
Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

986

Advisory Board: W. Brauer D. Gries J. Stoer

Henry G. Baker (Ed.)

Memory Management

International Workshop IWMM 95
Kinross, UK, September 2%29, 1995
Proceedings

~ Springer

Series Editors

Gerhard Goos
Universit~it Karlsruhe
Vincenz-Priessnitz-StraBe 3, D-76128 Karlsruhe, Germany

Juris Hartmanis
Department of Computer Science, Cornell Universit3~
4130 Upson Hall, Ithaca, NY 14853, USA

Jan van Leeuwen
Department of Computer Science,Utrecht Universit3~
Padualaan 14, 3584 CH Utrecht, The Netherlands

Volume Editor

Henry G. Baker
Synapse Computer Services
16231 Meadow Ridge Way, Encino 91436, CA, USA

Cataloging-in-Publication data applied for

Die Deu t sche B ib l io thek - C I P - E i n h e i t s a u f n a h m e

M e m o r y managemen t : i n t e rna t i ona l wor k s h o p ; p roceedings /
I W M M 95, Kinross , UK, Sep tember 1995 / H e n r y G. Baker
(ed.). - Berl in ; Heide lberg ; New York : Springer , 1995

(Lecture notes in computer science ; Vol. 986)
ISBN 3-540-60368-9

NE: Baker, Henry G. [Hrsg.]; IWMM <1995, Kinross>; GT

CR Subject Classification (1991): D.4.2, B.3.2, B.5.1, B.6.1, B.7.1, C.1.2,
D.4.7-8, D.1, D.3.2

ISBN 3-540-60368-9 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer -Verlag. Violations are
liable for prosecution under the German Copyright Law.

�9 Springer-Verlag Berlin Heidelberg 1995
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10485579 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper

I W M M ' 9 5 Call For Papers

Memory management of dynamically allocated memory (MM) plays a large
and increasingly important part in the interface between sophisticated lan-
guages (Lisp, Scheme, ML, Prolog, Smalltalk, Modula-3, Eiffel, constraint
languages, etc.) and operating systems. MM interacts with real-time schedul-
ing, concurrency control, parallel threads, persistent objects, distributed ob-
jects, active objects, orphan elimination, finalization, multi-lingual environ-
ments, etc.

Advances in memory devices (speed, size, power, access characteristics,
compression) and the demands of new applications (e.g., desktop audio/video,
distributed databases/applications on high performance, low-latency net-
works) provide additional problems and opportunities in MM.

IWMM'92 was a highly successful workshop which brought together re-
searchers and practitioners working on various aspects of MM. IWMM'95 is
intended to keep the same wide-ranging and eclectic scope to promote the
cross-fertilization that was achieved by IWMM'92. In addition to a mix of
theoretical and practical papers, we are also seeking papers with interdisci-
plinary and/or pioneering content.

Topics of Interest

Explicit alloc/free algorithms/measurements
Garbage Collection (GC)
Parallel/real-time GC
Multilingual GC
Environment structures
Static/Dynamic MM
Backtracking and MM
Constraints and MM
MM for parallel languages
MM and memory hierarchies
Precaching strategies and MM
Compile time GC
Definition/minimization of storage leaks
MM of persistent objects
MM of distributed objects
Architecture/OS support for MM
MM and distributed shared memory
Hardware support for MM&GC
MM performance analysis & optimization tools
Reflective MM

Preface

The International Workshop on Memory Management 1995 (IWMM'95) is a
continuation of the excellent series started by Yves Bekkers and Jacques Co-
hen with IWMM'92. The present volume assembles the refereed and invited
technical papers which were presented during this year's workshop. The Call
For Papers for IWMM'95 is included as an appendix to this Preface.

Memory storage space is as fundamental to computing as the time for
CPU cycles, as was shown by Alan Turing. An expanding amount of time
is not very useful for more complex computations without a corresponding
expanding amount of space. We can make an analogy between storage space
in a computer memory and energy in a physical system. A physical system
with a limited amount of energy is like a child's wind-up toy - - it can express
only a limited range of behavior before running down. Similarly, a computer
program with only a limited access to memory space also exhibits a very
limited range of behavior.

Later studies of automata models of computers have shown that while
an expanding amount of space is necessary for interesting behavior, it is not
sufficient. If the access to the memory is constrained to occur in certain orders
- - for example, in only a stack-like (Last-In, First-Out or LIFO) order - - then
the range of behavior is also constrained.

It is therefore no accident that progress in the field of computer software
can be directly correlated with the removal of limitations on the amount and
access patterns of computer memory. The static memory models of Fortran
and Cobol have given way to the stack memory models of Algol-60, Pascal
and C. And these stack models have given way to the randomly-accessed
heap storage of Lisp, Algol-68, Prolog, Eiffel and finally Cq-§

Improvements in the exploitation of computer memory have come very
slowly, with strong rearguard actions required. One of the reasons for this
conservatism is that serious constraints on memory management were built
into the fundamentals of popular computer languages, and progress has there-
fore required the adoption of new computer languages. Each tiny step has
required a transition whose pain is essentially independent of the size of the
step. Another reason for conservatism is the fact that the conceptual gap
between the models of computation useful for software development and the
models of computation used for computer hardware has continued to widen.
Today, there is a vast gulf between the dynamic random-access memory chip
(DRAM) provided by the hardware designer and the dynamic object-oriented
graph structure desired by the software designer. This gulf must be filled by
memory management hardware and software.

The object model of computation was pioneered in the language Lisp.
In the object model of computation, the computer memory consists of a
dynamic set of objects, each of which may "point to" zero or more other

yl

objects. Some objects are accessible directly via anchors or "roots", while
others are accessible indirectly by following chains of pointers from one object
to another. Thus, the object model is a dynamic "directed graph" structure,
in which additional vertices ("nodes" or objects) may be added or removed,
and in which edges may be dynamically redirected from one object to another.

This dynamic object graph model was a dramatic improvement over the
linear tape storage of Turing or the linear RAM of von Neumann. However,
because the object model is so different from these memory hardware con-
cepts, a non-trivial layer of mechanism is required to provide "objects" in a
memory designed only for array elements. This layer involves the dynamic
allocation of small contiguous chunks of the linear RAM "address space", and
the installation and maintenance of pointers among these chunks of memory.

Various schemes for dynamic memory allocation were tried, and the basic
schemes we use today were developed by 1960. "List memory" was developed
in Newell, Shaw and Simon's IPL language, "reference counting" was devel-
oped by Collins for a computer algebra system, and "mark/sweep garbage
collection" was developed by McCarthy for the Lisp language. (At the same
time, the far less capable systems of static and stack storage were being
utilized in the Fortran, Cobol and Algol-60 languages.)

As these systems of dynamic storage management were developed, their
flaws also became clear. Newell, Shaw and Simon found in the mid-1950s that
programmer-directed object deletion was buggy and unworkable in a system
of any complexity - - a lesson that can apparently only be learned the hard
way at the "school of hard knocks," if the subsequent history of computer
languages which tried to cut this corner - - e.g., Pascal, C, C + + - - is any
guide.

The alternative to programmer-directed deletion of objects which are no
longer useful is "automatic" memory management, in which the memory
manager itself recovers the storage from useless objects. Two classical tech-
niques for automatic memory management are reference counting and mark-
ing garbage collection.

Collins found that reference counting is useful in certain contexts, but has
an overhead which is proportional to the length of the computation, and is
not capable of detecting cycles of useless objects.

McCarthy found that mark/sweep garbage collection (GC) can collect
such cycles of "garbage", and thus is essentially the only method of mem-
ory management that can handle a general object-oriented directed graph
structure. Furthermore, he also found that marking GC is very efficient with
larger memory sizes because the fixed amount of work of marking for a set of
live objects can be amortized over the larger number of garbage cells that are
collected in one sweep of these larger memories. Unfortunately, McCarthy's
implementation of mark/sweep GC required that the application program
completely stop dead in its tracks while the garbage collection process was
going on. While various proposals were made to solve this problem, unfor-

vii

tunately none was implemented before the computing world split into the
faction that advocated garbage collection and worked on non-time-critical
problems, and the faction that felt that garbage collection was perhaps too
complex and too difficult for more time-critical problems.

There are good reasons for the difficulty of the general task of managing
object-oriented memory. The primary reason for using the object model is
to allow for the controlled sharing of information among objects. This shar-
ing, however, so blurs the boundaries of "ownership" of chunks of memory
that no isolated object or application can "see" enough of the object graph
to know whether a particular object is useless. Thus, the desire for the ad-
vantages of sharing causes the desire for automatic memory management.
Furthermore, the more complex the sharing patterns, the more difficult the
management problem. For example, so long as the sharing pattern is acyclic,
thus representing essentially finite structures, reference counting is adequate.
If, however, infinite structures must be represented by means of directed cy-
cles, then reference counting is inadequate, and more general marking garbage
collection is required.

It is now 1995, however, and several computing chickens have come home
to roost. "Objects" have now taken over the computing world, so the ef-
ficient management of memory to provide for the storage of these objects
has become a serious concern. The costs of software development continue to
escalate, so that memory management techniques that can remove burdens
from the programmer are of great interest. The "central processing" part of
the computer CPU has been sped up to the point where the bottleneck in
application processing speed is no longer arithmetic, but memory (hierarchy)
management. The promised speedups from "parallel processing" on a dedi-
cated parallel processor have never materialized for most applications, while
the requirements for "distributed" processing have become quite insistent.

The original revulsion against the complexity of marking garbage collec-
tion has now evolved into an admiration of the elegance of a simple straight-
forward idea that can replace a myriad of buggy ad hoc hacks that still cannot
reliably collect all the useless objects in an object-oriented system.

Real-time marking garbage collection algorithms have been developed
which no longer require that an application stop for long periods during
garbage collection. Indeed, hardware-assisted garbage collectors can provide
guaranteed access times which are little different from those of memory mod-
ules which do not provide garbage collection.

For a serial computer, the consensus is that some form of marking garbage
collection is now the technique of choice, having displaced reference counting
as too expensive (due to the expense of count maintenance) and too restrictive
(due to its inability to collect cycles of garbage), and programmer-directed
reclamation as too buggy, too dangerous, and too unreliable.

viii

Significant additional research is required, however, to allow the garbage
collector to work more closely with the compiler, the operating system, and
the memory hierarchy.

The popularity of the World Wide Web on the Internet has focused at-
tention on the need for efficient, robust methods for "distributed" memory
management, in which portions of an application are spread out on various
machines at disparate locations on a network.

Distributed garbage collection has turned out to be a quite difficult prob-
lem. The combined requirements of handling faulty communications links,
faulty processors, and faulty software, together with the usual locking and
synchronization problems of concurrent systems, have so far hindered re-
searchers from producing efficient, robust distributed garbage collectors.

Once again, there are good reasons for the difficulty of distributed garbage
collection. Before an object can be collected, all processors in the distributed
system must agree that the object is useless, and it has been found that
reaching such a consensus in the presence of various kinds of failures is very
difficult and sometimes impossible.

In conclusion, we find that effective memory management - - including so-
phisticated marking garbage collection techniques - - is a fundamental build-
ing block in reliable and efficient computer languages - - including those in-
tended for real-time and distributed applications.

We wish to thank the authors for submitting their papers, and the referees
for their careful evaluation of the submitted papers, and their suggestions to
the authors for improving their papers. We also thank Peter Dickman for
his help in hosting this workshop, as well as Eric Jul and Michael Svendsen
for their handling of the electronic submissions. We also wish to thank the
Cambridge Research Laboratory of Apple Computer, Inc. for their help in
hosting the IWMM'95 Program Committee Meeting.

Henry G. Baker
Program Chair, IWMM'95
Encino, CA, USA
hbaker@netcorn, corn
July 1995

Correctness and analysis
Laziness and MM

Program committee

Henry Baker, Chair
Yves Bekkers, IRISA, France
Hans-Jurgen Boehm, Xerox PARC, USA
Jacques Cohen, Brandeis University, USA
Bart Demoen, K. U. Leuven, Belgium
Peter Dickman, University of Glasgow, UK
Benjamin Goldberg, New York University, USA
Eric Jul, DIKU, Denmark
David Moon, Apple Computer, USA
Dan Sahlin, SICS, Sweden
Paul Wilson, University of Texas, USA
Taiichi Yuasa, Toyohashi University, Japan

Local Arrangements

Peter Dickman, University of Glasgow, UK, with assistance from the Depart-
ment of Computing Science, University of Glasgow

Publicity and Communications

Eric Jul, DIKU, University of Copenhagen, Denmark, with assistance from
DIKU

Table of C o n t e n t s

I n v i t e d P a p e r - - D y n a m i c S t o r a g e Al loca t ion :
A S u r v e y a n d Cr i t i ca l R e v i e w
Paul R. Wilson, Mark S. Johnstone, Michael Neely and David Boles

I n v i t e d T a l k - - S t a t i c Ana lys i s R e f u s e s to S t a y Still:
P r o s p e c t s o f S t a t i c Ana ly i s for D y n a m i c A l l o c a t i o n
Philip Wadler . 117

C o m p i l e - T i m e G a r b a g e Co l l ec t i on for Lazy F u n c t i o n a l
L a n g u a g e s
G.W. Hamilton . 119

G e n e r a t i o n a l G a r b a g e Co l l ec t i on w i t h o u t T e m p o r a r y Space
Leaks for Lazy F u n c t i o n a l L a n g u a g e s
Niklas RSjemo . 145

C o m p l e m e n t a r y G a r b a g e C o l l e c t o r
Shogo Matsui, Yoshio Tanaka, Atsushi Maeda
and Masakazu Nakanishi . 163

P e r f o r m a n c e T u n i n g in a C u s t o m i z a b l e Co l l ec to r
Giuseppe Attardi, Tito Flagella and Pietro Iglio 179

M O A - - A Fas t S l id ing C o m p a c t i o n S c h e m e for a La rge
S t o r a g e Space
Mitsugu Suzuki, Hiroshi Koide and Motoaki Terashima 197

A S u r v e y o f D i s t r i b u t e d G a r b a g e Co l l ec t i on T e c h n i q u e s
David Plainfoss6 and Marc Shapiro . 211

G a r b a g e C o l l e c t i o n o n an O p e n N e t w o r k
Matthew Fuchs . 251

Ind i r ec t M a r k a n d Sweep : A D i s t r i b u t e d G C

Jos@ M. Piquer . 267

On- the - f ly G l o b a l G a r b a g e C o l l e c t i o n B a s e d on P a r t l y
M a r k - S w e e p
Munenori Maeda, Hiroki Konaka, Yutaka Ishikawa,
Takashi Tomokiyo, Atsushi Hori, JSrg Nolte . 283

Xl[

L E M M A : A D i s t r i b u t e d S h a r e d M e m o r y w i t h Globa l a n d
Local G a r b a g e Co l l ec t ion
David C.J. Matthews and Thierry Le Sergent . 297

One Pass R e a l - T i m e G e n e r a t i o n a l M a r k - S w e e p G a r b a g e
Col lec t ion
Joe Armstrong and Robert Virding . 313

Garbage Collection for Control Systems
Boris Magnusson and Roger Henriksson 323

A Garbage Collector for the Concurrent Real-Time
Language Erlang
Robert Virding ... 343

Progres s in H a r d w a r e - A s s i s t e d R e a l - T i m e G a r b a g e
Col lec t ion
Kelvin Nilsen . 355

A Miss H i s t o r y - B a s e d A r c h i t e c t u r e for Cache P r e f e t c h i n g
Vidyadhar Phalke and B. Gopinath . 381

M e m o r y M a n a g e m e n t in F l a s h - M e m o r y Disks w i t h D a t a
C o m p r e s s i o n
Morten Kjelsr and Simon Jones . 399

List o f A u t h o r s . 415

