
MAX-PLANCK-INSTITUT

FÜR
INFORMATIK

 	

� �
Associative-Commutative Superposition

Leo Bachmair
Harald Ganzinger

MPI–I–93–267 December 1993

���
�

�� k

I N F O R M A T I K

Im Stadtwald

D 66123 Saarbrücken

Germany

Addresses

Leo Bachmair, Department of Computer Science, SUNY at Stony Brook, Stony Brook, NY 11794,
U.S.A, leo@sbcs.sunysb.edu
Harald Ganzinger, Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Ger-
many, hg@mpi-sb.mpg.de

Acknowledgements

The research described in this paper was supported in part by the German Science Founda-
tion (Deutsche Forschungsgemeinschaft) under grant Ga 261/4-1, by the German Ministry for
Research and Technology (Bundesministerium für Forschung und Technologie) under grant ITS
9102/ITS 9103 and by the ESPRIT Basic Research Working Group 6028 (Construction of Com-
putational Logics). The first author was also supported by the Alexander von Humboldt Foun-
dation.

Abstract

We present an associative-commutative paramodulation calculus that generalizes the associative-
commutative completion procedure to first-order clauses. The calculus is parametrized by a
selection function (on negative literals) and a well-founded ordering on terms. It is compatible
with an abstract notion of redundancy that covers such simplification techniques as tautology
deletion, subsumption, and simplification by (associative-commutative) rewriting. The proof of
refutational completeness of the calculus is comparatively simple, and the techniques employed
may be of independent interest.

Keywords

Term Rewriting, Theorem Proving, Equational Deduction

Contents

1 Introduction 1

2 Preliminaries 1
2.1 Clauses . 1
2.2 Reduction Orderings . 2
2.3 Associative-Commutative Rewriting . 3

3 Associative-Commutative Superposition 4
3.1 Inference Rules . 5
3.2 Lifting Properties . 5
3.3 Redundancy . 6

4 Refutational Completeness 7

5 Summary 11

1 Introduction

Rewrite techniques are one of the more successful approaches to equational reasoning.
In theorem proving these techniques usually appear in the form of completion-like proce-
dures, such as ordered completion (Bachmair, Dershowitz and Plaisted 1989, Hsiang and
Rusinowitch 1987), associative-commutative completion (Peterson and Stickel 1981),
or basic completion (Bachmair, Ganzinger, Lynch, et al. 1992, Nieuwenhuis and Ru-
bio 1992). Traditionally completion procedures were formulated for sets of equa-
tions (unit clauses), but ordered completion has been generalized to arbitrary non-unit
clauses, resulting in several variants of paramodulation called superposition (Rusinow-
itch 1991, Zhang 1988, Bachmair and Ganzinger 1990, Pais and Peterson 1991), and the
basic strategy has actually first been developed for first-order clauses. Associativity and
commutativity have been built into ordered paramodulation (Paul 1992, Rusinowitch
and Vigneron 1991), a calculus (Hsiang and Rusinowitch 1991) that does not general-
ize completion, but includes similar rewrite techniques; and Wertz (1992) designed an
associative-commutative superposition calculus. Unfortunately, the completeness proofs
proposed for these calculi are technically involved and quite complicated.

The calculus described in this paper is obtained by applying the technique of ex-
tended rules (Peterson and Stickel 1981) to a superposition calculus of Bachmair and
Ganzinger (1994). A similar calculus has been discussed by Wertz (1992), and our com-
pleteness proof, like Wertz’s proof, is based on the model construction techniques we
originally proposed in Bachmair and Ganzinger (1990). The main difference with our
current approach is that we use non-equality partial models to construct an equality
model. These modifications were motivated by our recent work on rewrite techniques
transitive relations in general Bachmair and Ganzinger (1993), and allow us to more
naturally deal with associative-commutative rewriting.

Completion procedures are based on commutation properties (often called “critical
pair lemmas”) of the underlying rewrite relation. We believe that our approach may be of
independent interest in that it provides a general method for extending such procedures
from unit clauses to Horn clauses to full clauses. Clauses are interpreted as conditional
rewrite rules (with positive and negative conditions); new clauses need to be inferred
with suitably designed inference rules, so that this clausal rewriting relation is well-
defined and satisfies the required commutation properties. Associative-commutative
superposition represents a non-trivial application of this general methodology.

The next section contains basic notions and terminology of theorem proving and
rewriting. The associative-commutative superposition calculus is described in Section 3,
and proved complete in Section 4.

2 Preliminaries

2.1 Clauses

We consider first-order languages with equality. A term is an expression f(t1, . . . , tn)
or x, where f is a function symbol of arity n, x is a variable, and t1, . . . , tn are terms.
For simplicity, we assume that equality is the only predicate in our theory. By an
atomic formula (or atom) we mean a multiset {s, t}, called an equality and usually
written s ≈ t, where s and t are terms.1 A literal is either a multiset (of multisets)

1The symmetry of equality is thus built into the notation.

1

{{s}, {t}}, called a positive literal and also written s ≈ t, or a multiset {{s, t}}, called
a negative literal and written s ̸≈ t or ¬(s ≈ t). A clause is a finite multiset of literals.
We write a clause by listing its literals ¬A1, . . . ,¬Am, B1, . . . , Bn, or as a disjunction
¬A1 ∨ · · · ∨ ¬Am ∨ B1 · · · ∨ Bn. An expression is said to be ground if it contains no
variables.

A (Herbrand) interpretation is a set I of ground atomic formulas. We say that an
atom A is true (and ¬A, false) in I if A ∈ I; and that A is false (and ¬A, true) in I
if A ̸∈ I. A ground clause is true in an interpretation I if at least one of its literals is
true in I; and is false otherwise. A (non-ground) clause is said to be true in I if all its
ground instances are true. The empty clause is false in every interpretation. We say
that I is a model of a set of clauses N (or that N is satisfied by I) if all elements of N
are true in I. A set N is satisfiable if it has a model, and unsatisfiable otherwise. For
instance, any set containing the empty clause is unsatisfiable.

An interpretation is called an equality interpretation if it satisfies the reflexivity
axiom

x ≈ x

the transitivity axiom
x ̸≈ y ∨ y ̸≈ z ∨ x ≈ z

and all congruence axioms

x ̸≈ y ∨ f(. . . , x, . . .) ≈ f(. . . , y, . . .)

where f ranges over all function symbols. (Symmetry is already built into the notation.)
We say that I is an equality model of N if it is an equality interpretation satisfying N .
A set N is equality satisfiable if it has an equality model, and equality unsatisfiable
otherwise.

We will consider the problem of checking whether a given set of clauses has an
equality model, and for that purpose have to reason about Herbrand interpretations.
Two concepts are useful in this context: rewrite systems and reduction orderings.

2.2 Reduction Orderings

An ordering is a transitive and irreflexive binary relation. A rewrite relation is a binary
relation ≻ on terms such that s ≻ t implies u[sσ] ≻ u[tσ], for all terms s, t, u[sσ], and
u[tσ] in the given domain.2 By a rewrite ordering we mean a transitive and irreflexive
rewrite relation; by a reduction ordering, a transitive and well-founded rewrite relation.
(A binary relation ≻ is well-founded if there is no infinite sequence t1 ≻ t2 ≻ . . . of
elements.)

Any ordering ≻ on a set S can be extended to an ordering on finite multisets over
S (which for simplicity we also denote by ≻) as follows: M ≻ N if (i) M ̸= N and (ii)
whenever N(x) > M(x) then M(y) > N(y), for some y such that y ≻ x. If ≻ is a total
(resp. well-founded) ordering, so is its multiset extension. If ≻ is an ordering on terms,
then its multiset extension is an ordering on equations; its twofold multiset extension,
an ordering on literals; and its threefold multiset extension, an ordering on clauses.

2In our notation for terms we follow Dershowitz and Jouannaud (1990).

2

2.3 Associative-Commutative Rewriting

An equivalence (relation) is a reflexive, transitive, and symmetric binary relation. A
congruence (relation) is an equivalence such that s ≻ t implies u[s] ≻ u[t], for all terms
s, t, u[s], and u[t] in the given domain. Note that if I is an equality interpretation,
then the set of all pairs (s, t) and (t, s), for which s ≈ t is true in I, is a congruence
relation on ground terms. Conversely, if ∼ is a congruence relation, then the set of all
ground equations s ≈ t, for which s ∼ t, is an equality interpretation. In short, equality
interpretations can be described by congruence relations. Rewrite systems can be used
to reason about congruence relations.

By a rewrite system we mean a binary relation on terms. Elements of a rewrite
system are called (rewrite) rules and written s→ t. If R is a rewrite system, we denote
by→R the smallest rewrite relation containing R. The transitive-reflexive closure of→R

is denoted by →∗
R; while ↔∗

R denotes the smallest congruence relation containing R. A
rewrite system R is said to be terminating if the rewrite relation →R is well-founded.

We assume that some function symbols f are associative and commutative, i.e.,
satisfy the axioms

f(x, f(y, z)) ≈ f(f(x, y), z)

f(x, y) ≈ f(y, x)

For the rest of the paper, let AC be a set of such axioms. We write f ∈ AC, if AC
contains the associativity and commutativity axioms for f , and also use AC to denote
the binary relation containing the pairs (f(x, f(y, z)), f(f(x, y), z)) and (f(x, y), f(y, x)).
We say that two terms u and v are AC-equivalent if u↔∗

AC v.
A reduction ordering ≻ is AC-compatible if u′ ↔∗

AC u ≻ v ↔∗
AC v′ implies u′ ≻ v′,

for all terms u, u′, v, and v′. If ≻ is AC-compatible, we write u ≽ v to indicate that
u ≻ v or u↔∗

AC v. We say that a rewrite system R is AC-terminating if there exists an
AC-compatible reduction ordering ≻ such that s ≻ t, for all rules s→ t in R.

Associativity and commutativity are built into rewriting via matching. If R is a
rewrite system, we denote by AC\R the set of all rules u′ → v, such that u′ ↔∗

AC u
for some rule u → v in R. The rewrite relation →AC\R corresponds to rewriting by
R via AC-matching. We say that a term t can be rewritten (modulo AC) to another
term t′ if t →AC\R t′. Terms that cannot be rewritten are said to be in AC-normal
form or AC-irreducible. We write u ↓AC\R v if there exist terms u′ and v′ such that
u →∗

AC\R u′ ↔∗
AC v′ ←∗

AC\R v. Given an AC-compatible reduction ordering, we also

write u↔≼t
AC∪R v (resp. u↔≺t

AC∪R v) to indicate that there exists a sequence

t0 ↔AC∪AC\R · · · ↔AC∪AC\R tn

such that t ≽ ti (resp. t ≻ ti), for all i with 0 ≤ i ≤ n.
If R is AC-terminating and we have u ↓AC\R v, for all terms u and v with u↔∗

AC∪R v,
then R is called AC-convergent. We shall use AC-convergent rewrite systems to describe
equality models of AC.

It is a standard result from the theory of term rewriting (see Dershowitz and Jouan-
naud 1990 for details and further references) that an AC-terminating rewrite system R
is AC-convergent if (i) u ↓AC\R v whenever u ←AC\R t ↔AC v (a property called local
AC-coherence) and (ii) u ↓AC\R v whenever u ←AC\R t →R v (a property called local
AC-confluence).

3

Any rewrite system R can easily be extended to a locally AC-coherent system by a
technique proposed by Peterson and Stickel (1981). An extended rule is a rewrite rule
of the form f(x, u)→ f(x, v), where f ∈ AC, u is a term f(s, t), and x is a variable not
occurring in u or v. We also say that f(x, u)→ f(x, v) is an extension of u→ v. If R is a
rewrite system, we denote by Re the set R plus all extensions of rules in R. Any rewrite
system AC\Re is locally AC-coherent: if u←AC\Re t↔AC v, then u↔∗

AC u′ ←AC\Re v,
for some term u′.

The local AC-confluence property is satisfied whenever it can be shown to hold for
certain “minimal” rewrite sequences u ←AC\R t →R v that are also called “critical
overlaps.” We only have to consider certain ground rewrite systems R where critical
overlaps involve extended rules in Re. This is summarized in the following lemma.

Lemma 1 Let R be a ground rewrite system contained in an AC-compatible reduction
ordering ≻ and suppose that no left-hand side of a rule in R can be rewritten modulo AC
by any other rule in R or any extended rule in Re. Furthermore, let t be a ground term,
such that for all ground instances f(u, u′)→ f(u, u′′) and f(v, v′)→ f(v, v′′) of extended
rules in Re, where f(u, u′) ↔∗

AC f(v, v′) and t ≽ f(u, u′), we have f(u, u′′) ↓AC\Re

f(v, v′′). Then w ↓AC\Re w′ for all ground terms w and w′ such that w ↔≼t
AC∪AC\R w′.

If the same conditions are only satisfied for ground instances of extended rules with
t ≻ f(u, u′), then w ↓AC\Re w′ for all ground terms w and w′ such that w ↔≺t

AC∪AC\R w′.

The lemma can be proved by standard techniques from term rewriting.

3 Associative-Commutative Superposition

We formulate our inference rules in terms of a reduction ordering. Furthermore, negative
literals in a clause may be marked, in which case they are said to be selected. We assume
that at least one literal is selected in each clause in which the maximal literal is negative.
(If the maximal literal is positive, there may be no selected literals.)

Let ≻ be a well-founded AC-compatible reduction ordering, such that s ↔∗
AC t or

s ≻ t or t ≻ s, for all ground terms s and t. (Such orderings have been described by
Narendran and Rusinowitch (1991) and Rubio and Nieuwenhuis (1993).) We say that
a clause C ∨ s ≈ t is reductive for s ≈ t (with respect to ≻) if there exists a ground
instance Cσ ∨ sσ ≈ tσ such that sσ ≻ tσ and sσ ≈ tσ ≻ Cσ. By an extended clause
we mean a reductive clause C ∨ f(x, s) ≈ f(x, t), where f ∈ AC, s is a term f(u, v),
and x is a variable not occurring in C, s, or t. We also say that C ∨ f(x, s) ≈ f(x, t) is
an extension of C ∨ s ≈ t. We will see that only extensions of certain reductive clauses
without selected literals are needed. (Such extensions are themselves reductive.)

Associativity and commutativity are built into the inference rules via AC-unification.
Two terms u and v are AC-unifiable if uσ ↔∗

AC vσ, for some substitution σ. If
two terms u and v are AC-unifiable, then there exists a complete set of AC-unifiers
CSUAC(u, v), such that for any substitution σ with uσ ↔∗

AC vσ there exist substitu-
tions τ ∈ CSUAC(u, v) and ρ, such that xσ ↔∗

AC (xτ)ρ, for all variables x in u and v.
We assume that a function CSUAC is given and call a substitution in CSUAC(u, v) a
most general AC-unifier of u and v.

4

3.1 Inference Rules

The calculus S≻
AC consists of the following inference rules. (We assume that the premises

of an inference share no common variables. If necessary the variables in one premise
need to be renamed.)

AC-Superposition:
C, s ≈ t D, u[s′] ≈ v

Cσ, Dσ, u[t]σ ≈ vσ

where (i) σ is a most general AC-unifier of s and s′, (ii) the clause Cσ ∨ sσ ≈ tσ is
reductive for sσ ≈ tσ and C ∨ s ≈ t either contains no selected literals or is an extended
clause,3 (iii) the clause Dσ ∨ uσ ≈ vσ is reductive for uσ ≈ vσ and either contains no
selected literals or is an extended clause, and (iv) s′ is not a variable.

Negative AC-Superposition:
C, s ≈ t D, u[s′] ̸≈ v

Cσ, Dσ, u[t]σ ̸≈ vσ

where (i) σ is a most general AC-unifier of s and s′, (ii) the clause Cσ ∨ sσ ≈ tσ is
reductive for sσ ≈ tσ and C ∨ s ≈ t either contains no selected literals or is an extended
clause, (iii) the literal u ̸≈ v is selected in D ∨ u ̸≈ v and vσ ̸≽ uσ, and (iv) s′ is not a
variable.

Reflective AC-Resolution:
C, u ̸≈ v

Cσ

where σ is a most general AC-unifier of u and v and u ̸≈ v is a selected literal in the
premise.

AC-Factoring:
C, s ≈ t, s′ ≈ t′

Cσ, tσ ̸≈ t′σ, s′σ ≈ t′σ

where σ is a most general AC-unifier of s and s′, t′σ ̸≻ tσ, the literal sσ ≈ tσ is maximal
in Cσ, and the premise contains no selected literals.

3.2 Lifting Properties

In proving the refutational completeness of a superposition calculus S≻
AC , we shall have

to argue about ground instances of clauses and inferences. The connection between the
general level and the ground level is usually stated in the form of so-called “lifting”
properties.

Let C1 . . . Cn be clauses and let

C1σ . . . Cnσ

D

be a ground inference, i.e., all clauses Ciσ and D are ground. (We assume that each
clause Ciσ is marked in the same way as Ci; that is, Lσ is selected in Cσ if and only
if L is selected in C.) We say that this ground inference can be AC-lifted if there is an
inference

C1 . . . Cn

C

3In other words, selection is ignored for extended clauses.

5

such that Cσ ↔∗
AC D. In that case, we also say that the ground inference is an AC-

instance of the general inference.
Lifting is no problem for resolution and factoring inferences, but is more difficult for

superposition inferences. For example, if N contains two clauses f(x, x) ≈ x and a ≈ b,
where a ≻ b, then there is a superposition inference from ground inferences

a ≈ b f(a, a) ≈ a

f(a, b) ≈ a

but no superposition inference from the clauses themselves. To prove completeness,
one has to show that all necessary inferences can be AC-lifted. Let us illustrate the
conditions under which AC-superposition inferences can be lifted. (The case of negative
AC-superposition is similar.)

Let C ∨ s ≈ t and D ∨ u[s′] ≈ v be two clauses, each either containing no selected
literals or being an extended clause. An AC-superposition inference

Cτ, sτ ≈ tτ Dτ, u[s′]τ ≈ vτ

Cτ, Dτ, u[t]τ ≈ vτ

from ground instances of these clauses, where s′τ ↔∗
AC sτ , can be AC-lifted if s′ is

a non-variable subterm of u. (Proof. The ordering restrictions require that sτ ≈ tτ is
strictly maximal in Cτ and sτ ≻ tτ , and uτ ≈ vτ is strictly maximal in Dτ and uτ ≻ vτ .
Consider the inference

C, s ≈ t D, u[s′] ≈ v

Cσ, Dσ, u[t′]σ ≈ vσ

where σ is a most general AC-unifier of s and s′, such that for some substitution ρ we
have xτ ↔∗

AC (xσ)ρ, for all variables x occurring in s′ or s, and yτ = (yσ)ρ, for all
other variables y. It can easily be shown that Cσ∨ sσ ≈ tσ is reductive for sσ ≈ tσ and
Dσ ∨ uσ ≈ vσ is reductive for uσ ≈ vσ. Also, s′ is not a variable, so that the inference
is an AC-superposition inference. Moreover, the conclusion of the ground inference is
AC-equivalent to an instance of the conclusion of the general inference.)

3.3 Redundancy

Simplification techniques, such as tautology deletion, subsumption, demodulation, con-
textual rewriting, etc., represent an essential component of automated theorem provers.
These techniques are based on a concept of redundancy (Bachmair and Ganzinger 1994),
which we shall now adapt to the AC-case.

Let RA denote the set consisting of the reflexivity axiom, F the set of all congruence
axioms, and T the set consisting of the transitivity axiom, cf. Section 2. Furthermore,
for any ground term s, let T≼s be the set of all ground instances u ̸≈ v ∨ v ̸≈ w ∨ u ≈ w
of the transitivity axiom, for which s ≽ u and s ≽ v and s ≽ w; and T≺s be the set of
all ground instances for which s ≻ u and s ≻ v and s ≻ w;

Let N be a set of clauses. A ground clause C (which need not be an instance of N)
is said to be AC-redundant with respect to N (and ordering ≻) if there exist ground
instances C1, . . . , Ck of N , such that C ≻ Cj, for all j with 1 ≤ j ≤ k, and C is true in
every model of AC ∪ RA ∪ F ∪ T≼s ∪ {C1, . . . , Ck}, where s is the maximal term in C.
It can easily be seen that the clauses C1, . . . , Ck can be assumed to be non-redundant.
A non-ground clause is called AC-redundant if all its ground instances are.

6

Remark. We emphasize that AC-redundancy is defined with respect to arbitrary
interpretations, not just equality interpretations. In particular, there are restrictions
on the use of the transitivity axiom. The restrictions are of more theoretical than
practical significance, as all the usual simplification techniques can be formalized using
AC-redundancy. Wertz (1992) uses a different notion of redundancy, where restric-
tions are imposed, not on transitivity, but instead on the use of the associativity and
commutativity axioms.

For example, consider the (unit) clauses s[u′] ≈ t and u ≈ v, where u′ ↔∗
AC uσ, for

some substitution σ. If uσ ≻ vσ and either s ≻ uσ or else t ≻ vσ, then s[u′] ≈ t is
AC-redundant with respect to any set N containing u ≈ v and s[vσ] ≈ t. In practice,
this allows one to replace s[u′] ≈ t by s[vσ] ≈ t in the presence of the equation u ≈ v.
In other words, the subterm u′ can be rewritten modulo AC to a smaller term vσ.

An AC-superposition inference in which both premises are ground instances of ex-
tended clauses with maximal terms t and t′, respectively, such that t ↔∗

AC t′, is called
AC-redundant with respect to N if its conclusion is either AC-redundant or is a mem-
ber of N . Any other ground inference with conclusion B and maximal premise C is
called AC-redundant with respect to N if there exist ground instances C1, . . . , Ck of
N , such that C ≻ Cj, for all j with 1 ≤ j ≤ k, and B is true in every model of
AC ∪ RA ∪ F ∪ T≺s ∪ {C1, . . . , Ck}, where s is the maximal term in C. A non-ground
inference is called AC-redundant if all its ground instances are AC-redundant. One way
to render an inference in S≻

AC redundant is to add its conclusion to the set N .
We say that a set of clauses N is saturated up to AC-redundancy if all inferences,

the premises of which are non-redundant clauses in N or extensions of non-redundant
clauses in N , are AC-redundant.

Let us conclude this section by pointing out that extended clauses are redundant,
but inferences with them are not. Therefore it is possible to dispense with extended
rules altogether, and instead encode inferences with them directly in an “extended”
AC-superposition calculus, cf., Rusinowitch and Vigneron (1991).

4 Refutational Completeness

In this section we will show how to define an equality model for saturated clause sets
that do not contain the empty clause. The definition of a suitable model uses induction
on ≻ and is adapted from Bachmair and Ganzinger (1994). The presence of extended
rules causes technical complications, though, and requires certain modifications in the
model construction process.

Given a set N of ground clauses, we define a corresponding Herbrand interpretation
I using induction on ≻. For every clause C in N we define RC to be the set

∪
C≻D ED;

and denote by IC the set {u ≈ v : u and v ground, u ↓AC\Re
C
v}, which we also call the

AC-rewrite closure of Re. Furthermore, if C is a clause C ′ ∨ s ≈ t, where (s ≈ t) ≻ C ′

and s ≻ t, then EC = {s ≈ t} if (i) C is false in IC , (ii) C ′ is false in the AC-rewrite
closure of (RC ∪ {s ≈ t})e, and (iii) the term s is irreducible by AC\Re

C . In that case,
we also say that C is productive and that it produces s ≈ t. In all other cases, EC = ∅.
Finally, let R be

∪
C EC and let I be the AC-rewrite closure of Re.

The Herbrand interpretation I is intended to be an equality model of N ∪ AC,
provided N is saturated and does not contain the empty clause. The following lemmas
state the essential properties of the interpretations I and IC .

7

Lemma 2 Let C be a ground clause (which need not be in N) and D be a clause in N
with D ≽ C. If ¬A is a negative literal in C with A ̸∈ ID, then A ̸∈ I. As a consequence,
if C is true in ID, then it is also true in I and in any interpretation ID′ with D′ ∈ N
and D′ ≻ D.

Proof. Let ¬A be a negative literal in C such that A ̸∈ ID. If B ∈ I \ ID, then B ≻ ¬A,
and therefore A ̸∈ I. Also, if A is a positive atom in C and A ∈ ID, then A is contained
in any set ID′ with D′ ≻ D and in I. From this we may conclude that if C is true in
ID, then it is also true in I and in any interpretation ID′ with D′ ∈ N and D′ ≻ D. 2

The next lemma follows immediately from the definition of the interpretations IC
and I.

Lemma 3 The interpretation I and all interpretations IC are models of the associativ-
ity, commutativity, reflexivity, symmetry, and all congruence axioms.

We emphasize that transitivity need not be satisfied by all interpretations IC or I, and
consequently these interpretations need not be equality interpretations. However, if the
clause set N is saturated, then “sufficiently many” instances of the transitivity axiom
are true in each interpretation IC , so that the final interpretation I does indeed satisfy
transitivity, and hence is an equality interpretation. The following lemma is essential in
this regard.

Lemma 4 The interpretation IC is a model of T≼t (resp. T≺t) if and only if for all
ground terms u and v with u↔≼t

AC∪Re
C
v (resp. u↔≺t

AC∪Re
C
v) we have u ↓AC\Re

C
v.

Proof. First let us assume that we have u ↓AC\Re
C
v for all ground terms u and v with

u ↔≼t
AC∪Re

C
v. We show that IC is a model of T≼t. Let u, v, and w be ground terms

with t ≽ u, t ≽ v, and t ≽ w. If u ≈ v and v ≈ w are true in IC , then u ↓AC\Re
C
v and

v ↓AC\Re
C
w. In other words, we have u↔≼t

AC∪Re
C
w; hence u ↓AC\Re

C
w and u ≈ w is true

in IC .
On the other hand, if IC is a model of T≼t, then we have u ↓AC\Re

C
w whenever

u←AC\Re
C
v →AC\Re

C
w, for some term v with t ≽ v. Using Lemma 1, we may conclude

that u′ ↓AC\Re
C
v′ for all ground terms u′ and v′ with u′ ↔≼t

AC∪Re
C
v′. 2

We now come to the main properties of the model construction.

Lemma 5 Let N be a set of clauses that is saturated up to AC-redundancy, does not
contain the empty clause, but contains an extension of every non-redundant reductive
clause in N . Let I be the interpretation constructed from the set of all ground instances
of N ∪RA. Then for every ground instance C of a clause in N ∪RA we have:

(1) If s is the maximal term in C, then IC is a model of T≼s.
(2) If C is an instance Ĉσ of a clause in N , such that xσ is reducible by AC\Re

C,
for some variable x in Ĉ, then C is true in IC.

(3) If C is an instance of a clause with a selected literal, then it is true in IC.
(4) If C is non-productive, then it is true in IC.
(5) If C = C ′ ∨A produces A, then C is a non-redundant instance of a clause in N

with no selected literals and C ′ is false in I.

8

Proof. We use induction on ≻. Let C be a ground instance of N ∪ RA with maximal
term s and assume (1)-(7) are already satisfied for all ground instances C ′ of N with
C ≻ C ′.

(1) Since for every ground term t there is at least one clause with maximal term t
(namely the ground instance t ≈ t of the reflexivity axiom), we may use the induction
hypothesis to infer that IC is a model of T≺s. By Lemmas 1 and 4, it is therefore sufficient
to prove that for any two ground instances f(u, u′) → f(u, u′′) and f(v, v′) → f(v, v′′)
of extended rules in Re

C , with s ↔∗
AC f(u, u′) ↔∗

AC f(v, v′), we have f(u, u′′) ↓AC\Re
C

f(v, v′′).
Suppose u′ ≈ u′′ is produced by C ′∨u′ ≈ u′′ and v′ ≈ v′′ is produced by D′∨v′ ≈ v′′.

Both clauses are strictly smaller than C, so that by the induction hypothesis, they are
true in IC , whereas C

′ and D′ are false in I. By AC-superposition we obtain the clause
C ′′ = C ′ ∨ D′ ∨ f(u, u′′) ≈ f(v, v′′). Since this inference can be AC-lifted, we may
use saturation up to AC-redundancy, to infer that either C ′′ is a ground instance of
N or else there exist ground instances C1, . . . , Ck of N , such that C ′′ ≻ Cj, for all j
with 1 ≤ j ≤ k, and C ′′ is true in every model of AC ∪ RA ∪ F ∪ T≼t ∪ {C1, . . . , Ck},
where t is the maximal term in C ′′. Since C ≻ C ′′ and s ≻ t, we may use the induction
hypothesis to infer that C ′′ is true in IC , if it is a ground instance of N , and that IC′′ is a
model of AC ∪RA∪F ∪T≼t ∪{C1, . . . , Ck}, otherwise. In either case, we may conclude
that C ′′ is true in IC , which implies that f(u, u′′) ≈ f(v, v′′) is true in IC , and thus
f(u, u′′) ↓AC\Re

C
f(v, v′′). (The importance of part (1) rests in the fact that it allows us

to apply AC-redundancy.)
(2) Suppose C = Ĉσ is a ground instance of N , such that xσ is reducible by AC\Re

C ,
say xσ →AC\Re

C
u. Let σ′ be the same substitution as σ, except that xσ′ = u, and let C ′

be the clause Ĉσ′. Since C ≻ C ′, we may use the induction hypothesis and Lemma 2 to
infer that C ′ is true in IC . Furthermore, since xσ ≈ u is true in IC , a literal Lσ in C is
true in IC if and only if the corresponding literal Lσ′ in C ′ is true in IC . This implies
that C is true in IC .

If C is an instance Ĉσ, where xσ is irreducible for all variables x in Ĉ, then any
inference with maximal premise C can be AC-lifted. We call C an AC-reduced ground
instance of N in that case.

(3) Let C = C ′ ∨ s ̸≈ t be an AC-reduced ground instance of a clause in which the
literal corresponding to s ̸≈ t is selected. The assertion is obviously true if s ≈ t is false
in IC . So let us assume s ↓AC\Re

C
t.

(3.1) If s↔∗
AC t, then C ′ is a reflective AC-resolvent of C. Resolution inferences can

be lifted, so that we may use saturation up to AC-redundancy, to infer that C ′ is true
in IC .

(3.2) If s and t are not AC-equivalent, then we have either s ≻ t or t ≻ s. We discuss
only one case, as the other is similar. Suppose s ≻ t, in which case s is reducible by
AC\Re

C and can be written as s[u′], where u′ ↔∗
AC u, for some clause D = D′ ∨ u ≈ v

with maximal literal u ≈ v, and s[v] ↓AC\Re
C
t. The clause D is either productive or

else is a ground instance of an extension of a productive clause. Since C ≻ D, we
use the induction hypothesis to infer that D′ is false in I. Also, if D is productive,
it is non-redundant and hence must be a ground instance of a clause with no selected
literals. The clause C ′′ = C ′ ∨D′ ∨ s[v] ̸≈ t can be obtained from C and D by negative
AC-superposition. By saturation up to redundancy, C ′′ must be true in IC . Since D′

and s[v] ≈ t are false in IC , we may infer that C ′, and thus C, is true in IC .
(4) Suppose C is false in IC but non-productive. That is, C violates one of the other

9

two conditions imposed on productive clauses.
(4.1) If condition (ii) is violated, then C is of the form C ′ ∨ s ≈ t ∨ s′ ≈ t′, where

s ≈ t is a maximal literal, s ≻ t ≻ t′, s ↔∗
AC s′, and t ↓AC\Re

C
t′. We obtain the clause

C ′′ = C ′ ∨ t ̸≈ t′ ∨ s′ ≈ t′ from C by AC-factoring. Using saturation up to redundancy,
we may infer that C ′′ is true in IC . Since t ≈ t′ is true in IC , this implies that C ′∨s′ ≈ t′,
and therefore C, is true in IC , which is a contradiction.

(4.2) Otherwise, C must be a clause C ′ ∨ s ≈ t with maximal literal s ≈ t, where
s ≻ t and s is reducible by AC\Re

C . Then there exists a clause D = D′ ∨ u ≈ v with
maximal literal u ≈ v, such that s can be written as s[u′] and u′ ↔∗

AC u. Moreover,
D is either productive or is a ground instance of an extension of a productive clause.
By the induction hypothesis, the clause D′ is false in I and if D is productive it is a
non-redundant instance of a clause with no selected literals. Thus, we may obtain from
C and D by AC-superposition the clause C ′′ = C ′ ∨D′ ∨ s[v] ≈ t, which by saturation
has to be true in IC . Since D′ is false in IC , either C

′ or s[v] ≈ t must be true in IC . If
C ′ is true in IC , so is C. If s[v] ↓AC\Re

C
t, then we have s = s[u′]→AC\Re

C
s[v] ↓AC\Re

C
t,

which indicates that s ≈ t, and hence C, is true in IC—a contradiction.
(5) A productive clause C = C ′ ∨ A is false in IC , hence is non-redundant and,

by part (3), cannot be an instance of a clause with selected literals. The definition of
productive clauses also ensures that C ′ is false in the AC-rewrite closure of (RC ∪EC)

e,
and hence false in I. 2

The lemma indicates that under the given assumptions I is an equality model of AC∪N .
(Any non-productive ground instance C of N is true in IC , while non-productive ground
instances C are true in the AC-rewrite closure of (RC ∪EC)

e. Furthermore, I is a model
of T≼t, for all ground terms t; and hence is a model of T .)

The proof of the lemma also shows that certain inferences with extended clauses
are unnecessary. For instance, AC-superpositions on a proper subterm of an extended
clause, i.e., inferences of the form

C, s ≈ t D, f(x, u[s′]) ≈ f(x, v)

Cσ, Dσ, f(x, u[t])σ ≈ f(x, v)σ

where σ is a most general AC-unifier of s and s′, and the second premise extends the
clause D ∨ u[s′] ≈ v, are not needed.

As an immediate corollary of the above lemmas we obtain:

Theorem 1 Let N be a set of clauses that is saturated up to AC-redundancy with
respect to the associative-commutative superposition calculus S≻

AC. Furthermore, suppose
N contains an extension of every non-redundant reductive clause in N . Then N ∪ AC
is equality unsatisfiable if and only if it contains the empty clause.

Proof. If N ∪ AC contains the empty clause it is unsatisfiable. If N ∪ AC does not
contain the empty clause, let I be the interpretation constructed from the set of all
ground instances of N ∪RA. By Lemmas 3 and 5, I is an equality model of N ∪AC. 2

This theorem shows that associative-commutative superposition calculi provide a
basis for refutationally complete theorem provers. Such a theorem prover has to saturate
a given set of input clauses up to AC-redundancy. The empty clause will be generated if
the input set, plus AC, is equality unsatisfiable. Saturation of clause sets can be achieved
by fair application of inference rules. These aspects of the saturation process have been
discussed elsewhere, e.g., Bachmair and Ganzinger (1994) or Bachmair, Ganzinger and
Waldmann (1992), and apply directly to the present case.

10

5 Summary

We have presented an associative-commutative superposition calculus and proved its
refutational completeness. We have tried to keep the exposition clear and simple, and
therefore have not discussed various possible improvements to the calculus, most of which
can be derived from redundancy. Some are relatively minor, such as the redundancy of
certain inferences involving an extended clause, while others are more important, e.g.,
the use of redex orderings to achieve a similar effect as critical pair criteria. The main
difference of our calculus with other associative-commutative paramodulation calculi is
that the associativity and commutativity axioms, but not all instances of the transitivity
axiom, are built into our notion of redundancy; whereas other researchers have opted
for transitivity and compromised on associativity and commutativity (e.g., Wertz 1992).
From a more practical perspective our approach is preferrable, as enough instances of
transitivity are provided to cover full associative-commutative rewriting, while other-
wise associative-commutative rewriting actually needs to be restricted. In addition, our
completeness proof is considerably simpler than previous proofs.

We believe that the approach we have outlined for associativity and commutativity
can be applied to other equational theories, such associativity and commutativity with
identity (Baird, Peterson and Wilkerson 1989, Jouannaud and Marché 1992); for some
work in this direction see Wertz (1992). There is also ongoing work on combining
associative-commutative calculi with the basic strategy, and results have been announced
by Vigneron (1993) and by Nieuwenhuis and Rubio (1993).

References

L. Bachmair, N. Dershowitz and D. Plaisted, 1989. Completion without failure. In
H. Ait-Kaci, M. Nivat, editors, Resolution of Equations in Algebraic Structures, vol. 2, pp. 1–30.
Academic Press.

L. Bachmair and H. Ganzinger, 1990. On Restrictions of Ordered Paramodulation with
Simplification. In M. Stickel, editor, Proc. 10th Int. Conf. on Automated Deduction, Kaiser-
slautern, Lecture Notes in Computer Science, vol. 449, pp. 427–441, Berlin, Springer-Verlag.

L. Bachmair and H. Ganzinger, 1993. Rewrite Techniques for Transitive Relations. Tech-
nical Report MPI-I-93-249, Max-Planck-Institut für Informatik, Saarbrücken.

L. Bachmair and H. Ganzinger, 1994. Rewrite-based equational theorem proving with
selection and simplification. Journal of Logic and Computation, Vol. 4, No. 3, pp. 1–31. Revised
Version of MPI-I-91-208, to appear.

L. Bachmair, H. Ganzinger, Chr. Lynch and W. Snyder, 1992. Basic Paramodulation
and Superposition. In D. Kapur, editor, Automated Deduction — CADE’11, Lecture Notes in
Computer Science, vol. 607, pp. 462–476, Berlin, Springer-Verlag.

L. Bachmair, H. Ganzinger and U. Waldmann, 1992. Theorem proving for hierarchic
first-order theories. In H. Kirchner, G. Levi, editors, Algebraic and Logic Programming, Lecture
Notes in Computer Science, vol. 632, pp. 420–445, Berlin, Springer-Verlag. Revised version to
appear in AAECC.

Timothy Baird, Gerald Peterson and Ralph Wilkerson, 1989. Complete sets of re-
ductions modulo associativity, commutativity and identity. In Proc. 3rd Int. Conf. on Rewriting
Techniques and Applications, Lecture Notes in Computer Science, vol. 355, pp. 29–44, Berlin,
Springer-Verlag.

11

N. Dershowitz and J.-P. Jouannaud, 1990. Rewrite Systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science B: Formal Methods and Semantics, chapter 6, pp.
243–309. North-Holland, Amsterdam.

J. Hsiang and M. Rusinowitch, 1991. Proving refutational completeness of theorem proving
strategies: The transfinite semantic Tree method. Journal of the ACM, Vol. 38, No. 3, pp.
559–587.

Jieh Hsiang and Michael Rusinowitch, 1987. On Word Problems in Equational Theories.
In Proc. 14th ICALP, Lecture Notes in Computer Science, vol. 267, pp. 54–71, Berlin, Springer-
Verlag.

Jean-Pierre Jouannaud and Claude Marché, 1992. Termination and completion modulo
associativity, commutativity and identity. Theoretical Computer Science, Vol. 104, pp. 29–51.

Paliath Narendran and Michaël Rusinowitch, 1991. Any Ground Associative-
Commutative Theory has a Finite Canonical System. In Ronald V. Book, editor, Proc. 4th
Rewriting Techniques and Applications 91, Como, Italy, Springer-Verlag.

R. Nieuwenhuis and A. Rubio, 1992. Basic superposition is complete. In ESOP’92, Lecture
Notes in Computer Science, vol. 582, pp. 371–389, Berlin, Springer-Verlag.

R. Nieuwenhuis and A. Rubio, 1993. AC-superposition with constraints: No AC-unifers
needed. Submitted, 1993.

John Pais and G.E. Peterson, 1991. Using Forcing to Prove Completeness of Resolution
and Paramodulation. Journal of Symbolic Computation, Vol. 11, pp. 3–19.

E. Paul, 1992. A general refutational completeness result for an inference procedure based on
associative-commutative unification. Journal of Symbolic Computation, Vol. 14, pp. 577–618.

G. Peterson and M. Stickel, 1981. Complete sets of reductions for some equational theories.
Journal of the ACM, Vol. 28, pp. 233–264.

A. Rubio and R. Nieuwenhuis, 1993. A precedence-based total AC-compatible ordering.
In Proc. 5th Int. Conf. on Rewriting Techniques and Applications, Lecture Notes in Computer
Science, vol. 690, pp. 374–388, Berlin, Springer-Verlag.

M. Rusinowitch, 1991. Theorem proving with resolution and superposition: An extension of
the Knuth and Bendix completion procedure as a complete set of inference rules. J. Symbolic
Computation, Vol. 11, pp. 21–49.

M. Rusinowitch and L. Vigneron, 1991. Automated deduction with associative-
commutative operators. In Proc. Int. Workshop on Fundamentals of Artificial Intelligence Re-
search, Lecture Notes in Artificial Intelligence, vol. 535, pp. 185–199, Berlin, Springer-Verlag.

L. Vigneron, 1993. Associative-commutative dedution with constraints. Technical Report
93-R-196, CRIN, Nancy.

U. Wertz, 1992. First-Order Theorem Proving Modulo Equations. Technical Report MPI-I-
92-216, Max-Planck-Institut für Informatik, Saarbrücken.

H. Zhang, 1988. Reduction, superposition and induction: Automated reasoning in an equational
logic. PhD thesis, Rensselaer Polytechnic Institute, Schenectady, New York.

12

