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Abst rac t .  This paper introduces a necessary and sufficient condition 
for termination of constraint logic programs. The method is based on 
assigning a dataflow graph to a program, whose nodes are the program 
points and whose arcs are abstractions of the rules of a transition system, 
describing the operational behaviour of constraint logic programs. Then 
termination is proven using a technique inspired by the seminal approach 
of Floyd for proving termination of flowchart programs. 

1 I n t r o d u c t i o n  

The aim of this paper is to introduce a sufficient and necessary condition for 
termination of constraint logic programs (clp's for short). Termination of clp's 
is a fairly recent topic, and the only contribution we are aware of is by Mesnard 
[Mes93], cited in the recent survey [DSD94] on termination of logic programs. 
However, the aim of that  work is different, namely to provide sufficient condi- 
tions for the termination problem of clp's, based on approximation techniques. 
Here we aim at an exact description of terminating clp's, to provide a better  
understanding of the termination problem for clp's, and to provide a basis for 
the development of formal methods for reasoning about run-time properties of 
clp's. 

Termination behaviour of clp's is more subtle than that  of logic programs. For 
instance, the presence of some constraints can turn an execution into a (finite) 
failure, because the actual state does not satisfy a constraint. A similar behaviour 
can be observed in some built-in's of Prolog (see e.g. [AMP94]). Moreover, in 
most CLP systems, the state is divided into two components containing the 
so-called active and passive constraint, and only the consistency of the active 
constraint is checked. Then the fact that  satisfiability of passive constraints is 
not checked, affects the termination behaviour of the program: a constraint in the 
passive component might lead to an inconsistency which is never detected, and 
which would otherwise have led to termination (with failure). These observations 
show that  the presence of constraints plays a crucial role in the termination 
behaviour of a clp, and that  methods for proving termination for logic programs 
cannot be applied to deal with clp's in full generality. 

In this paper we give a necessary and sufficient condition for the termina- 
tion problem of clp's. We consider termination w.r.t, an initial set of states (the 
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precondition). Our approach is built on four main notions. First, the elemen- 
tary computational steps of a clp are described by means of a transition system. 
Next, a dataflow graph is assigned to a program. Its nodes are the,program 
points and its arcs are abstractions of the rules of the transition system. Fur- 
ther, a tuple of sets of states, called invariant is assigned to the dataflow, one 
set for each node of the dataflow graph. A set assigned to a node describes the 
final states of partial computations ending in that node. Finally, a function from 
states to a well-founded set W, called W-function, is associated with each node 
of the graph. These notions are combined in the definition of termination triple, 
which provides a characterization of terminating clp's (w.r.t. a precondition). 
Our approach is inspired by the technique introduced by Floyd [Flo67] to prove 
termination of flowchart programs. Intuitively, in a termination triple the invari- 
ants and the W-functions are chosen in such a way that every computation of 
the program is mapped into a decreasing chain of W. Then by the fact that W 
is well-founded it follows that every computation is finite. 

The notion of termination triple provides a formal basis for reasoning about 
run-time properties of clp's. We introduce a methodology for finding termina- 
tion triples, and we show how this method can be modified to yield a practical 
sufficient criterion for proving termination of normal clp's. To help the reader 
to focus more on the approach than on the technicalities, the presentation deals 
with ideal CLP systems, where the constraint inference mechanism does not dis- 
tinguish between active and passive constraints. We discuss in the Conclusion 
how to extend the results to more general CLP systems. 

We have organized the paper as follows. After a few preliminaries on notation 
and terminology, three sections present the main notions of our approach: Section 
3 introduces our transition system, Section 4 the notion of dataflow graph of a 
program, and Section 5 introduces the notion of invariant for a program. Then 
in Section 6 we introduce the notion of termination triple, Section 7 contains 
a methodology for finding termination triples, Section 8 discusses the sufficient 
criterion. Finally, Section 9 discusses the results and related approaches to study 
termination of logic programs. For lack of space, we omitted the proofs. They 
can be found in the full version of the paper. 

2 Prel iminaries  

Let Vat be an (enumerable) set of variables, with elements denoted by x, y, z, 
u, v, w. We shall consider the set VAR = Vat U Vat ~ U . . .  U Vat k U. . . ,  where 
Vark = { xk I x E Vat} contains the so-called indexed variables (i-variables 
for short) of index k. These special variables will be used to describe the stan- 
dardization apart process, which distinguishes copies of a clause variable which 
are produced at different calls of that clause. Thus x k and xJ will represent the 
same clause variable at two different calls. This technique is known as 'structure- 
sharing', because x k and xJ share the same structure, i.e.x. For an index k and 
a syntactic object E, E ~ denotes the object obtained from E by replacing every 
variable x with the i-variable x ~. We denote by T e r m ( Y A R )  (resp. Term(Vat ) )  
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the set of terms built on VAR (resp. Vat), with elements denoted by r, s, t. 
A sequence E l , . . . ,  Ek of syntactic objects is denoted by E or ( E l , . . . ,  E~)I 

and (sl = t l / ~ . . .  Ask = tk) is abbreviated by ~ = ~. 

C o n s t r a i n t  Logic  P r o g r a m s  

The reader is referred to [JM94] for a detailed introduction to Constraint Logic 
Programming. Here we present only those concepts and notation that  we shall 
need in the sequel. 

A constraint c is a (first-order) formula on Term(VAR) built from primitive 
constraints. We shall use the symbol 7) both for the domain and the set of its 
elements. We write 7) ~ c to denote that  c is valid in all the models of 79. 

A constraint logic program 79, simply called program or clp, is a (finite) set 
of clauses H ,---A1, . . . ,Ak (denoted by C, D), together with one goal-clause 
~-- B 1 , . . . ,  Brn (denoted by G), where H and the Ai's and Bi's are atoms built 

on Term(Var) (primitive constraints are considered to be atoms as well) and H 
is not a constraint. Atoms which are not constraints are also denoted by p(~), 
and pred(p(-g)) denotes p; for a clause C, pred(C) denotes the predicate symbol 
of its head. A clause whose body either is empty or contains only constraints is 
called unitary. 

3 O p e r a t i o n a l  S e m a n t i c s  

To design our method for characterizing the termination behaviour of clp's, 
we start  with a description of the operational behaviour of a clp by means of a 
transition system. In this transition system standardization apart plays a central 
role. The reason is that  we want to use a suitable representation of program 
variables during the execution, which wilt be used in Section 7 where we study 
how to render practical our characterization. 

As in the standard operational model states are consistent constraints, i.e. 

def consistent }, States = {c E T) I c 

denoted by c or a. We use the two following operators on states: 

push,pop : Slates ---* States, 

where push(a) is obtained from a by increasing the index of all its i-variables 
by 1, and pop(a) is obtained from a by first replacing every i-variable of index 
0 with a new fresh variable, and then by decreasing the index of all the other 
i-variables by 1. For instance, suppose that  a is equal to (x 1 = f ( z  ~ A yO = 
g(x2)). Then push(a) is equal to (x ~ = f (z  1) A yl = g(x3)) and pop(a) to 
(x ~ = f(u)/X v = g(zl)), where u and v are new fresh variables. These operators 
are extended in the obvious way to sets of states. Push and pop are used in the 
rules of our transition system to describe the standardization apart mechanism. 
The rules of this transition system, called TS, are given in Table 1. In a pair 
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S 

C 

a )  ( -g .  (pop) . -A,  p sh(a) ^ = ), 
if C = p(~) ~ B is in P 
and push(a) A ~i = ~o consistent 

((pop). A, a ( A, pop(a) ) 

( ( d ) . -A, a ) , a ^ d~ ), 
if d is a constraint 
and a A d o consistent 

Tab le  1. Transition rules for CLP. 

(A,a) ,  a is a state, and A is a sequence of atoms and possibly of tokens of 
the form pop, whose use is explained below. We fix a suitable standardization 
apart mechanism: In the standard operational semantics of (C)LP, every time 
a clause is called it is renamed apart, generally using indexed variables. Here 
if a clause is called then push is first applied to the state, and if it is released 
then pop is applied to the state. To mark the place at which this should happen 
the symbol pop is used. As mentioned above, this formalization will lead to an 
elegant method in Section 7. The rules of TS describe the standard operational 
behaviour of a clp (cf. e.g. [3M94]): Rule 1% describes a resolution step. Note that,  
the way the operators push and pop are used guarantees that  every time an atom 
is called, its variables can be indexed with index equal to 0. Then, in rule 1% the 
tuple of terms push(s-~ -gi) is considered, because a push is applied to the 
state. Rule S describes the situation where an atom has concluded with success 
its computation, i.e. when the control reaches a pop. In this case, the operator 
pop is applied to the state. Finally, rule C describes the execution of a constraint. 
Observe that  we do not describe failure explicitly, by adding a corresponding fail 
state. Instead, a failure here occurs when no rule is applicable. 

To refer unambiguously to clause variables, the following non-restrictive as- 
sumption is used. 

A s s u m p t i o n  1 Different clauses of a program have disjoint sets of variables. 

We call computation, denoted by 7", any sequence (confl , . . . ,  confk,...) of 
configurations s.t. for k > 1 we have that  confk --* confk+i. We consider an 
operational semantics T(? 9, r for a program 79 w.r.t, a set r of states, called 
precondition. This semantics describes all the computations starting in (G, a) 
(recall that  G denotes the goal-clause of 79) with a in r It is defined as follows. 
We use . for the concatenation of sequences. 

D e f i n i t i o n 2 .  ( p a r t i a l  t r a c e  s e m a n t i c s )  7-(79, r is the least set T s.t. ((G, a)) 
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is in T, for every a 6 r and if r = r '  �9 ((A, a)) is in T and (A, a) -* (B, fl), 
then r .  ((B, fl)) is in T. [] 

Observe that  this is a very concrete semantics: the reason is that  it is not 
meant for the study of program equivalence, but for the study of run-time prop- 
erties of clp's, namely to characterize termination of clp's. Indeed, T(P,  r will 
be used in Section 5 to define the notion of invariant for a program. This latter 
notion will play a central role in giving (in Section 6) a necessary and sufficient 
condition for the termination (w.r.t. a precondition) of clp's. 

4 A Dataflow Graph for clp's 

In this section we introduce the second notion used in our method, namely the 
dataflow graph of a program. Graphical abstractions of programs have been of- 
ten used for static analysis of run-time properties. Here, we assign to a program 
a directed graph, whose nodes are the program points and whose arcs are ab- 
stractions of the transition rules of Table 1. In this choice, we have been inspired 
by the seminal work of Floyd [Flo67] for flowchart programs. To study termina- 
tion, in general information on the form of the program variables bindings before 
and after the program atoms calls is needed. Methods for proving termination of 
logic programs based on graph abstraction, like for instance [BCF94, WS94], use 
inductive proof methods for proving such run-time properties, and use the graph 
only to detect possible sources of divergence by considering its cycles. Instead, 
in our approach, the graph is used both to derive run-time properties and for 
detecting possible sources of divergence. 

We consider the leftmost selection rule, and view a program clause C : 
H ~- A1,. �9 Ak as a sequence consisting alternatingly of (labels l of) program 
points (pp's for short) and atoms, 

H ~- lo A11~ �9 �9 �9 1~_~ Ak lk. 

The labels l0 and Ik indicate the entry point and the exit point of C, denoted by 
entry(C) and exit(C), respectively. For i E [1, k], li-1 and li indicate the calling 
point and success point of Ar denoted by call(Ai) and success(As), respectively. 
Notice that l0 = entry(C) = call(A1) and lk = exit(C) = success( Ak ). In the 
sequel atom(l) denotes the atom of the program whose calling point is equal to 
l. For notational convenience the following assumptions are used. Note that  they 
do not imply any loss of generality. 

A s s u m p t i o n  3 10, . . . , lk are natural numbers ordered progressively; distinct 
clauses of a program are decorated with different pp's; the pp's form an initial 
segment, say {1, 2 , . . . ,  n} of the natural numbers; and 1 denotes the leftmost 
pp of the goal-clause, called the entry point of the program. Finally, to refer 
unambiguously to program atom occurrences, all atoms occurring in a program 
are supposed to be distinct. 
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In the sequel, 7 ~ denotes a program and {1 , . . . ,  n} the set of its pp's. Program 
points are used to define the notion of dataflow graph. 

D e f i n i t i o n 4 .  ( d a t a f l o w  g r a p h )  The dataflow graph dg(7 )) of 7 ) is a directed 
graph (Nodes, Arcs) s.t. Nodes = { 1 , . . . ,  n} and Arcs is the subset of Nodes x 
Nodes s.t. (i, j )  is in Arcs iff it satisfies one of the following conditions: 

- i is call(A), where A is not a constraint, j is entry(C) and pred(C) = 
pred(A); 

- i is exit(C), j is success(A) and pred(A) = pred(C); 
- i is call(A) for some constraint A and j is success(A). 

An element (i, j) of Arcs is called (directed) arc from i to j. [] 

Arcs of dg(P) are graphical abstractions of the transition rules of Table 1. 
Rule R is abstracted as an arc from the calling point of an atom to the entry 
point of a clause. Rule S is abstracted as an arc from the exit point of a clause 
to a success point of an atom. Finally, rule C is abstracted as an arc from the 
calling point of a constraint to its success point. 

Example 1. The following program Prod is labelled with its pp's. 

G: +-- I prod(u,v) 2 

CI: prod( [xly] ,z) +- 3 Z:X*W 4 prod(y,w) 
C2: prod([ ] ,i) +- 6 

The dataflow graph dg(Prod) of Prod is pictured below. 

1 2 

3 4 ~ 6  

C] 

Remark. One can refine Definition 4 by using also semantic information, i.e. by 
pruning the arcs stemming from the first two conditions if ~ ~ --(g = {), i.e. if 
p(g) and p(t) do not 'unify',  where p(g) is A and p({) is (a variant of) the head 
of C. [] 

Our notion of dataflow graph differs from other graphical representations of 
(c)lp's, as for instance the predicate dependency graph or the U-graph (see e.g. 
[DSD94]), mainly because of the presence in dg(7 )) of those arcs from exit points 
of clauses to success points of atoms, such as the arc from 5 to 2 in rig(Prod). 
These arcs are crucial in our method, because we use the graph not only for 
detecting possible divergences but also for deriving information on the run-time 
behaviour of the program, information needed in the termination analysis. In 
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contrast, methods for studying termination of logic programs, based on graph 
representation, use other static analysis methods for deriving this information. 

A path is a finite non-empty directed path of dg(7)). Paths are denoted by r ,  
and concatenation of paths by .. Moreover, path(i, j )  denotes the set of all the 
paths from i to j ,  and path(i) the set of all the paths from 1 to i. 

5 I n v a r i a n t s  f o r  c l p ' s  

In this section we use the notion of dataflow graph to derive information on the 
run-time behaviour of programs which is relevant for the study of termination. 
To this end, we first relate paths of the dataflow graph and computations. Next, 
we use this relation to define the notion of assertion at a program point, which is 
the set containing the final states of all the partial traces ending in that  program 
point. 

We write conf, possibly subscripted, to denote a configuration (A, c~) used 
in the rules of TS. The relation Rel relating paths and computations is defined 
by induction on the number of elements of a computation as follows. 

The base case is (((p(~)). A, ~))Rel  (call(p(~)), and the induction case is as 
follows. Suppose that  r ' .  (confl)  R e l r  and that  r = r ' .  (confx , conf2 ) (by 
definition this implies conf 1 --* conf 2). Then: 

- 7 Rel  <entry(C)>,_ 
if confx = ((p(~)). A, a )  and C is the selected clause 

- 7 Rel r .  (success(A)), if eonf,  = ((pop>.-A, cx ), where if ~r = ( l l , . . . ,  lk / then  
A is s.t. 
call(A) = li for some i E [1, k] and for every B in 7 ) 

IIco.w)l--IZs =..w)l 
with I,(B) = {j I i < j _< k, lj = *(B)}, a n d .  in {call, success}; 

- r a e l r .  (success(a)), if conf 1 = ((d) . -A,  a ). 

In the sequel we refer to a set of states also by calling it assertion, to make 
the reader acquainted with the intuition that  an assertion of some specification 
language could represent a set of states. In particular, we define the notion of 
assertion at program point. For a partial trace r = 7'. ((A, fl)), we call fl the final 
state of  7, denoted by f inalstate(r) and for a path ~r, we denote by lastnode(r) 
its last element. 

D e f i n i t i o n b .  ( a s s e r t i o n  a t  pp)  Let l be a pp of dg(7)). The assertion at 1 
(w.r.t. r denoted by 2"t(7), r is defined as follows: 

z z ( 7 ) , r  = {finalstate( ) e T ( 7 ) , r  and 
for some r s.t. l = lastnode(~r)}. 

[3 
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For instance, E1(7 ), r = r The notion of assertion at pp is needed to give a 
sufficient and necessary condition for termination. However, it is too strong to be 
practical, because it implies the exact knowledge of the semantics of a program. 
Indeed, for proving termination, it is often enough to have partial knowledge 
of the semantics, i.e. to replace assertions at pp with suitable supersets. These 
supersets form the so-called invariants for :P. To define this notion, we need to 
formalize how paths modify states. We use r r possibly subscripted, to denote 
sets of states. 

D e f i n i t i o n 6 .  Let r be a path and let v = ( ( A ,a ) ) -  r '  be a computation 
s.t. rRel~r. Then finalstate(r) is called the output of 7r w.r.t, c~, denoted by 
output ( ~r , ~ ). [] 

It can be shown that  Definition 6 is well-formed, i.e. that  if r and r ~ are s.t. 
both r Rel rc and r ~ Rel re, then r = r ~, hence output(re, a) is uniquely defined. 
Observe that  in some cases outpur a) is not defined, namely when there is no 
r s.t r Rel 7r. 

Then the notion of invariant for 7 ) is defined as follows. 

D e f i n i t i o n  7. ( i nva r i an t  f o r  7 )) Let { 1 , . . . ,  n} be the set of nodes of dg('P) and 
let r be an assertion. We call the tuple (r �9  r  of assertions an invariant/or 
:P (w.r.t. r if: r _ r and for every i , j  E [1,n], for every path 7r E path(i , j ) ,  
and for every a E r we have that  if output(Tr, a) is defined, then it is in ej .  

[] 

6 Characterization of Termination 

To give a characterization of terminating programs, the datafiow graph dg(7 )) 
and an invariant ( r  en) for /) will be used. A function from states to a 
well-founded set W, called W-function, will be associated to certain nodes of 
dg(7 )) . The intuition is that  for a terminating clp, each path of the graph can 
be mapped into a decreasing chain of W. For a path ~r from i to j ,  the W- 
function of i applied to a state a in r is shown to be strictly greater than 
the W-function of j applied to output(~r, a). To examine only a finite number 
of paths, we adapt a technique introduced by Floyd [Flo67] and formalized by 
Manna [Man70] to prove termination of flowchart programs: only those nodes 
of the graph which 'cut '  some cycle are considered (see Definition 9), and only 
suitable paths connecting such nodes, called smart, are examined. 

First, we define the notion of terminating w.r.t, a precondition clp. 

D e f i n i t i o n 8 .  ( t e r m i n a t i n g  clp 's)  Let r be a set of states. A program is ter- 
minating w.r . t  r if all the computations starting at (G, a),  with c~ E r are 
finite. D 

Next, we define the notion of cutpoint set, originally introduced in [Flo67, 
Man70]. 
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D e f i n i t i o n 9 .  ( c u t p o i n t  se t )  A set C of pp's of a program 7) is called a cut- 
point set for 7) (and its members cutpoints) if every cycle of the dataflow graph 
contains at least one element of C. [] 

So, cutpoints are meant to be control loci to check for possible nontermination 
caused by loops (cycles in the dataflow graph). Now, as in Floyd [Flo67], one 
has to consider the paths connecting two cutpoints, whose internal nodes are 
not cutpoints. However, observe that  a path could describe a possible divergence 
only if it is contained in a cycle of dg(7)). Moreover, only cycles of dg(P) which 
contain at least one entry point of a non-unitary clause, could represent an 
infinite computation. Thus we introduce the notion of smart path. 

D e f i n i t i o n l 0 .  ( s m a r t  p a t h )  Let C be a outpoint set for 7). Let 1, I' E C and 
let 7r be a path in path(l, l~). Then r is smart w.r.t. C if the following conditions 
are satisfied: 

1. there is a cycle in dg(7 )) containing 7r and containing an entry point of a 
non-unitary clause of 7); 

2. ~r = (1). 7r'. (l') and no pp of 7r' is in C. 
[] 

Now we have all the tools to define the notion of termination triple, which 
provides a necessary and sufficient condition for the termination of a clp. We 
call W-function a function from states to a well-founded set (W, <). Moreover, 
for a tuple 45 = ( r 1 6 2  of assertions, and a set C = { i l , . . . , i k } ,  with 
1 < il < . . .  < ik <_ n, we call ( r 1 6 2  the restriction to C o f~ .  

D e f i n i t i o n l l .  ( t e r m i n a t i o n  t r ip le )  Let r be a set of states. Let C be a set of 
nodes of dg(7)); let �9 = { r  E C} be a set of assertions; and let w = {wt l l  E C} 
be a set of W-functions. Then (C, ~5, w) is a termination triple for :P w.r.t. r if: 

1. C is a cutpoint set for P;  
2. �9 is the restriction to C of an invariant for 7> w.r.t. r 
3. for every l, l' E C and smart path (w.r.t. C) ~r E path(l, l'), we have that  if 

a E r and output(r, a) is defined then w~(~) > Wl,(oulpul(Tr, a)). 
[] 

Then we have the following necessary and sufficient condition for termination. 

T h e o r e m  12. ( t e r m i n a t i o n  c h a r a c t e r i z a t i o n )  Let r be a set of states. Let 
C be any cutpoint set for the program 79. Th.en 7 9 terminates w.r.t. r if and only 
if there is a termination triple (C,~b, w ) f o r  7 9 w.r.t. r 

In Sections 7 we shall introduce a method for finding termination triples. More- 
over, in Section 8 we shall introduce a sufficient criterion based on this charac- 
terization. 
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7 Finding Termination Triples 

We have seen how terminat ion of a clp can be characterized by means of the 
notion of terminat ion triple. This result is theoretically interesting. It  provides a 
bet ter  understanding of the terminat ion problem for clp's, and it can serve as a 
theoretical framework on which automat ic  techniques can be built. The attentive 
reader, however, will have observed tha t  we have not used the special s tandard-  
ization apar t  mechanism incorporated in the rules of the transit ion system TS 
of Table 1. Indeed, as one would expect, the characterization we have given does 
not depend on the standardizat ion apar t  mechanism. 

The reason of the introduction of this mechanism is related with the issue of 
finding a terminat ion triple. In this section we shall discuss a powerful method-  
ology to prove tha t  a triple (C, r  w)  is a terminat ion triple. This methodology 
relies on the specific form of the rules of TS, hence on indexed variables and on 
the operators  pop and push. 

First, we give an inductive description of the strongest postcondition of a 
path.  Next, we introduce a sound and (relatively) complete method to prove 
tha t  a tuple of assertions is an invariant for the program. 

7.1 O u t p u t s  o f  P a t h s  

We show here how the notion of output  of a pa th  can be given inductively, 
without  using the relation Rel. 

We have tha t  output((1), a)  = ~. Moreover, when the initial s ta te  a satisfies 
suitable conditions, then the output(Iv, ~) can be inductively computed.  To this 
end, the following set of states is needed: 

free(x) = {a, I 7) I= 

it describes those states where x is a free variable. The intuition is that  x is 
free in a state if it can be bound to any value without  affecting tha t  state. For 
instance, y = z is in free(z), because x does not occur in the formula.  Also 
y = z A x = x is in free(x), because 7) ~ (y = z A x = x) --* Vx (y = z A x = x). 
Further, we write r A e to denote the set {~ A c E States I ~ e r Moreover, it 
is convenient to make the following assumptions on non-unitary (goal-)clauses. 

A s s u m p t i o n  13 The body of every non-unitary clause does not contain two 
a toms with equal predicate symbol; and at least one argument  of its head is a 
variable. 

This assumption is not restrictive. I t  can be shown that  every program can 
be t ransformed into one satisfying Assumption 13. The t ransformat ion will in 
general modify the semantics of the original program (the set of pp ' s  changes 
and new predicates could be introduced). HoweveL it is easy to define a syntactic 
t ransformat ion tha t  allows us to recover the semantics of the original program. 

Because of the second assumption,  we can fix a variable-argument  of the 
head of a clause C, tha t  we call the characteristic variable of C, denoted by xc .  
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Also, a new fresh variable xa  is associated with the goal-clause G, called the 
characteristic variable of G. These variables play a crucial role in the following 
result, to be explained below. 

T h e o r e m  l4 .  Let c~ be a state and let 7r = rr' . (Ik) be a path, where 7r' = 
( l x , . . . ,  lk-1) .  Suppose that 13 = output(Tr', a)  is defined. Then: 

- if  lk = entry(C) ,  lk-1 = call(A) for  some atom A = p(~), and i f p u s h ( ~ )  A 

(~1 = ~0) is consistent then: "~ 

output(z ,  = push(B) ^ = 

where p(t)  is the head of C; 
i f  lk = success(A) with A not a constraint, l k - t  = exi t (D)  for  some clause 
D, and i f  pop(~) ~ -,/ree(x ~ where C is the clause containing A,  then 

output( , = pop(Z); 

- i f  lk = success(A) with A a constraint, and i f f l  A A ~ is consistent then: 

0utput( , = ^ A ~ 

The requirements on the characteristic variables are needed to rule out all 
those paths which are not semantic, i.e. which do not describe partial traces. 
Informally, whenever a state is propagated through a semantic path the variable 
x~ is initially free (by assumption). Then, the index of x c  is increased and 
decreased by means of the applications of the push  and pop operators. When 
C is called, then x~ is bound (because by assumption it occurs in the head of 
C), hence x ~ is not free. From that  moment on its index will be increased and 
decreased and it will become 0 only if the success point of an atom of the body 
of C is reached. If the success point of an atom of G is reached, then x~ is not 
free. Moreover, for each clause C different from G, x ~ is free, because either C 
was never called, or x ~ has been replaced with a fresh variable by an application 
of pop. 

Example 2. The following example illustrates the crucial role of the characteristic 
variables to discriminate those paths which are not semantical  paths. Consider 
again the program Prod. Let rr = (1, 3, 4, 6, 2) and let o~ = (x~ = 0), where 0 is 
a constant. This path is not semantical, i.e. it does not describe a computation. 
Then, the output  of this path w.r.t, a is not defined. Indeed, at program point 
2 we obtain that  x ~ is free, thus Theorem 14 is not applicable. The behaviour, 
with respect to freeness, of the characteristic variables during the propagation 
of a through 7r is described in Table 2. 

Note instead that  the path obtained from 7r by replacing 2 with 5 is a se- 
mantical path (i.e. x~l is not free at pp 5). 13 



442 

at pp 
1 
3 
4 
6 
2 

not free free free free free free 
free not free free not free free free 
free not free free not free free free 
free free not free free not free not free 
free not free free not free free free 

T a b l e  2. Characteristic variables through ~r 

7.2 P r o v i n g  I n v a r i a n t s  fo r  c lp ' s  

We introduce now a necessary and sufficient condition to prove that  an n-tuple 
( r  r of assertions is an invariant for P .  

Recall that  we denote by {1 , . . . ,  n} the set of pp's of a program 7 ).  Moreover, 
atom(l) denotes the atom of the program whose calling point is I. For a node j 
of @(7)), let input(j) denote the set of the nodes i s.t. (i, j )  is an arc of @(7)). 
Then we have the following theorem. 

T h e o r e m  15. ( c h a r a c t e r i z a t i o n  o f  i n v a r i a n t s  fo r  7)) Let ( r  r be an 
n-tuple of assertions s.t. r C - , f r ee (x~) ,  and r C free(x ~ for every non- 
unitary clause C different from G. Then ( r  Ca) is an invariant for 79 if 
and only if for i E [1, n] we have that: 

1. if i = entry(C) then push(r A (-~1 = ~o) C_ r for every j E input(i), 
where p(t) is the head of C and p(-g) = atom(j); 

2. if i = success(A) and A is not a constraint then pop(r C r 
for every j E input(i), 
where C is the clause containing A; 

3. if i = success(A) and A is a constraint then r  A ~ C_ r 

Let us comment on the above theorem, using the transition system of Table 1: let 
A denote a generic sequence of atoms and/or  tokens. Then 1 states that  r 

contains those states obtained by applying rule R to ((atom(j)). A, a), for every 
E Cj and every j E input(entry(C)). Further, 2 states that  when A is not a 

constraint, then Csuccess(A) contains those states obtained by applying rule S to 
((pop) .'A, a), for every ot E Cj and every j E input(success(A)). Finally, 3 states 
that when A is a constraint, then Cs~cc~s~(A) contains those states obtained by 

applying the transition rule C to ((A) �9 A, a),  for every a E r 
This theorem is derived from a fixpoint semantics which has been introduced 

in a companion paper [CMM95]. The conditions 1-3 of Theorem 15 correspond 
to the three cases of the definition of an operator F on n-tuples of assertions 
whose least fixpoint # F yields a semantics equal to (Z1(7), r  Z,~(7), r For 
instance, 1 corresponds to the case where F maps a tuple (r �9 -, r to a tuple 
( r  r s.t. r = UjEinput(i)(push(r A (~1 = ~0)). The other cases of the 
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definition of F are obtained analogously. Then the proof of Theorem 15 is an 
easy consequence of the equality between # F  and (Zx(79, r  Y-n(79, r 

7.3 A M e t h o d o l o g y  

Theorem 15 can be used as a basis for a sound and complete proof method for 
proving invariants of clp's. One has to define a specification language to express 
the properties of interest. Then, a formula of the language is interpreted as 
a set of states, conjunction is interpreted as set intersection, negation as set- 
complementation, and implication as set inclusion. The predicate relation f ree  
has to be in the specification language, and the operators pop and push should 
be defined in the expected way on formulas. Simpler methods can be obtained 
from Theorem 15, by loosing completeness. We shall introduce in the following 
section one of such methods. 

To summarize, we obtain the following methodology to study termination of 
clp's. To find a termination triple for 79 w.r.t. r 

- construct dg(79); 
- select a cutpoint set; 
- use Theorem 15 to find an invariant for 79; 
- find a suitable set of W-functions; 
- use Theorem 14 to check condition 3. of the definition of termination triple. 

We conclude this section with a simple example. 

Ezample 3. Consider the program Prod of Example 1. Let true denote the set 
of all states and let list(x) denote the set of states where x is a list. Take 
r = (list(u ~ A -,free(x~ A free(z~ We show that  Prod terminates w.r.t. r 

The dataflow graph rig(Prod) for Prod was already given in Example 3. 
C = {3, 5} is a cutpoint set for Prod. 
Let r = r r = true, r = r = list(Y~ r = r = true. It is easy to 

check using Theorem 15 that  # = ( r  r is an invariant (w.r.t. r for Prod. 
Consider the following W-functions, where the well-founded set W is here 

the set of natural numbers: w3 = w5 = ]]y~ , where ]]t]l denotes the length of t 
if t is a list and 0 otherwise. 

In order to show that  ({3, 5}, {r r {w3, wh}) is a termination triple, we 
have only to consider the smart path 7r = (3, 4, 3). 
Let ~ in r and suppose that  w3(c~) = k. Then ~ is in r A (]]y~ H = k). Us- 
ing Theorem 14 we have that  /3 = output ( z ,~  A Hy~ = k) is defined, with 
/3 = (list(y 1) A Hylll = k A z  1 = z l * p l  A y l  = [xO]y0] ApX = z0). Then 
w3(output(Tr, c~)) = ([[yl[]_ 1) = ( k -  1); and from k - 1 < k we obtain 
w3( outp ,.t( , < 

Thus (C, {r r {w3, w~}) satisfies the three conditions of Definition 11, 
and hence Prod is terminating w.r.t. r I:3 
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8 A S u f f i c i e n t  C r i t e r i o n  

In this section we discuss a variation of the above methodology which will yield a 
sufficient criterion for termination which is more practical, yet less powerful, than 
the one given in the previous section. The idea is to extract a small subgraph of 
the dataflow graph, called cyclic, to be used in the termination analysis. 

D e f i n i t i o n  l6 .  (cycl ic  da t a f l ow  g r a p h )  Consider the graph consisting of 
those arcs (l,l ') of dg(7)) that belong to a cycle and s.t. l' is the entry-point 
of a non-unitary clause. This graph is called the cyclic dataflow graph of 7 ), de- 
noted by cdg(7)). [3 

The cyclic dataflow of P extracts the minimal information on the program which 
is needed to prove termination. 

For two W-functions wl, w2, we write wl ~ w2 if wl(~ A c) _< w2(~), for 
every state a and constraint c. 

D e f i n i t i o n  17. ( t e r m i n a t i o n  pa i r )  
Let r be a set of states. Let N stands for the set of nodes of cdg(7)); let 

= {r l E N} be a set of assertions; and let w = {wl] l E N} be a set of 
W-functions. Then ( r  is a termination pair for 7) w.r.t. r if: 

1. ~ is the restriction to N of an invariant for P w.r.t. r 
2. for every l , l  I E N, if l and / I belong to the same clause and l < l ~, then 
Wl N Wp ; 

3. for every arc (l, l') of cdg(7)) and (~ in r if push(s) A (~  = ~0) is consistent 
then 

w,(~) > wz,(push(~) A ( ~  = ~0)), 

where p(t) is the head of the clause containing l', and p(~) = atom(l). O 

The definition of termination pair uses cdg(P) to analyze possible divergences 
(Point 1). Point 3 states that  when a pp is reached via a resolution step R, then 
the value of the corresponding W-function decreases steadily. Point 2 deals with 
the other two transition rules, C and S, which do not have to increase the value 
of the W-functions. The notion of termination pair provides a sufficient criterion 
for proving termination. 

T h e o r e m  18. A program 7 ) terminates w.r.t. r if there is a termination pair 
for 7) w.r.t. r 

8.1 Negation 

In this subsection we show how all the previous results can be extended to provide 
sufficient criteria for termination of normal clp's, that  is clp's where body clauses 
may contain negated atoms -~A. We suppose that  negated atoms are solved using 
the negation as finite failure procedure or one of its modifications which allow 
to deal also with non-ground literals (see e.g. [AB94]). 

A dataflow graph is assigned to a normal clp 7), constructed by means of the 
following steps: 
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1. consider every negated atom -~A of the program 79 as an atom A and build 
the dataflow graph using Definition 4; 

2. delete from the graph obtained in step 1. every arc (i, j ) ,  s.t. j is the success 
point of a negated atom; 

3. add to the graph obtained in step 2. the arcs (i, i + 1), for every i which is 
the calling point of a negated atom. 

The three steps above describe the execution of a negated atom -~A as follows: 
the execution of A is started, and at the same time also the execution of the 
next literal is started. In this way, we approximate the real computation of 
the program, by possibly introducing extra computations, in the case that  -~A 
would have failed. Note that  this technique is also implicitly used in Wang and 
Shyamasundar [WS94]. 

Using this definition of dataflow graph, we can obtain a sound description of 
an invariant for 79: Theorem 15 can be restated as sufficient condition, where in 
case 1. a negative literal is treated as an atom (i.e. -~A is treated as A) and in 
case 3. it is treated as the constraint true. Thus, the notion of termination triple 
provides a sufficient criterion for termination. Also Theorem 18 can be extended 
to normal clp's: 

T h e o r e m  19. A normal program 7 9 terminates w.r.t. r if  lhere is a termination 

pair for79 w.r.t. r 

Remark. The above technique is based on the following program transformation. 
Consider a clause H ~ L 1 , . . . , L k - I , L ~ , L k + I , . . . , L m ,  where L~ = -~A is a 
negative literal. Split this clause as follows: 

H ~ L 1 , . . . , L k - l , A ,  new. 
H *-- L 1 , . . . , L k - I , L ~ + I , . . . , L m .  

where new is a new predicate symbol. This corresponds to the intuition that:  the 
first clause starts the execution of A and then does not care about the compu- 
tation (that is disregarded due to new); the second clause allows the execution 
continue, as if Lk had succeeded. Via repeated applications of this transforma- 
tion, we can obtain from a normal clp a definite clp s.t. if this transformed 
program terminates then the original program terminates. [3 

We conclude this section with an example to illustrate the application of this 
method. 

Example 1. Consider the normal program Fastqueen solving in an efficient way 
the N-queens problem. 
~- I fastqueens(number,solution) 2 

fastqueens(num,qns) ~- 3 range(l ,num,ns) 4 queens(ns, [] ,qns) s 

queens(unplqs,saleqs,qs) *--6 select(q,unplqs,unplqsl) 7 

-~ attack(q,safeqs) 8 queens(unplqsl, [qlsafeqs] ,qs) 9 

queens([],qsl,qsl) +--lO 

range(m,n,[m~ns]) +-11 m<n 12 ml=m+1 13 range(ml,n,ns) 14 
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range(u ,u ,  [u]) '-- 15 
s e l e c t ( x , [ x l x s ] , x s )  ~-- 16 
s e l e c t ( v ,  [y lys] ,  [y lzs ] )  "- 17 s e l e c t ( v , y s , z s )  is 
attack(w,ws) *--19 a t t (w, l ,ws)  20 
a t t  ( x l , n l ,  [yl l y s l ] )  ,-- ~1 xl=yl+nl 2~ 

a t t (x2 ,n2 ,  [y2lys2]) ~-- 2~ x2+n2--y2 24 
a t t (x3 ,n3 ,  [y3lys3]) *--- ~5 n4--n3+l 26 a t t (x3 ,n4 ,ys3)  2r 

One obtains the following cyclic dataflow graph of Fastqueens: 

8 ~ 6 ~ 1 ( ]  

13 ~ 11 26 ~ 25 

Consider the precondition 
r = ground(number ~ A ~free(x~) A/ree(unplqs ~ A free(m ~ A free(v ~ A 

free(w ~ A free(z3~ 
We show that  Fastqueens is terminating w.r.t, ft. Consider the assertions: 

r = Ca = ( list(unplqs ~ A list( sa f eqs~ ), 
r = r = list(ns~ 
r = list(ys~ 
r = r = list(ys3~ . 

Consider the following W-functions (here II II is the 'list-length' map seen in 
the previous Example 3): 

w 6  = w s  = l i u n p l q s ~  

w l l  = wx3 = I lns~  

w x 7 -  I lys~  
w25 - w26 - I l y s 3 ~  �9 

It is not difficult to check that  this is a termination pair for Fastqueens w.r.t. 
r For instance, for condition 2 of Def. 17 note that  whenever two pp's of the 
cdg are on the same clause the corresponding W-functions are equal. 

Thus, for Theorem 19, Fastqueens terminates w.r.t. r 13 

9 C o n c l u s i o n  

In this paper we have provided a characterization of terminating clp's w.r.t, a 
precondition by means of the notion of termination triple. We have discussed how 
this characterization can be used in practice, by introducing a methodology for 
finding termination triples, and a sufficient criterion based on this methodology 
for proving termination of normal clp's. 

A different graphical abstraction has been used to study termination of logic 
programs ([BCF94, WS94]), under the name of U-graph or specific graph. This 
notion is based on the so-called dependency graph of a program. In an U-graph, 
the program atoms are the nodes and there is a directed arc from a node nl to 
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another node n2 either if nl is the head of a clause and n~ is one of its body 
atoms, or if nl is a body atom and n2 is the head of a clause s.t. nl and n~ unify. 
In this representation the first type of arc abstracts a clause, and the second one 
the flow of control. Then, the graph is used to detect possible divergences, and 
other proof methods ([BC89] and [DM88]) are used to obtain the information 
on the operational behaviour of the program which is needed to perform the 
termination analysis on the graph. 

However, for our purpose, namely to give a characterization of terminating 
clp's, we found advantageous to have an uniform approach based uniquely on 
the dataflow graph of the program. For this reason, we have introduced a more 
concrete notion of dataflow graph, where, also the backwards propagation of the 
state in a derivation is described. 

We conclude by showing how the results can be extended to more general 
CLP systems. 

All major implemented CLP systems are 'quick-check' and 'progressive' (cf. 
[JM94]). In these kind of systems, the state is divided into two components 
containing the active and the passive constraint, and only the consistency of 
the active constraint is checked. This improves the efficiency of the system. We 
sketch how our results can be easily extended to deal with 'quick-check' and 
'progressive' systems. 

States = {(cl, c2) [ Cl and c2 are constraints s.t. consistent(c1)}, 

where the test consistent(c1) checks for (an approximation of) the consistency 
of el. 

Rules R and C are modified as below, where a state is denoted by (al,  a2): 

r t  , i ]er( i,a  = 

with ~' = push(a), if C = p(t) ~ B is in P. 

C ( ( d ) . ~ ,  oz) , (~ ,  infer'(o~l,c~Ad~ 

if d is a constraint. 
Finally, the definition of r A c has to be changed in: 

C A c =  {~' eS ta tes  ] ~' =infer(ocl,a2Ac) a n d a E r  

The operator infer computes from the current state (cl, c2) a new active con- 
straint c~ and passive constraint c~, with the requirement that cl A c2 and c~ A c~ 
are equivalent constraints. The intuition is that cl is used to obtain from c2 more 
active constraints; then c2 is simplified to c~. 
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