentially quantified conjunctions

cp of equations between variables x E Var and terms t E Var U Struct (the restriction

to terms of depth at most one is for presentation only; it is, of course, not a proper

restriction). Formally, we have the following abstract syntax for constraints: 4

A tree z may be represented as a set of pairs (w, f) where the function symbol f is

the labeling of the node with the path w E { 1,2,. .}*. The empty path E refers to the

root of the tree. We write the free-monoid concatenation of paths z: and w simply VW;

we have EW = WE = w.

The set t must satisfy several conditions in order to be a tree: The labeling is unique,

the root is always a node of t, and the direct descendants of each node conform to the

arity of its function symbol (i.e., (w, f),(w,g) E t implies f = g), (E, f) E t for some

function symbol f), and if (w, f) E t then (wi,f,) E t function symbol fi iff 1 <ib

arity of f).

The tree r is rational iff it has only finitely many subtrees, which are the trees

w-‘z = {(u, f)I(wu, f)Er} for some path w.

The application of a function f to trees tl, . . . , t,, yields the tree

f(tl,...,&) = {(&,f)} U {(iw,g)I(w,g)Eti, i = l,...,n).

Given a constraint cp, we say that the variable x is determined if cp contains an

equation between x and a construction. A constraint cp = {xi = J;:(Ui) I i = 1,. . ,n}

where the determined variables x1 , . . . ,x, are pairwise different is called a linear system.
From now on, A is the theory of rational trees over the given signature of function

symbols. We will use the following three facts about trees, the first one for the consis-

tency test and the other two for the entailment test. The first one is the characteristic

property of rational trees (cf., for example, [6]).

4 We use = for both the logical equality symbol and the meta-level identity; no ambiguity will arise

242 A. Podelski, G. Smolkal Theoretical Computer Science 173 (1997) 235-252

Fact 1. A linear system cp is satisfiable; i.e., A k (3)cp.

The first fact is a logical consequence of the next one. (On the other hand, given a
proof of the first fact, the second fact could have been proven from the first. Namely,
the value of a non-determined variable never contains an occurrence of the value of a
determined variable and, thus, may be chosen arbitrarily in any solution for p.)

Fact 2. For all vai~es of the non-determined variables in a linear system rp there
exist values for its determined variables xi , . . . ,x,, such that cp holds, i.e., A + (‘d)

3x1 3 *. * ,Xn)(P.

Proof. Given 40, we define the relation x -+w y (“x leads to y”) by: n Y*~ x, and if

X-Q Y and Y = ffyt,...,~~,..., yn) E v, then x -+& yk. We extend any valuation li
defined on the non-determined variables of v, by setting

+) = {(w,f) 1 x-h Y?Y =f(qECo)

U{(wv, f) 1 x --+, y, y is non-determined, (u, f) E v(y)).

For all determined variables x, every subtree of v(x) is either of the form w-‘v(x) =
v(z) where z is the variable occurring in (;D such that x -+w z, or it is a subtree of such
a v(z) for a non-determined variable z. Thus, v(x) is a rational tree, and v satisfies all
equations x = f(6) E cp. 0

The next fact says when equations between determined variables are entailed. 5

Fact 3. The constraint v, entails the conjunction $ of variable-variable equations if

for every conjunct x = y of $ there exist determining equations x = f (~1,. . .,u,)

and y = f (q,. . . , v,) in cp such that the variables uj and vj are equated in cp or in

$ or they are the same variable (i.e., uj = vj E tpu+ or tii = uj for j = l,...,m).

Proof. We first note that two rational (or infinite, or finite) trees zi and ~2 are equal

iff for all n they are equal up to depth rt. 6 Given a valuation v which satisfies cp (i.e.,

A,v + p), we prove, by induction over n,

for all x = y E bl/, v(x) and v(y) are equal up to depth n. (1)

We assume (1) for n’ with n’<n and x = y E $. Then there exist x = f(Ut,...,anr),

y = f(%..., v,) E cp as in the formulation of Fact 3. Thus, if n = 0 then (1) holds.
Otherwise, for j = 1,. . . , m, uj = vj or uj = vj E cp or Uj = vj E II/. In any of the three
cases (in the last one by induction), v(Uj) and V(Vj) are equal up to depth n - 1, and
hence, (1) holds for n. Cl

5 This is a simple fact about rational trees, and finite trees as well. It is orthogonal to the algorithmic problem

of the entailment test for rational trees which is caused by cycles in the determining equations.
6 Formally, one may define the restriction of a tree i: to depth n inductively by f(r1,. . , T,)(o = f(a, . . . ,a)
and f(rr , . . . > Gn)ln+I = f(vln,.~‘, rmIn), for some constant symbol a.

A. Podelski, C. Smolkai Theoretical Computer Science 173 (1997) 235-252 243

5. Foxy-lint algorithm

In this section, we will represent the two kinds of rational-tree constraints by bindings
(either to a variable or to a construction) which are marked by the node to which the
constraint belongs. We call the corresponding representation of a whole constraint tree
a ~~cor~~~o~. Then we will describe an algorithm which works by generating many
new bindings (a lot of which will be redundant). Since it will never remove a binding
(and not use new constructions), however, the termination follows from the finiteness
of all possible bindings. The successive generations of bindings are justified by either
the logical properties of equality, or by the fact that a constraint is visible in all nodes
below the one to which it belongs, or by one logical property of the rational-tree
constraint system (namely, the inje~ti~ty of function symbols). If there are no more
justified generations of bindings possible, then the bindings (reduced to a non-redundant
subset) represent a constraint tree which is ~~r~ai (and, thus, exhibits which nodes are
inconsistent or entailed). This follows from Theorem 1, which states how the bindings
exhibit directly which nodes are inconsistent or entailed.

We will next define a representation for rationaI-tree constraint trees.
A decoration D is a labeling of nodes CI by finite relations g C Var x (Var u Struct)

such that all variables occurring in ” are visible in the node a. We write the relationship
as x g J’ or x z f(C), respectively. For each node E, we define its “context relation”

A decoration D defines a constraint tree ((pd()% E~o+s by cpz = { x = t / x g t).

For decorations, the notions of equivalence and of inconsistent (or of entailed) nodes
and of determined variables are obtained by referring to the defined constraint trees.

A decoration D is complete if for all variables x, y, const~~tions f(C), f(C) and
nodes a,

1. G n (Var x Var) is an equivalence relation,
2. 2 c 2,

3. x g y, x g f(C) implies y 5 f(C),
4. x 2 f(C), x ” f(6) implies 22 2 r7.

Given any decoration I), each of the conditions above can be made to be satisfied by
adding pairs to the relations 1 (which is an equivalence transformation on the defined
constraint tree). Going iteratively through the four conditions yields a monotonically
growing family of relations. Since for each U, A is a subset of Var x (Var u Struct)

ranging only over the variables and constructions occurring in D, the iteration reaches
a fixed point in finitely many steps (note our assumptions that each relation g is finite
and that the fixed set Nodes is finite). We have given an algorithm which proves the
following s~tement.

Proposition 1. For every decoration D there exists a least complete decoratim D’

containing D (i.e., D 2 Do. moreover, such a decoration D’ is equivalent to D.

244 A. Podelski, G. Smolka I Theoretical Computer Science 173 (1997) 235-252

A complete decoration is interesting because it exhibits which nodes of the defined

constraint tree are inconsistent and which are entailed.

Theorem 1. If D is a complete decoration, then:

1. The node CI is inconsistent ifsx z f (ii) and x ” g(6) and f # g for some variable
x and constructions f(U), g(V);

2. The node CI is entailed iff GI is consistent and the following two conditions hold.
(a) If x is global and x A f (ii) then there exists a variable y and a construction

f(V) with x ” y and y 2 f(V) (i.e., y is determined in the context of a).

(b) If x and y are global and x ” y then either x 2’ y or x 2 f(U) and

y ‘=” f(G) for some constructions f(C), f(C) (i.e., both x and y are determined

in the context of a).

Proof. Given a complete decoration and a node CI fixed, we may construct a function

r : Var H Var such that (1) r(x) = r(y) iff x 2 y, and (2) r(x) is local only if x is

local. That is, r assigns each variable a - with preference global - representative of its

equivalence class, the equivalence being ” n (Var x Var). (We will make use of the

preference of a global over a local variable as the representative when we introduce

Eq. (2).) The constraint

cp; = {r(x) = f (r(U)) (x 25 f (22)) u {x = r(x) 1 x 2 r(x), x # r(x)}

is equivalent to cpz (in the empty theory, by the laws for equality),

If the condition in Statement 1 of the theorem holds, then clearly cpcc is unsatisfiable.

Otherwise, we can write cp: in the form

cp; = {Xl = fl(G 1,. . . ,&I = fn(un)) u {&+1 = Yn+l,. . .? &I = Yrn)? (2)

where the variables xl, . . . ,x, are pairwise different. The first part is a linear system

and, by Fact 1, has a solution over rational trees. Again by the laws for equality, this

solution may be completed to be one for the second part too. This proves Statement 1.

If condition (a) in Statement 2 is violated, then cp <% A x = g(V) is satisfiable and

disentails x = f (ii) and, hence, cpI. If condition (b) is violated, then cpCN A x =

f (6) A y = g(V) is consistent and disentails x = y and, hence, qr. Thus, qtor does not

entail (Pi.

If conditions (a) and (b) hold, then Fact 3 says that all equalities between global

variables in (Pi are redundant with respect to (P<&. The equalities with at least one

local, existentially quantified variable are redundant too. Thus, (P<~ A (Pi is equivalent

to cp <a A (py, tocal, where

CJ+&,,, = {x = t E cpk 1 x local}.

But Fact 2 says that 3 XC(c$,oca, is valid. This proves Statement 2. 0

A. Podelski, G. Smolkai Theoretical Computer Science I73 (19971 235-252 245

Remark. In the theorem above, Statement 2 holds with respect to finite trees too. Thus,

the algorithm can be adapted to finite trees simply by adding the occurs-check to the

test of a node’s consistency.

In fact, the description above yields that if each of two constraints is satisfiable over

finite trees (and hence, also over rational trees), then the entailment relation between

them is the same for finite and for rational trees.

The theorem above expresses that the fixed-point algorithm implements situated

simplification. Namely, a complete decoration D can be assigned a constraint tree

($x/,),tNodes as follows. If there exist x ” f’(C) and x A g(V) with f # g, then $@ = 1.

Otherwise,

bb=~;-~<r-{X=.Y x and y are determined in cpCl}.

The constraint tree thus defined is equivalent to the one defined by D and it is normal.

We omit the tedious but straightforward proof.

6. Practical algorithm

We will first define an efficient (i.e., non-redundant) representation for the equations

visible in the nodes of a constraint tree and then investigate a “solved form” for such a

representation, i.e., a form for consistent nodes exhibiting which of them are entailed.

We next define a representation of a constraint tree specifying the constraint tree as a

triple of (yet) unsolved equations, solved ones and inconsistent nodes. Naturally, the

operational service of the practical algorithm is to “solve” such a representation of a

constraint tree, namely, to transform it into an equivalent one where all consistent nodes

are represented by equations in solved form. We will finally give such an algorithm

and prove it correct.

6.1. Sets of situated bindings

A set of situated bindings B is a set of elements (~,a, t) E Var x Nodes x (Var U

Struct), where x and the variables of t are visible in a, which satisfies the following

conditions.

1. (“No cycles on the same path”)

If zl,...,x, ba and {(x1,~11,~2),...,(x,,a,,x,+l)}CB, then XI #&+I.
2. (“No binding of global to local variable”)

If (x, r, y) E B and x is global, then y is global too.

3. (“No two bindings of the same variable in the same node”)

If (x, z,s),(x,sI, t) E B, then ,8 = LY and s = t.

4. (“If two bindings of the same variable are on the same path, then the above one

to a construction and the lower one to a variable”)

If p < c(and (x,p,s), (x, LX, t) E B, then s E Var and t E Struct.

246 A. Podelski, G. Smolkal Theoretical Computer Science 173 (1997) 235-252

A set of situated bindings B defines a constraint tree by qpcr = {x = t 1 (x, CI, t) E B}

and thereby the notions of inconsistent and of entailed nodes.

Thanks to the first condition above, the following definition is well-founded. 7

{

vderef(y, a, B) if there exists (x, p, v) E B
vderef(x, CI, B) = with p<u,

X otherwise.

Note that thanks to condition 4 each (x, 8, y) E B with p <a is necessarily unique.

A set of situated bindings B defines a decoration (t)@ E ~~~~~ by

x+ B iff vderef(x, ct, B) = vderef(y, CI, B), and

x tf(ic) iff (vderef(x, tl, B), j3, f(u)) E B for some p d tl.

Note that this decoration satisfies the first two, but generally not the last two conditions

for a complete decoration.

We call a set B of situated bindings complete if the following two conditions hold:

1. If (x, CI, y), (x, fl, f(u)) E B and p < tl then y +.f.(zQ

2. If (x,Pl,f(C)), (v,Pz,f(C)) E B and X%V and pi, /?Z<CI then zi+C.

We now have the following characterization.

Proposition 2. B is a complete set of situated bindings lr (+)&$-,,-JeS is a complete

decoration.

Given a set of situated bindings B, we obtain B- by removing “secondary bindings”

in B, i.e.,

B- = B - {(x, GL,~) 1 exists (x,/?,f(U)) E B, /?<M}.

Theorem 1 and Proposition 2 immediately yield the following characterization of en-

tailed nodes.

Proposition 3. Given a complete set of situated bindings B, a node o! is entailed 1j.T

all bindings (x, a, t) E B- are on local variables x only. All nodes are consistent.

With respect to situated simplification, the statement above means the following.

Corollary 1. If B is a complete set of situated bindings, then B- defines an equivalent
normal constraint tree (with consistent nodes only).

’ Note that the function vderef always yields a variable (and never a constmction). This allows us to express,

in the definition of t, an “explicit equality” between two variables. (An “implicit equality” is one between

two variables bound to equal constructions; e.g., between x and y when (n, a,f(C)), (~,oz,f(zZ)) E B, or

when (x, a, f(x)), (Y, a, f(y)) E B, and so on.)

A. Podelski, G. Smolkal Theoretical Computer Science 173 (1997) 235-252 241

6.2. Conjigurations

A configuration is a triple (E,B, I) consisting of a multiset E of elements (x, a, t) E

Var x Nodes x (Var U Struct) (which we call situated equations), a set of situated

bindings B and a set I C Nodes of inconsistent nodes which never contains a node

occurring in either B or E and is downward closed (i.e., if fi<c! and b E I then

CI EI).

A configuration defines a constraint tree over rational trees by

{x = t 1 (x, x, t) E B U E} otherwise.

Given a configuration, the notions of equivalence and of inconsistent and entailed nodes

refer to the defined constraint tree.

We call a configuration (E, B, I) normal if E = 0 and B is a complete set of situated

bindings.

The operational service to be provided by our algorithm is indicated by the following

characterization (namely, to transform a configuration into a normal one).

Proposition 4. Given a normal conjiguration (B,E,I), a node CI is
1. inconsistent ifs a E I, and
2. entailed $f all variables x with a binding (x, cx, t) E B- are local variables of s(.

The next remark says that the algorithm implements situated simplification; it is a

reformulation of Corollary 1.

Corollary 2. Given a normal configuration (B,E,Z), the equivalent configuration
(E, B-,I) obtained by removing secondary bindings in B dejines a normal constraint

tree.

6.3. Normalization of configurations

We consider the procedure given in Fig. 2.

Starting with an initial configuratiop (Eo, Bo, IO), each execution of the body of the

while loop yields a new triple (Ei, B,: Zi), for i = 1,. . . , N where N <w. It might be a

useful exercise for the reader to reformulate the algorithm using configuration-rewrite

rules.

It is important to note that the algorithm can start with any configuration (and not

just with one where B and I are empty). The algorithm is to be used on-line, i.e., where

the computation tree and the set of situated equations E are augmented incrementally.

The algorithm is incremental since B and I grow then incrementally too.

We will next explain some lines of the algorithm. In line 3, the result of vderef

applied to x is again a variable, by the definition of vderef. This variable might itself

be bound to a construction. If the binding lies in a, line 10 will take care of that case,

and line 14 if the binding lies in a node p above CL

248 A. Podelski, G. Smolka I Theoretical Computer Science 173 (1997) 235-252

I

2

3

4

5
6

7

X

9

10

II

I2

I3
14

15

16

I7

IX
I9

20

21

22
1’

;:

25

26
27

2x

29

30

while E # c1

choose (s, x, t) E E
Y := vderef (x, r, B)
if I = j: (i.e.. t EVar) then

y_:= vderef (y,cc.B)
it x = y then

ski P
[J x # .v then

ifs global and ~2 local for 3: then swap(x,_v) ti
for all (.Y,;~,s) E B with x 5 ;’

remove (x, ;‘,s) frown B, add (y,;‘.s) to E
for all (y,y,z) E B with I < ;’

if vderef (z, y, B) = x then relnove (v, ;*,z) from B fi
if exists (x,/l,s) E B with /j c 3: then add (y.~,s) to E fi

add (x. 2. y) to B
fi

[] t = f(G) (i.e.. t E Struct) then
if exists (X,/~,{/(F)) E B with /j 5 x, ,f’ # q then

[I

[I

ti
ti

for all (z,;‘.s) E BUE with x 5 ;’
remove (z, ;‘,s) from B and E, add ;’ to I

exists (s, /,f(F)) E B with /i 5 31. then

add (ii,~,?) to E

not exists (*,/j,q(F)) E B with /i < 7 (,/ = y or ,f # q)? then
for all (x,;!,.~) E B with I 5 ;’
remove (I, ;‘, .s) from B and add to E
add (s. x,,f(i) to 5

remove (x. r, t) from E

end

Fig. 2. The algorithm transforming a configuration into a normal one.

If the term t is a variable, then its deref value is one too (again, by the definition

of vderef). Line 9 ensures that we do not bind a global to a local variable. This

corresponds to condition 2 in the definition of a set of situated bindings in Section 6.1

(which plays a role for the entailment condition).

Lines 10-l 1 ensure conditions 3 and the part of 4 which concerns the lower parts

of paths through M.

Lines 12-13 ensure that condition 1 holds even after line 15 has been executed.

Namely, one has to avoid cyclic references which go through nodes above and below

LX. It is important to note that we can restrict ourselves to removing bindings (u, y,z)

where CI < y, and not CI < y. This reason is that y is the result of applying the fknction

vderef(_, LX, B). Thus, there cannot be a binding (v, CI,Z).

In line 14, the term s is necessarily a construction (if it were a variable, the value of

vderef could not be x). Thus, condition 4 holds even after line 15 has been executed.

A. Podelski, G. Smolkal Theoretical Computer Science 173 (1997) 235-252 249

We need, however, ensure that condition 1 of the definition of a complete set of

situated bindings will hold (which plays a role for the disentailment test).

If the term t is a construction, then there are three cases. All of them are easy to

deal with (1) (Lines 18-20). The variable x is bound to a construction with a different

function symbol. Then the node a and all nodes below it are inconsistent. We need

remove their bindings according to the definition of a configuration in Section 6.2

(2) (Lines 21-22). The variable x is bound to a construction with the same function

symbol. Then we need ensure that condition 2 of the definition of a complete set of

situated bindings will hold (3) (Lines 23-26). The variable x is not bound to any

construction (“x is free”). Then we only need to ensure conditions 3 and 4 in the

definition of a set of situated bindings in Section 6.1.

Example from Section 2. The initial configuration (&,&,Zs) which corresponds to

the execution of the Oz program given in Section 2 is given by B0 = 0, Z, = 0, and

Eo = {~~,B,f(vl,~>>,~vl,P,~~,~~,~l,~~~l,~~~,~~l~’~l,~~,~~,~l,~~,

(Y, 72, b), (Y, u2> c>I.

Note that we need introduce auxiliary (existentially quantified) variables yl and z1

because constructions are of the form f(X) where the variables in the tuple X =

(xl,. ,x,) are pairwise different.

We will choose (and remove) and add elements of E in a stack-like manner. That

is, the algorithm will first move (x, B,f(yi, y)) and (yl, /?,a) from E to B (using lines

23-26). Then it will remove (x, ~i,f(zi,z)) from E and add (zl,ai, yi) and (z, CII, y)

to B (after adding the two bindings temporarily to E, using lines 21-22).

After applying vderef twice, the binding (z,, zl,z) gets installed in B as (yl, xl, y).

Here, line 14 is applied; i.e., (y,al,a) is put into E and eventually installed in B.
After applying vderef on z, the binding (y, yl,z) is simply removed from E (using

lines 6-7). So the node ‘~1 does not contain any bindings. Thus, in the constraint tree,

the constraint in the node yi is the empty conjunction, which is T (for true).

Using lines 18-20, we remove the binding (y, ~2, b) from E and add y2 to 1.

Finally, the binding (y, Q,C) is moved from E to B, by use of lines 23-26.

Then, the outcome of the algorithm is the configuration (B, E, Z) where E = 0, I =

(~9)~ and

If we eliminate the existentially quantified variables y1 and zi, then x = f(a, y) is the

constraint of the node /?, z = y A y = a the one of ~1, T the one of 71, I the one of

;9, and y = c the one of ~(2. v.

Other examples. We will now give some examples in order to motivate particular

lines of the algorithm. Always, we assume p<cc<y.

250 A. Podelski, G. Smolkal Theoretical Computer Science 173 (1997) 235-252

The configuration with B = {(x,p,f(x)), (y,B,f(y))} and E = {(~,a, y)} will lead

to applications of lines 14-15 (add (x, a, y) to B and (y, CI, f(y)) to E) and lines 21-22

(add (x, CC, y) to E) and lines 6-7 and then terminate. The node CI is entailed since both

x and y are bound to constructions.

The configuration with B = {(x,B,f(u)), (x, cc, y)} and E = {(y, B,g(v))} will lead

to applications of lines 14-15 (add (x, CI, y) to B and (y, a, f(u)) to E and afterwards

to B) and line 25 (move (y, ~1, f(u)) from B to E) and then to line 18 (add CI to I).

The configuration with B = {(y, B, f(v)), (x, CI, f(u))} and E = {(y, cr,x)} where

home(x) = CI will lead to applications of line 9 (swap x and y), and then line 10-l 1

(remove (x, cc,f(u)) from B, add (y, a,f(u)) to E). After adding (u, CC, u) to E (by

application of line 21) and then moving the binding from E to B, the algorithm ter-

minates. The node CI is not determined.

The configuration with B = {(IV, /?, u), (u, a, v)} and E = {(v, 8, w)} will lead to an

application of lines 12-13 (that is, (u,u,u) is removed from B) before the installation

of (v,j3,w) in B.
Thus, if we put the two preceding examples together, the configuration with B =

{(v,P,f(u>>, (x,a,f(u)>, (~~B~~)l and E = {(Y~~J)~ (~,8,w>l where home(x) = a

will lead to a configuration without a binding on CL That is, CI is entailed.

6.4. Correctness and termination

We consider any sequence ((Ei,Bi,Zi))i=o,,,,,N starting in a configuration (Eo,Bo,Zo)

and obtained by successive execution of the body of the while loop. The proofs of the

next propositions are obvious.

Proposition 5. Each triple (E,, Bi,Zi) is a configuration.

Proposition 6. Zf the procedure terminates in (EN,BN,ZN) then (En,Bn,Zn) is a nor-
mal configuration.

Proposition 7. The step from (Ei,Bi,Zi) to (Ei+l, Bi+l ,Zi+l) is an equivalence trans-

formation on the dejined constraint trees.

Theorem 2. The sequence ((Ei, Bi,Zi))i=o,,,,,n must be finite; i.e., the procedure given
in Fig. 2 always terminates.

Proof. Every configuratron (Ei+l, Bi+l, I+t I.) is obtained from (Ei,Bi,Zi) by one of five

cases inside the body of the while loop. Hence, we have one of the following possi-

bilities.

1. (Ei+l,Bi+l,Zi+l) = (Ei - {(x,a,x)},Bi,Zi) for some variable X,

2. Zi+l = Zi, and

Bi+l =&U {(~,a, Y>) -B where BG{(x,c~f(4)) U {(z,~,t) I a < Y),

3. Zi+l =Zi kJZ where Z # 8,

A. Podelski, G. Smolkal Theoretical Computer Science 173 (1997) 235-252 251

4. (Ei+i,Bi+i,Zi+i) = (E, - {(x,a,f(G))} UE,Bi,Ii) where EC{(u,y,a) I~<Y),

5. Z,+i = li, and Bi+i = Bi U {(x,~,f(ti))} - B where B C{(X, y,t)) R < y}.

In each of these cases, (Ei+r, Bi+l ,Zi+l) 4 (Ei, Bi,li) where < is the lexicographic

ordering on reversed configuration-triples, with, componentwise,

1. I<I’ if IZI’,

2. B <B’ if B 2 B’, where J is the multiset ordering induced by

(X,&Y> > (X,&f(4) > (x,y,t) if CI < y,

3. Ed E’ if E & E’, where C is the multiset ordering induced by

(z,y,t> < (44~) < (x,~,f(4) if u < Y.

Since there are no infinitely decreasing +-chains, the sequence ((Ei,Bi,Zi))i=O,,,,,N is
finite. 0

7. Conclusion and future work

We have given the first formal account of an algorithm for checking entailment and

disentailment of deep guards. We have formulated the results in this paper for rational

tree constraints; they can be adapted to finite and to feature trees.

A first conclusion one may draw is that the machinery needed for deep guards is

principally not more complicated than for flat guards. The sole difference lies in the ad-

ministration of the tree order for (1) the implementation of the function vderef(x, CI, B),

which goes over at most two levels of the computation tree in the case of flat guards,

but arbitrarily many in the case of deep guards, and (2) the removal of situated bind-

ings (x, y,s) from nodes y below a given node CC, thus, essentially, for the test of

d -comparison between nodes.

This work is the preliminary for (on-line) complexity analysis and for compar-

ing different realizations of our algorithm. The difficulty seems here to determine

the complexity of finding all situated bindings (x, y,s) with y <a. It will be inter-

esting to measure the performance of the implementations already existing in AKL and

Oz, which are guard-based, against a variable-based implementation using hash-tables

for the lists of situated bindings of each variable. The theoretical on-line complex-

ity seems better for the latter which avoids re-installing multiple bindings. In the

case of flat guards over rational trees, this has been shown in [131: It has quasi-

linear as opposed to quadratic cost. Interesting, though mainly theoretically, is also

the problem of the optimal amortized-time complexity of the vderef(x,cc,B) func-

tion, which is about path-compression for bindings which go through several

nodes.

252 A. Podelski, G. Smolkal Theoretical Computer Science I73 (1997) 235-252

Acknowledgements

We thank Peter Van Roy for discussions. We thank the anonymous referees for

insightful remarks. This work is partially supported by the ESPRIT project ACCLAIM

(EP 7195). Gert Smolka has also been supported by the BMBF Project Hydra (contract

ITW 9105) and the Esprit Project CCL (contract EP 6028).

References

[1] H. AYt-Kaci and A. Podelski, Towards a meaning of LIFE, in: J. Maluszynski and M. Wirsing, eds.,

Proc. 3rd Internat. Symp. on Programming Language Implementation and Logic Programming,
Lecture Notes in Computer Science, Vol. 528 (Springer, Berlin, 1991) 255-274.

[2] H. AIt-Kaci and A. Podelski, Functions as passive constraints in life, ACM Trans. Programming
Languages Systems (TOPLAS) 16 (1994) 1279-1318.

[3] H. A’it-Kaci, A. Podelski and G. Smolka, A feature-based constraint system for logic programming with

entailment, Theoret. Comput. Sci. 122 (1994) 263-283.
[4] K.L. Clark and S. Gregory, A relational language for parallel programming, in: Proc. ACM Conf on

Functional Programming Languages and Computer Architecture (1981) 171-178.

[5] A. Colmerauer, Prolog II reference manual and theoretical model, Tech. Report, Groupe Intelligence

Artificielle, Universite Aix - Marseille II, October 1982.

[6] B. Courcelle, Fundamental properties of infinite trees, Theoret. Comput. Sci. 25 (1983) 95-169.
[7] S. Haridi and S. Janson, Kernel Andorra Prolog and its computation model, in: D.H.D. Warren and

P. Szeredi, eds., Proc. 7th Znternat. Conf on Logic Programming (MIT Press, Cambridge, MA, 1990)

31-48.

[8] M. Henz, M. Mehl, M. Milller, T. Miiller, J. Niehren, R. Scheidhauer, C. Schulte, G. Smolka,

R. Treinen and J. Wtirtz, The Oz Handbook, Research Report RR-94-09, Deutsches Forschungszentrum

tiir Kiinstliche Intelligenz, Stuhlsatzenhausweg 3, D-66123 Saarbrticken, Germany, 1994. Available

through anonymous ftp from duck.dfki.uni-sb.de.

[9] M. Henz, G. Smolka and J. Wilrtz, Oz - a programming language for multi-agent systems, in: Ruzena

Bajcsy, ed., 13th Internat. Joint Conf on ArtiJicial Intelligence, Vol. 1, Chambery, France (Morgan

Kaufmann, Los Altos, CA, 1993) 404-409.

[lo] M.J. Maher, Logic semantics for a class of committed-choice programs, in: J.-L. Lassez, ed., Proc. 4th
Internat. Conf on Logic Programming (MIT Press, Cambridge, MA, 1987) 858-876.

[l l] L. Naish, Automating control for logic programs, J. Logic Programming 2 (1985) 167-184.
[12] L. Naish, The Mu-Prolog 3.2db reference manual, Tech. Report, Department of Computer Science,

University of Melbourne, Victoria, Australia, 1985.

[13] A. Podelski and P. Van Roy, The Beauty and the Beast algorithm: quasi-linear incremental tests of

entailment and disentailment, in: Proc. Internat. Symp. on Logic Programming (ALPS) (MIT Press,

Cambridge, MA, 1994) 359-374.

[14] V. Saraswat and M. Rinard, Concurrent constraint programming, in: Proc. 27th ACM Conf on
Principles of Programming Languages, San Francisco, CA (1990) 232-245.

[15] E. Shapiro, The family of concurrent logic programming languages, ACM Comput. Surveys 21 (1989)
413-511.

[16] G. Smolka and R. Treinen, Records for logic programming, J. Logic Programming 18 (1994) 229-258.

