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A b s t r a c t .  Transforming Boolean relations and functions is an impor- 
tant horizontal technique that finds several applications in logic synthe- 
sis and formal verification. This paper develops a framework for ana- 
lyzing input/output transformations of Boolean relations and functions. 
It also contributes efficient composition techniques based on partitioning 
the transformation. Experimental results on equivalence-preserving FSM 
state-space re-encoding demonstrate the feasibility of the approach. 

1 I n t r o d u c t i o n  

One major  step in logic synthesis is encoding, i.e., finding a suitable correspon- 
dence between symbols of a finite set S and binary strings. We need strings 
whose length 1 satisfies the following inequality: 

I ~ [log2(card(S))] (1) 

Boolean relations and functions describe correspondences between symbols and 
set elements or inputs and outputs.  In combinational  design, we encode input 
and output  symbols and represent the function of the circuit. In sequential cir- 
cuits, using the Finite State Machine (FSM) model, we encode its input, output ,  
and state symbols and express the output  and next-state functions in Boolean 
form. Just  any of the possible encodings may  not satisfy constraints related to 
minimizing area, performance, power dissipation, and to verifying equivalence, 
and so on. For this reason, re-encoding, i.e. replacing a binary string with an- 
other binary string, is a technique that  finds an application in several cases [7], 
[8], [10]. 

For sake of readability, we do not distinguish between the initial encoding 
phase and any re-encoding steps and we use the te rm encoding for both.  

Given an inpu t /ou tpu t  mapping  in the form of Boolean Relation (BR) ~- or 
Boolean Function Vecr (BFV) f ,  we t ransform it, changing the old codes for 
its input (output)  symbols in new ones. The inpu t /ou tpu t  t ransformat ion itself 
is expressed as a relation or as a function. When the t ransformat ion is 1 : 1 or 
n : 1, both  representations as function or as relation are possible. In the most  
general case of n : m transformation,  we express it as a BR, because this case 
occurs seldom and i t 's  not worthwhile to investigate how to express it as a BFV. 
Initially, we assume to have completely specified t ransformations but  we easily 
extend our results to incompletely specified ones. 
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This paper  doesn' t  deal with finding the t ransformation:  for this purpose 
we refer the reader to the li terature [7], [8], [10]. We rather focus on applying 
the t ransformation,  which is essentially the problem of composing functions or 
relations. 

Apar t  f rom a tutorial  aspect, the main contributions of this paper  are: 

- a theoretical framework for the application of new encodings 
- a theorem for the t ransformation of a n : 1 BR into a BFV 
- efficient composition techniques for both  functions and relations, based on 

decomposition procedures and on the exploitation of the don' t  care set for 
incompletely specified functions. 

The remainder of the paper  is organized as follows: section 2 defines the nota- 
tional framework and recalls some preliminary notions about  FSMs, and Boolean 
operators.  Section 3 describes how to encode Boolean strings. Section 4 analyzes 
encoding f rom the point of view of complexity, showing tha t  decomposed multi- 
step encoding can be of help in some cases. Because of the importance  of FSMs, 
encoding them is the subject of section 5. Section 6 reports experimental  results. 

2 Prel iminaries  

This section defines the notat ion used in this paper  and recalls some basic notions 
about  FSMs and Boolean operators.  

2.1 N o t a t i o n a l  f r a m e w o r k  

Let B = {0, 1}. Let I = B n be an input set consisting of n-bit  Boolean strings 
and let O = B m be an output  set composed of m-bit  Boolean strings. 

A BFV f is defined as f :  I--* O,y  = f ( z )  = ( f l ( z ) , . . . , f m ( z ) ) .  
Let 9V(z, y) be a n : 1 BR. A compatible  BFV f is defined as follows: 

/ :  z --, o ,  = r v) (2) 

Given a set S = B k, we can represent and manipulate  efficiently its sub- 
sets using their Boolean characteristic functions. Let A be a subset of S. The 
characteristic function of A is the function XA : S --~ B defined by: 

l i r a  E A 
XA(a) = O if a /:_ A (3) 

Among all sets that  can be represented by characteristic functions, we con- 
sider Boolean Relations (BRs). A BR .T(x, y) is a mapping  between elements 
x and y of its domains I and O. It  is thus a set of ordered tuples (x, y). With  
abuse of notation,  we denote with the same symbol  a relation and its character- 
istic function. 
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2.2 F S M s  

A finite state machine is an abstract model describing the behavior of a sequen- 
tial circuit. A completely specified FSM M is a 5-tuple M = (I, O, S, 5, A), 
where I is the input alphabet, O is the output alphabet, S is the state space, 
5 is the next state function (5 : S • I -+ S), and A is the output function 
(A : S x l - ~  O). 

2.3 Boolean  operators  

Boolean functions are efficiently represented by Binary Decision Diagrams (BDDs) 
[2]. Boolean operators of great importance are ITE (if-then-else) and COMPOSE. 

The if-then-else operator Given Boolean functions f ,  g, and h, Bryant et al. [1] 
define IWE(f, g, h) as: 

IWE(f,g,h) = f ' g  + 7 '  h (4) 

Function composition As this case is commonly found in our applications, we 
restrict investigation to a particular form of function composition where f(x,  y) 
is a Boolean function and g(z) is a BFV whose set of support doesn't contain 
any y variables. If y E B k and g : B h --~ B k, we define function composition as: 

f (~ ,  g(z)) = COMPOSE (f(~,  V), V, g(z)) = f (x ,  Y)I~I=~,U), ~=~2(,),. ,~--g~U) 
(5) 

A standard way to perform it resorts to recursive applications of ITE: 

COMPOSE(f(x,y), y, g(z)) = ITE(gl(z), COMPOSE(fyjL(a,y(2)), y(2), g(2)(z)), 
COMPOSE(fv,(x,y(~)), y(2), g(2)(z))) 

(6) 
where superscripts, e.g. f(i), indicate the components with index j _> i, e.g. 
f(i) = (fi, f i + l , . . . ,  fn) in the recursive formula. 

Relation composition Let ~'(x, y) and 6(y, z) be BRs. We can compose U and 
G by logical conjunction and existential quantification of y: 

( y  o 6)(x, z) = 3~ ( f ( x ,  y) �9 6(v, z)) (7) 

3 Encoding 

Let us consider a mapping between an input space I and an output space O. We 
express it either as a relation .~(x, y) or as a function y = f (x)  (where x e I 
and y E O). We can encode the input space, the output space, or both. Let 
us suppose for simplicity to encode the entire input (output) space and let the 
encoded input (output) space be I '  (O'). The input transformation is either an 
encoding function ex or an encoding relation Ex. The same holds for the output  
transformation eo or Eo. 
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Relations gx and go are expressed as: 

gI : I X I '  --* B ,  g l (X ,X ' )  ~e~ x' i s a c o d e o f  x 

go : O x O ~ --+ B ,  go (Y ,Y ' )  C~z y~ i s a c o d e o f  y 

Functions el and eo are expressed as: 

ei : I--+ I ~, x ~ = e l (x )  cv x ~ is the code of x 

e o : O - + O  ~, y ~ = e o ( y )  CVy~ is the code of y 

(8) 
(9) 

(10) 

(11) 

A graphical representation is shown in Figure 1. As the inputs to f or 9 c 
belong to the I space, they are re-constructed from x ~ by applying the inverse 
input transformation E/1 or e}-1. This in turn imposes an invertibility constraint 
on gx and ei.  In a similar way, y is transformed into y~ by go and eo. The 
application of the input /ou tput  encodings to f or 5 r essentially requires function 
or relation compositions. In the compositions we identify an outer term and an 
inner one. ~r ( f )  is the outer term in input encoding and the outer one in output  
encoding, g71 (e71) and go (eo)  are the corresponding inner and outer terms, 
respectively. 

We must thus distinguish many cases, depending on the use of relations vs. 
functions for the inverse of the input transformation, for the output  transfor- 
mation, and for the original representation of the circuit function. Let's analyze 
explicitly the two limit cases: 

case  1: if the three are expressed as BFVs, we use function composition: 

y' = f ' ( x ' )  = e o ( f ( e 7 1 ( x ' ) ) )  (12) 

case  2: if the three are expressed as BRs, we use conjunction and existential 
quantification: 

H ( x ' ,  y') = ($ /1  o ~" o s  y') = 3x, y(Ex(x, x ' ) .  9c(x, y) .  s  (Y, Y')) (13) 

All other cases can be handled according to the following observations. The 
result of composing an outer BFV f with an inner BR (~ is a relation. BFV f is 
first transformed into a relation, relational composition is then performed. Com- 
posing an outer BR 5 r with an inner BFV g is a plain functional composition 
.~(x, g(z)) ,  producing a relation. A particular but  important  sub-case is com- 
posing a BFV with a n : 1 BR, i.e. a function expressed as a relation. Regardless 
of the mutual  position (inner/outer) the BR may be converted to a compatible 
BFV, reducing this case to functional composition. 

Let us analyze how to transform BFVs in BRs and vice-versa. 

Transforming a B F V  in a Bt l  Let f be a BFV f : B n --~ B m , y  = f i x ) .  The 
standard way to compute the corresponding BR .~(x, y) is to perform a conjunc- 
tion: 

7(x ,  y) = I-Icy, -- i , (x))  (14) 
i=l 
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Transforming a Bt~ in a B F V  This case occurs in many applications, e.g., in the 
computation of the FSM equivalent states (n : 1 or when finding 1 : 1 encodings. 

In the process of converting an n : m BR to a BFV, some information may 
be lost and the result is a BFV compatible with the original BR. We focus on 
n : 1 Bt~s, for which there is no information loss in the conversion process. 

A possible way to compute a compatible f starting from a iT is to individually 
compute each fi function as the existential quantification of the output variables 
on each positive cofactor according to Yi of the BR. There is also a dual form, 
based on the universal quantifier. The following theorem guarantees that  the 
result is one of the compatible BFVs of the BR: 

T h e o r e m  1. Hp: 

- i T : I  x 0 --~ B represents a n : 1 BR,  i.e., iT(x ,y*)  . iT(x ,y**)  r y* = y** 
- yi = f i ( x )  = By iTy,(=, y), i = 1 . . .  n 

T h -  

iT (x ,y )  ~ (y = f ( x ) ) .  ( 3y :T (x , y ) ) ,  i.e., the B F V  f is equivalent to BR  iT for 
all min terms  x belonging to the relation. 

Proof. Informally, we proceed as follows. Given a minterm x* E I, the corre- 
sponding minterm y* E O is unique (if it exists). Its component bits Yi, i -= 
1 . . .  m can be computed as y* = 3y iT(x*, y). 

More formally, as 

f~(x) = 3y 7y,(x, y) = 3y ( ~ - 7 ( x ,  y)) (15) 

given a minterm in y* E O and its i-th bit y~ 

= = - ( 1 6 )  

The second equivalence holds only if iT is n : 1, which is true because of Hp. 1. 
Extending the above equivalence to the whole y* 

y* = f ( x )  ~ I I i = l ( y  i - f i ( x ) )  c~ FL=l (3y ( (y*  =_ y i ) . . T ( x , y ) ) )  (17) 

as 3y (a. b) => 3y a -3y b we permute the conjunction and the existential quantifier 

n , 
Y* = f(=) r 3Y(I-[i=1(Yi - Yi) " iT(x, y)) (18) 

restricting the analysis to minterms x in 3y iT(x ,  y), the right expression yields 
i T ( = ,  y * )  

(y* = f ( x ) )  . 3y iT (x ,  y) r Y(x, y*) (19) 

The implication becomes a co-implication, proving the thesis, if we consider 
that  no =* can yield (y* = f ( x* ) )  . 3y iT(x* ,  y) and not iT(x*, y*). 
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4 O n  t h e  C o m p l e x i t y  o f  E n c o d i n g  

A complexity analysis of encoding deals with three aspects: the complexity of 
computing, representing, and applying the encoding. We refer the reader to [7], 
[8], and [10] for a discussion on the first two points. In this paper, we focus our 
attention on the third one. 

The application of an encoding requires essentially composing functions or 
relations. We assume the results published by R. Bryant in [2] on the worst-case 
complexity of operations on BDDs. 

Let ~ and G be the BRs to be composed and let [hr[ and [~[ be their size in 
BDD nodes. The complexity of COMPOSE is O(I.~'12 �9 1~12). Average complexity 
is, according to our experience, below this upper bound. 

As far as functions are concerned, Bryant analyzes only the case of a BFV 
f composed with a function g. Let Ill and Igl be their size in BDD nodes. The 
complexity of COMPOSE is O(If l  2. Igl). 

There is no analysis for the composition of two BFVs, but according to 
Coudert et al. [5], in the worst-case, this is an NP-hard problem. 

In the average case, good implementations allow to cope with quite big prob- 
lems [3], [9]. Variable ordering, function simplification, and efficient caching play 
a key role. Complexity is not only related to the final result, but also to the 
intermediate ones, because they require considerable space and CPU time. 

We found no formal analysis nor any conjecture in literature about the cost of 
the intermediate steps in composition. According to our experience, we conclude 
that the complexity of the result of a composition depends on the complexity of 
the operands, namely the function/relation to be encoded and on the complexity 
of the encoding. The cost of computing a composition depends on the algorithm 
adopted, and it depends on the size of the operands, too. A good conjecture for 
feasible compositions is a polynomial function of the size of the operands and of 
the result. 

Note that, if we compose BRs, the application of COMPOSE is straightforward, 
asymptotic complexity is better, but sometimes the BDDs for the BRs are so 
large that we can't even compute them. With BFVs, the individual BDDs are 
simpler, although their composition is harder. 

Given a fixed variable ordering, Coudert et al. [5] show that the size of the 
result can be exponential. We limit our scope to problems where the result of 
composition can be expressed. In the following paragraphs we present techniques 
that simplify computation, based on the exploitation of the don't care set and 
on the application of encoding as a sequence of simpler functions. 

4.1 E x p l o i t i n g  t h e  d o n ' t  care  set  

We do not go into the details of incompletely specified encodings. Their im- 
portance lies in the fact that properly exploiting don't-care sets may result in 
minimized and/or optimized BRs or BFVs. 

For incompletely specified functions, the don't care set gives us a degree of 
freedom that we exploit to reduce the complexity of an encoding. The input don't 
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care set di(x) is given by the specifications. The output don't care set do(x) is 
given by all those outputs that can't occur, i.e., do(x) = range(f(x)), do(x) = 
range(2"(x, y)). We leave the input (output) encoding unspecified on di(x) (do(x)). 

4.2 D e c o m p o s e d  encod ing  

Let us consider the general case of a BR E that denotes either the input or the 
output encoding. An equivalent result can be found by applying a sequence of 
simpler encodings, provided such a decomposition of E is available. For sake of 
simplicity, let us restrict investigation to just two steps. This is easily generalized 
to an arbitrary number of steps. In the general case, the original transformation 
is expressed as a composition: 

c = ca o cb (20) 

Applying in sequence Ca and Cb results in a relevant gain when their sizes 
are much lower than IEI. 

As a particular case, let us consider independent encodings applied to disjoint 
subsets of variables. Let v represent generically either x or y variables. Let va 
and vb be partitions of the variables and let v~ and v~ be the corresponding 
encoded variables. The encoding E is the Cartesian product of Ca and Cb: 

c(~o, v~, r ~i) = co( ,o,  ~'o) • c~(~b, vl) (21) 

The gain can be relevant, because the size of Ca and Cb is smaller than the size 
of E, especially when variables Va (V'a), Vb (V~) are interleaved in the ordering. 

A simple case of such a decomposed encoding is 'related to don't care set 
exploitation. Suppose that the incompletely specified encoding E is a subset of 
the identity relation 77a on a subset (Va, v~) of the variables, i.e., re-encoding is 
applied to just a subset of the code bits. Setting the values of the don't cares, 
we obtain the encoding E*, easily expressed as a Cartesian product: 

! ! 
E*(,~, ,b, v. ,  ~b) = zo(~o, ,'o) • 3~o,,o,(C~(v~, ~i)) (22) 

Decomposed encodings are easily found for partitioned circuits. Partitioning 
according to topology relies on designer knowledge or heuristic functions, Quer 
et aL present state variable partitioning for verification in [10]. 

5 Encoding FSMs 

FSMs play an important role in automated synthesis, formal verification, and 
testing. Transformations can be of great help in speeding up for example the 
symbolic traversal of the product machine of two FSMs, because similar state 
encodings make BDDs simpler [10]. They can also contribute to the exact or 
approximate state minimization of a machine, mapping all states belonging to 
the same equivalence class onto one code [4]. We therefore examine this particular 
case of encoding and present experimental data in the next section. 
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Encoding the states of FSM M may be advantageous in many applications, 
eg., symbolic traversals. Because of the feedback loop of Fig. 2, the transforma- 
tion must be equivalence-preserving, i.e., the resulting M r must have the same 
input/output behavior of M. In order not to be bothered by the existence of 
equivalent states, we consider a particluar case of equivalence-preserving trans- 
formations, i.e., 1 : 1 functions. A 1 : 1 function e(s,s~), which is certainly 
invertible, serves as eo and its inverse as ex = e -1 [10]. The transformation only 
affects the state elements on the feedback loop, so the equivalence of M and M ~ 
is guaranteed by the existence of the inverse e-1 of e. 

Consequently, we obtain M t = (I, O, S ~, 5~, A~), where the next-state and 
output functions are computed as follows: 

x) = e(e(e-l(s') ,  x)) 
x)  : x) (23) 

6 E x p e r i m e n t a l  R e s u l t s  

A common verification problem is that of comparing two machines that are 
behaviorally equivalent but structurally different. This is the case when one FSM 
has been obtained from the other by means of sequential optimization (such 
as partial or total encoding, retiming and resynthesis, sequential redundancy 
removal, etc. [6]). Symbolic state space traversal is the state-of-the-art technique. 
Its efficiency can be increased when the FSMs have the same or similar state 
encodings. Transforming a state encoding to make it more similar to another 
one is a typical application of Boolean transformations. 

We present data on the transformation of the next-state and output func- 
tions of FSMs for significant ISCAS'89 (with the '93 addendum) and MCNC 
benchmark circuits. We experimented on a 30 MIPS DEC VAX 7000 with 128 
MByte of memory. 

In Table 1 ~ P  indicates the number of partitions used to encode the circuit. 
When # P >  1, encoding is decomposed, otherwise it is monolithic. # F F indicates 
the maximum number of state variables found in any partition. Column avgle I 
shows the size in BDD nodes of the encoding functions. The CPU time in seconds 
is shown in the next columns: avg-timei,~ is the average time required for the input 
encoding of next-state and output functions, avg-timeo~t is the average time for 
the output encoding of next-state functions, and tot_time is the total amount of 
time required to encode the circuit. 

Decomposed encoding is always superior to monolithic encoding, except in 
the case of s400. Moreover, it handles cases on which the monolithic encoding 
approach fails because of node explosion. 

7 C o n c l u s i o n s  a n d  F u t u r e  w o r k  

Transforming Boolean functions and relations has several applications in the 
fields of automated synthesis and formal verification. In this paper we devel- 
oped a theoretical framework about the application of encodings, contributing 
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Table 1. Experimental results. - means unknown, i.e. overflow in BDD nodes (with 
108 nodes and garbage collection active). 

IlCi~cuitll#Pl:#:FF~= [~vg ellavg-time,.Javg-timeo~4tot-tirnell 
s400 1 21 436 

3 7 161 
s713 1 19 389 

2 10 195 
3 7 138 

s1238 1 18 392 
3 6 129 

s1423 1 74 2000 
11 7 430 
20 4 384 

s1269 1 37 808 
4 10 298 
10 4 199 

s1512 1 57 1421 
10 6 329 

0.6 6.0 
1.0 2.0 
1.9 92.1 
4.5 14.1 
3.3 9.2 
1.4 10.5 
0.9 0.4 
35.0 
20.5 75:8 
15.0 29.1 

15.7 
8.3 
7.7 97.43 
10.3 
4.2 16.4 

3.7 213.6 
0.4 1.5 

7.2 
9.8 

97.8 
40.5 
38.9 
13.4 
4.3 

1078.4 
904.5 

1598.7 

273.5 

in particular a theorem to transform Boolean n : 1 relations in BFVs. We also 
described efficient composition techniques for both functions and relations, based 
on decomposition procedures and on the exploitation of the don' t  care set for 
incompletely specified functions. 

Future work will consist in a more detailed analysis of the complexity of com- 
position, especially for BFVs, in carrying on the investigation on the exploitation 
of the don ' t  care set for incompletely specified functions, and in a complete set 
of experimental results. 
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