
On Termination of Constraint Logic Programs

Livio Colussi 1, Elena Marchiori 2, Massimo Marchiori 1

1 Dept. of Pure and Applied Mathematics, Via Belzoni 7, 35131 Padova, Italy
e-mail: {colussi ,max}@euler.math.unipd. it

2 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
e-mail: elena@cwi, nl

Abst rac t . This paper introduces a necessary and sufficient condition
for termination of constraint logic programs. The method is based on
assigning a dataflow graph to a program, whose nodes are the program
points and whose arcs are abstractions of the rules of a transition system,
describing the operational behaviour of constraint logic programs. Then
termination is proven using a technique inspired by the seminal approach
of Floyd for proving termination of flowchart programs.

1 I n t r o d u c t i o n

The aim of this paper is to introduce a sufficient and necessary condition for
termination of constraint logic programs (clp's for short). Termination of clp's
is a fairly recent topic, and the only contribution we are aware of is by Mesnard
[Mes93], cited in the recent survey [DSD94] on termination of logic programs.
However, the aim of that work is different, namely to provide sufficient condi-
tions for the termination problem of clp's, based on approximation techniques.
Here we aim at an exact description of terminating clp's, to provide a better
understanding of the termination problem for clp's, and to provide a basis for
the development of formal methods for reasoning about run-time properties of
clp's.

Termination behaviour of clp's is more subtle than that of logic programs. For
instance, the presence of some constraints can turn an execution into a (finite)
failure, because the actual state does not satisfy a constraint. A similar behaviour
can be observed in some built-in's of Prolog (see e.g. [AMP94]). Moreover, in
most CLP systems, the state is divided into two components containing the
so-called active and passive constraint, and only the consistency of the active
constraint is checked. Then the fact that satisfiability of passive constraints is
not checked, affects the termination behaviour of the program: a constraint in the
passive component might lead to an inconsistency which is never detected, and
which would otherwise have led to termination (with failure). These observations
show that the presence of constraints plays a crucial role in the termination
behaviour of a clp, and that methods for proving termination for logic programs
cannot be applied to deal with clp's in full generality.

In this paper we give a necessary and sufficient condition for the termina-
tion problem of clp's. We consider termination w.r.t, an initial set of states (the

432

precondition). Our approach is built on four main notions. First, the elemen-
tary computational steps of a clp are described by means of a transition system.
Next, a dataflow graph is assigned to a program. Its nodes are the,program
points and its arcs are abstractions of the rules of the transition system. Fur-
ther, a tuple of sets of states, called invariant is assigned to the dataflow, one
set for each node of the dataflow graph. A set assigned to a node describes the
final states of partial computations ending in that node. Finally, a function from
states to a well-founded set W, called W-function, is associated with each node
of the graph. These notions are combined in the definition of termination triple,
which provides a characterization of terminating clp's (w.r.t. a precondition).
Our approach is inspired by the technique introduced by Floyd [Flo67] to prove
termination of flowchart programs. Intuitively, in a termination triple the invari-
ants and the W-functions are chosen in such a way that every computation of
the program is mapped into a decreasing chain of W. Then by the fact that W
is well-founded it follows that every computation is finite.

The notion of termination triple provides a formal basis for reasoning about
run-time properties of clp's. We introduce a methodology for finding termina-
tion triples, and we show how this method can be modified to yield a practical
sufficient criterion for proving termination of normal clp's. To help the reader
to focus more on the approach than on the technicalities, the presentation deals
with ideal CLP systems, where the constraint inference mechanism does not dis-
tinguish between active and passive constraints. We discuss in the Conclusion
how to extend the results to more general CLP systems.

We have organized the paper as follows. After a few preliminaries on notation
and terminology, three sections present the main notions of our approach: Section
3 introduces our transition system, Section 4 the notion of dataflow graph of a
program, and Section 5 introduces the notion of invariant for a program. Then
in Section 6 we introduce the notion of termination triple, Section 7 contains
a methodology for finding termination triples, Section 8 discusses the sufficient
criterion. Finally, Section 9 discusses the results and related approaches to study
termination of logic programs. For lack of space, we omitted the proofs. They
can be found in the full version of the paper.

2 Prel iminaries

Let Vat be an (enumerable) set of variables, with elements denoted by x, y, z,
u, v, w. We shall consider the set VAR = Vat U Vat ~ U . . . U Vat k U. . . , where
Vark = { xk I x E Vat} contains the so-called indexed variables (i-variables
for short) of index k. These special variables will be used to describe the stan-
dardization apart process, which distinguishes copies of a clause variable which
are produced at different calls of that clause. Thus x k and xJ will represent the
same clause variable at two different calls. This technique is known as 'structure-
sharing', because x k and xJ share the same structure, i.e.x. For an index k and
a syntactic object E, E ~ denotes the object obtained from E by replacing every
variable x with the i-variable x ~. We denote by T e r m (Y A R) (resp. Term(Vat))

433

the set of terms built on VAR (resp. Vat), with elements denoted by r, s, t.
A sequence E l , . . . , Ek of syntactic objects is denoted by E or (E l , . . . , E~)I

and (sl = t l / ~ . . . Ask = tk) is abbreviated by ~ = ~.

C o n s t r a i n t Logic P r o g r a m s

The reader is referred to [JM94] for a detailed introduction to Constraint Logic
Programming. Here we present only those concepts and notation that we shall
need in the sequel.

A constraint c is a (first-order) formula on Term(VAR) built from primitive
constraints. We shall use the symbol 7) both for the domain and the set of its
elements. We write 7) ~ c to denote that c is valid in all the models of 79.

A constraint logic program 79, simply called program or clp, is a (finite) set
of clauses H ,---A1, . . . ,Ak (denoted by C, D), together with one goal-clause
~-- B 1 , . . . , Brn (denoted by G), where H and the Ai's and Bi's are atoms built

on Term(Var) (primitive constraints are considered to be atoms as well) and H
is not a constraint. Atoms which are not constraints are also denoted by p(~),
and pred(p(-g)) denotes p; for a clause C, pred(C) denotes the predicate symbol
of its head. A clause whose body either is empty or contains only constraints is
called unitary.

3 O p e r a t i o n a l S e m a n t i c s

To design our method for characterizing the termination behaviour of clp's,
we start with a description of the operational behaviour of a clp by means of a
transition system. In this transition system standardization apart plays a central
role. The reason is that we want to use a suitable representation of program
variables during the execution, which wilt be used in Section 7 where we study
how to render practical our characterization.

As in the standard operational model states are consistent constraints, i.e.

def consistent }, States = {c E T) I c

denoted by c or a. We use the two following operators on states:

push,pop : Slates ---* States,

where push(a) is obtained from a by increasing the index of all its i-variables
by 1, and pop(a) is obtained from a by first replacing every i-variable of index
0 with a new fresh variable, and then by decreasing the index of all the other
i-variables by 1. For instance, suppose that a is equal to (x 1 = f (z ~ A yO =
g(x2)). Then push(a) is equal to (x ~ = f (z 1) A yl = g(x3)) and pop(a) to
(x ~ = f(u)/X v = g(zl)), where u and v are new fresh variables. These operators
are extended in the obvious way to sets of states. Push and pop are used in the
rules of our transition system to describe the standardization apart mechanism.
The rules of this transition system, called TS, are given in Table 1. In a pair

434

1%

S

C

a) (-g . (pop) . -A, p sh(a) ^ =),
if C = p(~) ~ B is in P
and push(a) A ~i = ~o consistent

((pop). A, a (A, pop(a))

((d) . -A, a) , a ^ d~),
if d is a constraint
and a A d o consistent

Tab le 1. Transition rules for CLP.

(A,a) , a is a state, and A is a sequence of atoms and possibly of tokens of
the form pop, whose use is explained below. We fix a suitable standardization
apart mechanism: In the standard operational semantics of (C)LP, every time
a clause is called it is renamed apart, generally using indexed variables. Here
if a clause is called then push is first applied to the state, and if it is released
then pop is applied to the state. To mark the place at which this should happen
the symbol pop is used. As mentioned above, this formalization will lead to an
elegant method in Section 7. The rules of TS describe the standard operational
behaviour of a clp (cf. e.g. [3M94]): Rule 1% describes a resolution step. Note that,
the way the operators push and pop are used guarantees that every time an atom
is called, its variables can be indexed with index equal to 0. Then, in rule 1% the
tuple of terms push(s-~ -gi) is considered, because a push is applied to the
state. Rule S describes the situation where an atom has concluded with success
its computation, i.e. when the control reaches a pop. In this case, the operator
pop is applied to the state. Finally, rule C describes the execution of a constraint.
Observe that we do not describe failure explicitly, by adding a corresponding fail
state. Instead, a failure here occurs when no rule is applicable.

To refer unambiguously to clause variables, the following non-restrictive as-
sumption is used.

A s s u m p t i o n 1 Different clauses of a program have disjoint sets of variables.

We call computation, denoted by 7", any sequence (confl , . . . , confk,...) of
configurations s.t. for k > 1 we have that confk --* confk+i. We consider an
operational semantics T(? 9, r for a program 79 w.r.t, a set r of states, called
precondition. This semantics describes all the computations starting in (G, a)
(recall that G denotes the goal-clause of 79) with a in r It is defined as follows.
We use . for the concatenation of sequences.

D e f i n i t i o n 2 . (p a r t i a l t r a c e s e m a n t i c s) 7-(79, r is the least set T s.t. ((G, a))

435

is in T, for every a 6 r and if r = r ' �9 ((A, a)) is in T and (A, a) -* (B, fl),
then r . ((B, fl)) is in T. []

Observe that this is a very concrete semantics: the reason is that it is not
meant for the study of program equivalence, but for the study of run-time prop-
erties of clp's, namely to characterize termination of clp's. Indeed, T(P, r will
be used in Section 5 to define the notion of invariant for a program. This latter
notion will play a central role in giving (in Section 6) a necessary and sufficient
condition for the termination (w.r.t. a precondition) of clp's.

4 A Dataflow Graph for clp's

In this section we introduce the second notion used in our method, namely the
dataflow graph of a program. Graphical abstractions of programs have been of-
ten used for static analysis of run-time properties. Here, we assign to a program
a directed graph, whose nodes are the program points and whose arcs are ab-
stractions of the transition rules of Table 1. In this choice, we have been inspired
by the seminal work of Floyd [Flo67] for flowchart programs. To study termina-
tion, in general information on the form of the program variables bindings before
and after the program atoms calls is needed. Methods for proving termination of
logic programs based on graph abstraction, like for instance [BCF94, WS94], use
inductive proof methods for proving such run-time properties, and use the graph
only to detect possible sources of divergence by considering its cycles. Instead,
in our approach, the graph is used both to derive run-time properties and for
detecting possible sources of divergence.

We consider the leftmost selection rule, and view a program clause C :
H ~- A1,. �9 Ak as a sequence consisting alternatingly of (labels l of) program
points (pp's for short) and atoms,

H ~- lo A11~ �9 �9 �9 1~_~ Ak lk.

The labels l0 and Ik indicate the entry point and the exit point of C, denoted by
entry(C) and exit(C), respectively. For i E [1, k], li-1 and li indicate the calling
point and success point of Ar denoted by call(Ai) and success(As), respectively.
Notice that l0 = entry(C) = call(A1) and lk = exit(C) = success(Ak). In the
sequel atom(l) denotes the atom of the program whose calling point is equal to
l. For notational convenience the following assumptions are used. Note that they
do not imply any loss of generality.

A s s u m p t i o n 3 10, . . . , lk are natural numbers ordered progressively; distinct
clauses of a program are decorated with different pp's; the pp's form an initial
segment, say {1, 2 , . . . , n} of the natural numbers; and 1 denotes the leftmost
pp of the goal-clause, called the entry point of the program. Finally, to refer
unambiguously to program atom occurrences, all atoms occurring in a program
are supposed to be distinct.

436

In the sequel, 7 ~ denotes a program and {1 , . . . , n} the set of its pp's. Program
points are used to define the notion of dataflow graph.

D e f i n i t i o n 4 . (d a t a f l o w g r a p h) The dataflow graph dg(7)) of 7) is a directed
graph (Nodes, Arcs) s.t. Nodes = { 1 , . . . , n} and Arcs is the subset of Nodes x
Nodes s.t. (i, j) is in Arcs iff it satisfies one of the following conditions:

- i is call(A), where A is not a constraint, j is entry(C) and pred(C) =
pred(A);

- i is exit(C), j is success(A) and pred(A) = pred(C);
- i is call(A) for some constraint A and j is success(A).

An element (i, j) of Arcs is called (directed) arc from i to j. []

Arcs of dg(P) are graphical abstractions of the transition rules of Table 1.
Rule R is abstracted as an arc from the calling point of an atom to the entry
point of a clause. Rule S is abstracted as an arc from the exit point of a clause
to a success point of an atom. Finally, rule C is abstracted as an arc from the
calling point of a constraint to its success point.

Example 1. The following program Prod is labelled with its pp's.

G: +-- I prod(u,v) 2

CI: prod([xly] ,z) +- 3 Z:X*W 4 prod(y,w)
C2: prod([] ,i) +- 6

The dataflow graph dg(Prod) of Prod is pictured below.

1 2

3 4 ~ 6

C]

Remark. One can refine Definition 4 by using also semantic information, i.e. by
pruning the arcs stemming from the first two conditions if ~ ~ --(g = {), i.e. if
p(g) and p(t) do not 'unify', where p(g) is A and p({) is (a variant of) the head
of C. []

Our notion of dataflow graph differs from other graphical representations of
(c)lp's, as for instance the predicate dependency graph or the U-graph (see e.g.
[DSD94]), mainly because of the presence in dg(7)) of those arcs from exit points
of clauses to success points of atoms, such as the arc from 5 to 2 in rig(Prod).
These arcs are crucial in our method, because we use the graph not only for
detecting possible divergences but also for deriving information on the run-time
behaviour of the program, information needed in the termination analysis. In

437

contrast, methods for studying termination of logic programs, based on graph
representation, use other static analysis methods for deriving this information.

A path is a finite non-empty directed path of dg(7)). Paths are denoted by r ,
and concatenation of paths by .. Moreover, path(i, j) denotes the set of all the
paths from i to j , and path(i) the set of all the paths from 1 to i.

5 I n v a r i a n t s f o r c l p ' s

In this section we use the notion of dataflow graph to derive information on the
run-time behaviour of programs which is relevant for the study of termination.
To this end, we first relate paths of the dataflow graph and computations. Next,
we use this relation to define the notion of assertion at a program point, which is
the set containing the final states of all the partial traces ending in that program
point.

We write conf, possibly subscripted, to denote a configuration (A, c~) used
in the rules of TS. The relation Rel relating paths and computations is defined
by induction on the number of elements of a computation as follows.

The base case is (((p(~)). A, ~))Rel (call(p(~)), and the induction case is as
follows. Suppose that r ' . (confl) R e l r and that r = r ' . (confx , conf2) (by
definition this implies conf 1 --* conf 2). Then:

- 7 Rel <entry(C)>,_
if confx = ((p(~)). A, a) and C is the selected clause

- 7 Rel r . (success(A)), if eonf, = ((pop>.-A, cx), where if ~r = (l l , . . . , lk / then
A is s.t.
call(A) = li for some i E [1, k] and for every B in 7)

IIco.w)l--IZs =..w)l
with I,(B) = {j I i < j _< k, lj = *(B)}, a n d . in {call, success};

- r a e l r . (success(a)), if conf 1 = ((d) . -A, a).

In the sequel we refer to a set of states also by calling it assertion, to make
the reader acquainted with the intuition that an assertion of some specification
language could represent a set of states. In particular, we define the notion of
assertion at program point. For a partial trace r = 7'. ((A, fl)), we call fl the final
state of 7, denoted by f inalstate(r) and for a path ~r, we denote by lastnode(r)
its last element.

D e f i n i t i o n b . (a s s e r t i o n a t pp) Let l be a pp of dg(7)). The assertion at 1
(w.r.t. r denoted by 2"t(7), r is defined as follows:

z z (7) , r = {finalstate() e T (7) , r and
for some r s.t. l = lastnode(~r)}.

[3

438

For instance, E1(7), r = r The notion of assertion at pp is needed to give a
sufficient and necessary condition for termination. However, it is too strong to be
practical, because it implies the exact knowledge of the semantics of a program.
Indeed, for proving termination, it is often enough to have partial knowledge
of the semantics, i.e. to replace assertions at pp with suitable supersets. These
supersets form the so-called invariants for :P. To define this notion, we need to
formalize how paths modify states. We use r r possibly subscripted, to denote
sets of states.

D e f i n i t i o n 6 . Let r be a path and let v = ((A ,a)) - r ' be a computation
s.t. rRel~r. Then finalstate(r) is called the output of 7r w.r.t, c~, denoted by
output (~r , ~). []

It can be shown that Definition 6 is well-formed, i.e. that if r and r ~ are s.t.
both r Rel rc and r ~ Rel re, then r = r ~, hence output(re, a) is uniquely defined.
Observe that in some cases outpur a) is not defined, namely when there is no
r s.t r Rel 7r.

Then the notion of invariant for 7) is defined as follows.

D e f i n i t i o n 7. (i nva r i an t f o r 7)) Let { 1 , . . . , n} be the set of nodes of dg('P) and
let r be an assertion. We call the tuple (r �9 r of assertions an invariant/or
:P (w.r.t. r if: r _ r and for every i , j E [1,n], for every path 7r E path(i , j) ,
and for every a E r we have that if output(Tr, a) is defined, then it is in ej .

[]

6 Characterization of Termination

To give a characterization of terminating programs, the datafiow graph dg(7))
and an invariant (r en) for /) will be used. A function from states to a
well-founded set W, called W-function, will be associated to certain nodes of
dg(7)) . The intuition is that for a terminating clp, each path of the graph can
be mapped into a decreasing chain of W. For a path ~r from i to j , the W-
function of i applied to a state a in r is shown to be strictly greater than
the W-function of j applied to output(~r, a). To examine only a finite number
of paths, we adapt a technique introduced by Floyd [Flo67] and formalized by
Manna [Man70] to prove termination of flowchart programs: only those nodes
of the graph which 'cut ' some cycle are considered (see Definition 9), and only
suitable paths connecting such nodes, called smart, are examined.

First, we define the notion of terminating w.r.t, a precondition clp.

D e f i n i t i o n 8 . (t e r m i n a t i n g clp 's) Let r be a set of states. A program is ter-
minating w.r . t r if all the computations starting at (G, a), with c~ E r are
finite. D

Next, we define the notion of cutpoint set, originally introduced in [Flo67,
Man70].

439

D e f i n i t i o n 9 . (c u t p o i n t se t) A set C of pp's of a program 7) is called a cut-
point set for 7) (and its members cutpoints) if every cycle of the dataflow graph
contains at least one element of C. []

So, cutpoints are meant to be control loci to check for possible nontermination
caused by loops (cycles in the dataflow graph). Now, as in Floyd [Flo67], one
has to consider the paths connecting two cutpoints, whose internal nodes are
not cutpoints. However, observe that a path could describe a possible divergence
only if it is contained in a cycle of dg(7)). Moreover, only cycles of dg(P) which
contain at least one entry point of a non-unitary clause, could represent an
infinite computation. Thus we introduce the notion of smart path.

D e f i n i t i o n l 0 . (s m a r t p a t h) Let C be a outpoint set for 7). Let 1, I' E C and
let 7r be a path in path(l, l~). Then r is smart w.r.t. C if the following conditions
are satisfied:

1. there is a cycle in dg(7)) containing 7r and containing an entry point of a
non-unitary clause of 7);

2. ~r = (1). 7r'. (l') and no pp of 7r' is in C.
[]

Now we have all the tools to define the notion of termination triple, which
provides a necessary and sufficient condition for the termination of a clp. We
call W-function a function from states to a well-founded set (W, <). Moreover,
for a tuple 45 = (r 1 6 2 of assertions, and a set C = { i l , . . . , i k } , with
1 < il < . . . < ik <_ n, we call (r 1 6 2 the restriction to C o f~ .

D e f i n i t i o n l l . (t e r m i n a t i o n t r ip le) Let r be a set of states. Let C be a set of
nodes of dg(7)); let �9 = { r E C} be a set of assertions; and let w = {wt l l E C}
be a set of W-functions. Then (C, ~5, w) is a termination triple for :P w.r.t. r if:

1. C is a cutpoint set for P;
2. �9 is the restriction to C of an invariant for 7> w.r.t. r
3. for every l, l' E C and smart path (w.r.t. C) ~r E path(l, l'), we have that if

a E r and output(r, a) is defined then w~(~) > Wl,(oulpul(Tr, a)).
[]

Then we have the following necessary and sufficient condition for termination.

T h e o r e m 12. (t e r m i n a t i o n c h a r a c t e r i z a t i o n) Let r be a set of states. Let
C be any cutpoint set for the program 79. Th.en 7 9 terminates w.r.t. r if and only
if there is a termination triple (C,~b, w) f o r 7 9 w.r.t. r

In Sections 7 we shall introduce a method for finding termination triples. More-
over, in Section 8 we shall introduce a sufficient criterion based on this charac-
terization.

440

7 Finding Termination Triples

We have seen how terminat ion of a clp can be characterized by means of the
notion of terminat ion triple. This result is theoretically interesting. It provides a
bet ter understanding of the terminat ion problem for clp's, and it can serve as a
theoretical framework on which automat ic techniques can be built. The attentive
reader, however, will have observed tha t we have not used the special s tandard-
ization apar t mechanism incorporated in the rules of the transit ion system TS
of Table 1. Indeed, as one would expect, the characterization we have given does
not depend on the standardizat ion apar t mechanism.

The reason of the introduction of this mechanism is related with the issue of
finding a terminat ion triple. In this section we shall discuss a powerful method-
ology to prove tha t a triple (C, r w) is a terminat ion triple. This methodology
relies on the specific form of the rules of TS, hence on indexed variables and on
the operators pop and push.

First, we give an inductive description of the strongest postcondition of a
path. Next, we introduce a sound and (relatively) complete method to prove
tha t a tuple of assertions is an invariant for the program.

7.1 O u t p u t s o f P a t h s

We show here how the notion of output of a pa th can be given inductively,
without using the relation Rel.

We have tha t output((1), a) = ~. Moreover, when the initial s ta te a satisfies
suitable conditions, then the output(Iv, ~) can be inductively computed. To this
end, the following set of states is needed:

free(x) = {a, I 7) I=

it describes those states where x is a free variable. The intuition is that x is
free in a state if it can be bound to any value without affecting tha t state. For
instance, y = z is in free(z), because x does not occur in the formula. Also
y = z A x = x is in free(x), because 7) ~ (y = z A x = x) --* Vx (y = z A x = x).
Further, we write r A e to denote the set {~ A c E States I ~ e r Moreover, it
is convenient to make the following assumptions on non-unitary (goal-)clauses.

A s s u m p t i o n 13 The body of every non-unitary clause does not contain two
a toms with equal predicate symbol; and at least one argument of its head is a
variable.

This assumption is not restrictive. I t can be shown that every program can
be t ransformed into one satisfying Assumption 13. The t ransformat ion will in
general modify the semantics of the original program (the set of pp ' s changes
and new predicates could be introduced). HoweveL it is easy to define a syntactic
t ransformat ion tha t allows us to recover the semantics of the original program.

Because of the second assumption, we can fix a variable-argument of the
head of a clause C, tha t we call the characteristic variable of C, denoted by xc .

441

Also, a new fresh variable xa is associated with the goal-clause G, called the
characteristic variable of G. These variables play a crucial role in the following
result, to be explained below.

T h e o r e m l4 . Let c~ be a state and let 7r = rr' . (Ik) be a path, where 7r' =
(l x , . . . , lk-1) . Suppose that 13 = output(Tr', a) is defined. Then:

- if lk = entry(C) , lk-1 = call(A) for some atom A = p(~), and i f p u s h (~) A

(~1 = ~0) is consistent then: "~

output(z , = push(B) ^ =

where p(t) is the head of C;
i f lk = success(A) with A not a constraint, l k - t = exi t (D) for some clause
D, and i f pop(~) ~ -,/ree(x ~ where C is the clause containing A, then

output(, = pop(Z);

- i f lk = success(A) with A a constraint, and i f f l A A ~ is consistent then:

0utput(, = ^ A ~

The requirements on the characteristic variables are needed to rule out all
those paths which are not semantic, i.e. which do not describe partial traces.
Informally, whenever a state is propagated through a semantic path the variable
x~ is initially free (by assumption). Then, the index of x c is increased and
decreased by means of the applications of the push and pop operators. When
C is called, then x~ is bound (because by assumption it occurs in the head of
C), hence x ~ is not free. From that moment on its index will be increased and
decreased and it will become 0 only if the success point of an atom of the body
of C is reached. If the success point of an atom of G is reached, then x~ is not
free. Moreover, for each clause C different from G, x ~ is free, because either C
was never called, or x ~ has been replaced with a fresh variable by an application
of pop.

Example 2. The following example illustrates the crucial role of the characteristic
variables to discriminate those paths which are not semantical paths. Consider
again the program Prod. Let rr = (1, 3, 4, 6, 2) and let o~ = (x~ = 0), where 0 is
a constant. This path is not semantical, i.e. it does not describe a computation.
Then, the output of this path w.r.t, a is not defined. Indeed, at program point
2 we obtain that x ~ is free, thus Theorem 14 is not applicable. The behaviour,
with respect to freeness, of the characteristic variables during the propagation
of a through 7r is described in Table 2.

Note instead that the path obtained from 7r by replacing 2 with 5 is a se-
mantical path (i.e. x~l is not free at pp 5). 13

442

at pp
1
3
4
6
2

not free free free free free free
free not free free not free free free
free not free free not free free free
free free not free free not free not free
free not free free not free free free

T a b l e 2. Characteristic variables through ~r

7.2 P r o v i n g I n v a r i a n t s fo r c lp ' s

We introduce now a necessary and sufficient condition to prove that an n-tuple
(r r of assertions is an invariant for P .

Recall that we denote by {1 , . . . , n} the set of pp's of a program 7). Moreover,
atom(l) denotes the atom of the program whose calling point is I. For a node j
of @(7)), let input(j) denote the set of the nodes i s.t. (i, j) is an arc of @(7)).
Then we have the following theorem.

T h e o r e m 15. (c h a r a c t e r i z a t i o n o f i n v a r i a n t s fo r 7)) Let (r r be an
n-tuple of assertions s.t. r C - , f r ee (x~) , and r C free(x ~ for every non-
unitary clause C different from G. Then (r Ca) is an invariant for 79 if
and only if for i E [1, n] we have that:

1. if i = entry(C) then push(r A (-~1 = ~o) C_ r for every j E input(i),
where p(t) is the head of C and p(-g) = atom(j);

2. if i = success(A) and A is not a constraint then pop(r C r
for every j E input(i),
where C is the clause containing A;

3. if i = success(A) and A is a constraint then r A ~ C_ r

Let us comment on the above theorem, using the transition system of Table 1: let
A denote a generic sequence of atoms and/or tokens. Then 1 states that r

contains those states obtained by applying rule R to ((atom(j)). A, a), for every
E Cj and every j E input(entry(C)). Further, 2 states that when A is not a

constraint, then Csuccess(A) contains those states obtained by applying rule S to
((pop) .'A, a), for every ot E Cj and every j E input(success(A)). Finally, 3 states
that when A is a constraint, then Cs~cc~s~(A) contains those states obtained by

applying the transition rule C to ((A) �9 A, a), for every a E r
This theorem is derived from a fixpoint semantics which has been introduced

in a companion paper [CMM95]. The conditions 1-3 of Theorem 15 correspond
to the three cases of the definition of an operator F on n-tuples of assertions
whose least fixpoint # F yields a semantics equal to (Z1(7), r Z,~(7), r For
instance, 1 corresponds to the case where F maps a tuple (r �9 -, r to a tuple
(r r s.t. r = UjEinput(i)(push(r A (~1 = ~0)). The other cases of the

443

definition of F are obtained analogously. Then the proof of Theorem 15 is an
easy consequence of the equality between # F and (Zx(79, r Y-n(79, r

7.3 A M e t h o d o l o g y

Theorem 15 can be used as a basis for a sound and complete proof method for
proving invariants of clp's. One has to define a specification language to express
the properties of interest. Then, a formula of the language is interpreted as
a set of states, conjunction is interpreted as set intersection, negation as set-
complementation, and implication as set inclusion. The predicate relation f ree
has to be in the specification language, and the operators pop and push should
be defined in the expected way on formulas. Simpler methods can be obtained
from Theorem 15, by loosing completeness. We shall introduce in the following
section one of such methods.

To summarize, we obtain the following methodology to study termination of
clp's. To find a termination triple for 79 w.r.t. r

- construct dg(79);
- select a cutpoint set;
- use Theorem 15 to find an invariant for 79;
- find a suitable set of W-functions;
- use Theorem 14 to check condition 3. of the definition of termination triple.

We conclude this section with a simple example.

Ezample 3. Consider the program Prod of Example 1. Let true denote the set
of all states and let list(x) denote the set of states where x is a list. Take
r = (list(u ~ A -,free(x~ A free(z~ We show that Prod terminates w.r.t. r

The dataflow graph rig(Prod) for Prod was already given in Example 3.
C = {3, 5} is a cutpoint set for Prod.
Let r = r r = true, r = r = list(Y~ r = r = true. It is easy to

check using Theorem 15 that # = (r r is an invariant (w.r.t. r for Prod.
Consider the following W-functions, where the well-founded set W is here

the set of natural numbers: w3 = w5 =]]y~ , where]]t]l denotes the length of t
if t is a list and 0 otherwise.

In order to show that ({3, 5}, {r r {w3, wh}) is a termination triple, we
have only to consider the smart path 7r = (3, 4, 3).
Let ~ in r and suppose that w3(c~) = k. Then ~ is in r A (]]y~ H = k). Us-
ing Theorem 14 we have that /3 = output (z ,~ A Hy~ = k) is defined, with
/3 = (list(y 1) A Hylll = k A z 1 = z l * p l A y l = [xO]y0] ApX = z0). Then
w3(output(Tr, c~)) = ([[yl[]_ 1) = (k - 1); and from k - 1 < k we obtain
w3(outp ,.t(, <

Thus (C, {r r {w3, w~}) satisfies the three conditions of Definition 11,
and hence Prod is terminating w.r.t. r I:3

444

8 A S u f f i c i e n t C r i t e r i o n

In this section we discuss a variation of the above methodology which will yield a
sufficient criterion for termination which is more practical, yet less powerful, than
the one given in the previous section. The idea is to extract a small subgraph of
the dataflow graph, called cyclic, to be used in the termination analysis.

D e f i n i t i o n l6 . (cycl ic da t a f l ow g r a p h) Consider the graph consisting of
those arcs (l,l ') of dg(7)) that belong to a cycle and s.t. l' is the entry-point
of a non-unitary clause. This graph is called the cyclic dataflow graph of 7), de-
noted by cdg(7)). [3

The cyclic dataflow of P extracts the minimal information on the program which
is needed to prove termination.

For two W-functions wl, w2, we write wl ~ w2 if wl(~ A c) _< w2(~), for
every state a and constraint c.

D e f i n i t i o n 17. (t e r m i n a t i o n pa i r)
Let r be a set of states. Let N stands for the set of nodes of cdg(7)); let

= {r l E N} be a set of assertions; and let w = {wl] l E N} be a set of
W-functions. Then (r is a termination pair for 7) w.r.t. r if:

1. ~ is the restriction to N of an invariant for P w.r.t. r
2. for every l , l I E N, if l and / I belong to the same clause and l < l ~, then
Wl N Wp ;

3. for every arc (l, l') of cdg(7)) and (~ in r if push(s) A (~ = ~0) is consistent
then

w,(~) > wz,(push(~) A (~ = ~0)),

where p(t) is the head of the clause containing l', and p(~) = atom(l). O

The definition of termination pair uses cdg(P) to analyze possible divergences
(Point 1). Point 3 states that when a pp is reached via a resolution step R, then
the value of the corresponding W-function decreases steadily. Point 2 deals with
the other two transition rules, C and S, which do not have to increase the value
of the W-functions. The notion of termination pair provides a sufficient criterion
for proving termination.

T h e o r e m 18. A program 7) terminates w.r.t. r if there is a termination pair
for 7) w.r.t. r

8.1 Negation

In this subsection we show how all the previous results can be extended to provide
sufficient criteria for termination of normal clp's, that is clp's where body clauses
may contain negated atoms -~A. We suppose that negated atoms are solved using
the negation as finite failure procedure or one of its modifications which allow
to deal also with non-ground literals (see e.g. [AB94]).

A dataflow graph is assigned to a normal clp 7), constructed by means of the
following steps:

445

1. consider every negated atom -~A of the program 79 as an atom A and build
the dataflow graph using Definition 4;

2. delete from the graph obtained in step 1. every arc (i, j) , s.t. j is the success
point of a negated atom;

3. add to the graph obtained in step 2. the arcs (i, i + 1), for every i which is
the calling point of a negated atom.

The three steps above describe the execution of a negated atom -~A as follows:
the execution of A is started, and at the same time also the execution of the
next literal is started. In this way, we approximate the real computation of
the program, by possibly introducing extra computations, in the case that -~A
would have failed. Note that this technique is also implicitly used in Wang and
Shyamasundar [WS94].

Using this definition of dataflow graph, we can obtain a sound description of
an invariant for 79: Theorem 15 can be restated as sufficient condition, where in
case 1. a negative literal is treated as an atom (i.e. -~A is treated as A) and in
case 3. it is treated as the constraint true. Thus, the notion of termination triple
provides a sufficient criterion for termination. Also Theorem 18 can be extended
to normal clp's:

T h e o r e m 19. A normal program 7 9 terminates w.r.t. r if lhere is a termination

pair for79 w.r.t. r

Remark. The above technique is based on the following program transformation.
Consider a clause H ~ L 1 , . . . , L k - I , L ~ , L k + I , . . . , L m , where L~ = -~A is a
negative literal. Split this clause as follows:

H ~ L 1 , . . . , L k - l , A , new.
H *-- L 1 , . . . , L k - I , L ~ + I , . . . , L m .

where new is a new predicate symbol. This corresponds to the intuition that: the
first clause starts the execution of A and then does not care about the compu-
tation (that is disregarded due to new); the second clause allows the execution
continue, as if Lk had succeeded. Via repeated applications of this transforma-
tion, we can obtain from a normal clp a definite clp s.t. if this transformed
program terminates then the original program terminates. [3

We conclude this section with an example to illustrate the application of this
method.

Example 1. Consider the normal program Fastqueen solving in an efficient way
the N-queens problem.
~- I fastqueens(number,solution) 2

fastqueens(num,qns) ~- 3 range(l ,num,ns) 4 queens(ns, [] ,qns) s

queens(unplqs,saleqs,qs) *--6 select(q,unplqs,unplqsl) 7

-~ attack(q,safeqs) 8 queens(unplqsl, [qlsafeqs] ,qs) 9

queens([],qsl,qsl) +--lO

range(m,n,[m~ns]) +-11 m<n 12 ml=m+1 13 range(ml,n,ns) 14

446

range(u ,u , [u]) '-- 15
s e l e c t (x , [x l x s] , x s) ~-- 16
s e l e c t (v , [y lys] , [y lzs]) "- 17 s e l e c t (v , y s , z s) is
attack(w,ws) *--19 a t t (w, l ,ws) 20
a t t (x l , n l , [yl l y s l]) ,-- ~1 xl=yl+nl 2~

a t t (x2 ,n2 , [y2lys2]) ~-- 2~ x2+n2--y2 24
a t t (x3 ,n3 , [y3lys3]) *--- ~5 n4--n3+l 26 a t t (x3 ,n4 ,ys3) 2r

One obtains the following cyclic dataflow graph of Fastqueens:

8 ~ 6 ~ 1 (]

13 ~ 11 26 ~ 25

Consider the precondition
r = ground(number ~ A ~free(x~) A/ree(unplqs ~ A free(m ~ A free(v ~ A

free(w ~ A free(z3~
We show that Fastqueens is terminating w.r.t, ft. Consider the assertions:

r = Ca = (list(unplqs ~ A list(sa f eqs~),
r = r = list(ns~
r = list(ys~
r = r = list(ys3~ .

Consider the following W-functions (here II II is the 'list-length' map seen in
the previous Example 3):

w 6 = w s = l i u n p l q s ~

w l l = wx3 = I lns~

w x 7 - I lys~
w25 - w26 - I l y s 3 ~ �9

It is not difficult to check that this is a termination pair for Fastqueens w.r.t.
r For instance, for condition 2 of Def. 17 note that whenever two pp's of the
cdg are on the same clause the corresponding W-functions are equal.

Thus, for Theorem 19, Fastqueens terminates w.r.t. r 13

9 C o n c l u s i o n

In this paper we have provided a characterization of terminating clp's w.r.t, a
precondition by means of the notion of termination triple. We have discussed how
this characterization can be used in practice, by introducing a methodology for
finding termination triples, and a sufficient criterion based on this methodology
for proving termination of normal clp's.

A different graphical abstraction has been used to study termination of logic
programs ([BCF94, WS94]), under the name of U-graph or specific graph. This
notion is based on the so-called dependency graph of a program. In an U-graph,
the program atoms are the nodes and there is a directed arc from a node nl to

447

another node n2 either if nl is the head of a clause and n~ is one of its body
atoms, or if nl is a body atom and n2 is the head of a clause s.t. nl and n~ unify.
In this representation the first type of arc abstracts a clause, and the second one
the flow of control. Then, the graph is used to detect possible divergences, and
other proof methods ([BC89] and [DM88]) are used to obtain the information
on the operational behaviour of the program which is needed to perform the
termination analysis on the graph.

However, for our purpose, namely to give a characterization of terminating
clp's, we found advantageous to have an uniform approach based uniquely on
the dataflow graph of the program. For this reason, we have introduced a more
concrete notion of dataflow graph, where, also the backwards propagation of the
state in a derivation is described.

We conclude by showing how the results can be extended to more general
CLP systems.

All major implemented CLP systems are 'quick-check' and 'progressive' (cf.
[JM94]). In these kind of systems, the state is divided into two components
containing the active and the passive constraint, and only the consistency of
the active constraint is checked. This improves the efficiency of the system. We
sketch how our results can be easily extended to deal with 'quick-check' and
'progressive' systems.

States = {(cl, c2) [Cl and c2 are constraints s.t. consistent(c1)},

where the test consistent(c1) checks for (an approximation of) the consistency
of el.

Rules R and C are modified as below, where a state is denoted by (al, a2):

r t , i]er(i,a =

with ~' = push(a), if C = p(t) ~ B is in P.

C ((d) . ~ , oz) , (~ , infer'(o~l,c~Ad~

if d is a constraint.
Finally, the definition of r A c has to be changed in:

C A c = {~' eS ta tes] ~' =infer(ocl,a2Ac) a n d a E r

The operator infer computes from the current state (cl, c2) a new active con-
straint c~ and passive constraint c~, with the requirement that cl A c2 and c~ A c~
are equivalent constraints. The intuition is that cl is used to obtain from c2 more
active constraints; then c2 is simplified to c~.

Acknowledgements : We would like to thank Jan Rutten and the anonymous
referees for their helpful comments. The research of the second author was par-
tially supported by the Esprit Basic Research Action 6810 (Compulog 2).

448

R e f e r e n c e s

[AB94]

[AMP94]

[BC89]

[BCF94]

[CMM95]

[DM68]

[DSD94]

[Flo67]

[JM94]

[Man70]

[Mes93]

[WS94]

K.R. Apt and R. Bol. Logic programming and negation: a survey. JLP
19,20: 9-72, 1994.
K.R. Apt, E. Marchiori, and C. Palamidessi. A declarative approach for
first-order built-in's of Prolog. Applicable Algebra in Engineering, Commu-
nication and Computation, 5(3/4), pp. 159-191, 1994.
A. Bossi and N. Cocco. Verifying correctness of logic programs. TAPSOFT,
LNCS 352, pp. 96-110, 1989.
A. Bossi, N. Cocco and M. Fabris. Norms on terms and their use in proving
universal termination of a logic program. TCS 124: 297-328, 1994.
L. Colussi, E. Marchiori and M. Marchiori. A dataflow semantics for con-
straint logic programs. In Proceedings of PLILP'95, to appear, 1995.
W. Drabent and J. Maluszyilski. Inductive assertion method for logic pro-
grams. TCS, 59(1):133-155, 1988.
D. De Schreye and S. Decorte. Termination of logic programs: the never-
ending story. JLP 19,20: 199-260, 1994.
R.W. Floyd. Assigning meanings to programs. In J.T. Schwartz, editor,
Proceedings Symposium in Applied Mathematics, volume 19 of Math. Aspects
in Computer Science, pages 19-32. AMS, 1967.
J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. JLP
19,20: 503-581, 1994.
Z. Manna. Termination of Programs Represented as Interpreted Graphs.
Proc. Spring. J. Comp. Conf., pp.83-89, 1970.
F. Mesnard. Etude de la terminaison des programmes logiques avec con-
straintes aux moyens d'approximations. PhD Thesis, Paris VI, 1993.
B. Wang and R.K. Shyamasundar. A methodology for proving termination
of logic programs. JLP 21(1): 1-30, 1994.

