Skip to main content

Equation solving in geometrical theories

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 968))

Abstract

Incidence geometries of dimension two and three, miquelian geometry and projective geometry are defined through conditional equational axioms. The mechanization of these geometries is done using their associated positive/negative conditional term rewriting systems. To any figure and to any property of the figure are associated two terms t 1 and t 2 such that the figure possesses the property if and only if t 1 and t2 have a same normal form for the conditional term rewriting system corresponding to the considered geometry.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Baader and J. Siekmann. Unification theory. In D. Gabbay, C. Hogger and J. Robinson (Eds): Handbook of Logic in Artificial Intelligence and Logic Programming. Oxford University Press, Oxford, England, to appear.

    Google Scholar 

  2. L. Bachmair. Canonical Equational Proofs. Birkhaüser, Boston, Massachusetts, 1991.

    Google Scholar 

  3. P. Balbiani, V. Dugat, L. Farinas del Cerro and A. Lopez. Eléments de géométrie mécanique. Hermès, Paris, France, 1994.

    Google Scholar 

  4. L. M. Blumenthal. A Modern View of Geometry. Freeman, San Francisco, California, 1961.

    Google Scholar 

  5. B. Buchberger. Gröbner bases: an algorithmic method in polynomial ideal theory. In: N Bose (Ed.), Recent Trends in Multidimensional Systems Theory. Reidel, Dordrecht, Netherlands, 1985.

    Google Scholar 

  6. B. Buchberger, G. Collins and B. Kutzler. Algebraic methods for geometric reasoning. In: Ann. Rev. Comput. Sci., volume 3, pages 85–119, 1988.

    Article  Google Scholar 

  7. S.-C. Chou. Mechanical Geometry Theorem Proving. Reidel, Dordrecht, Netherlands, 1988.

    Google Scholar 

  8. H. Coxeter. The finite inversive plane with four points on each circle. In: L. Mirsky (Ed.), Papers in Combinatorial Theory, Analysis, Geometry, Algebra and the Theory of Numbers. Academic Press, London, Great Britain, 1971, pp. 39–51.

    Google Scholar 

  9. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen (Ed): Handbook of Theoretical Computer Science, volume B, Formal Models and Semantics, pages 243–320. Elsevier, Amsterdam, Netherlands, 1990.

    Google Scholar 

  10. H. Ganzinger. A completion procedure for conditional equations. In S. Kaplan and J.-P. Jouannaud (Eds): Conditional Term Rewriting Systems, 1st International Workshop, Orsay, France, July 1987, Proceedings, pages 62–83. Lecture Notes in Computer Science 308, Springer-Verlag, Berlin, Germany, 1988.

    Google Scholar 

  11. A. Heyting. Axiomatic Projective Geometry. North-Holland, Amsterdam, Netherlands, 1963.

    Google Scholar 

  12. D. Hilbert. Foundations of Geometry. Open Court, La Salle, Illinois, 1971.

    Google Scholar 

  13. J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: a rule based survey of unification. In J.-L. Lassez and G. Plotkin (Eds): Computational Logic, Essays in Honor of Alan Robinson. MIT Press, Cambridge, Massachusetts, pages 257–321.

    Google Scholar 

  14. S. Kaplan. Positive/negative conditional rewriting. In: S. Kaplan, J.-P. Jouannaud (Eds), Conditional Term Rewriting Systems, 1st International Workshop, Orsay, France, July, 1987, Proceedings. Lecture Notes in Computer Science 308, Springer-Verlag, Berlin, Germany, 1988, pp. 129–143.

    Google Scholar 

  15. S. Kaplan and J.-L. Rémy. Completion algorithms for conditional rewriting systems. In H. AÏt-Kaci and M. Nivat (Eds): Resolution of Equations in Algebraic Structures, volume 2, Rewriting Techniques, pages 141–170. Academic Press, San Diego, California, 1989.

    Google Scholar 

  16. M. Rusinowitch. Démonstration automatique: techniques de réécriture. InterEditions, Paris, France, 1989.

    Google Scholar 

  17. J. Siekmann. Unification theory. In: C. Kirchner (Ed.), Unification. Academic Press, London, Great Britain, 1990, pp. 1–68.

    Google Scholar 

  18. A. Tarski. What is elementary geometry ? In L. Henkin, P. Suppes and A. Tarski (Eds): The Axiomatic Method, with Special Reference to Geometry and Physics, pages 16–29. North-Holland, Amsterdam, Netherlands, 1959.

    Google Scholar 

  19. D. Wang. A new theorem discovered by computer prover. In: Journal of Geometry, volume 36, pages 173–182, 1989.

    Article  Google Scholar 

  20. W.-T. Wu. Basic principles of mechanical theorem proving in elementary geometries. In: Journal of Automated Reasoning, volume 2, number 3, pages 221–252, 1986.

    Google Scholar 

  21. W.-T. Wu. Mechanical Theorem Proving in Geometries. Springer-Verlag, Wien, Austria, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nachum Dershowitz Naomi Lindenstrauss

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balbiani, P. (1995). Equation solving in geometrical theories. In: Dershowitz, N., Lindenstrauss, N. (eds) Conditional and Typed Rewriting Systems. CTRS 1994. Lecture Notes in Computer Science, vol 968. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60381-6_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-60381-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60381-8

  • Online ISBN: 978-3-540-45513-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics