
Verifying Hardware Components with JACK*

R. De Nicola 1, A. Fantechi 2, S. Gnesi 3, S. Larosa 3, G. Ristori 4

1 Dip. di Scienze dell'Informazione, Univ. di Roma "La Sapienza", Italy
Dip. di Ingegneria dell'Informazione, Univ. di Pisa, Italy

3 Istituto di Elaborazione dell'Informazione, C.N.R. Pisa, Italy
4 Dip. di Informatica, Univ. di Pisa, Italy

Abstract . JACK (the acronym for Just Another Concurrency Kit) is
a workbench integrating a set of verification tools for concurrent system
specifications, supported by a graphical interface offering facilities to
use these tools separately or in combination. The environment offers
several functionalities to support the design, analysis and verification of
systems specified using process algebras. In this paper we use JACK to
formally specify the hardware components of a buffer system. Then we
verify, by using the checking capabilities of JACK, the correctness of the
specification with respect to some safety requirements, expressed in the
action based temporal logic ACTL.

1 I n t r o d u c t i o n

Process algebras [18, 15] are generally recognized as a convenient tool for de-
scribing reactive systems (i.e. those systems that do not work in isolation but
perform their task by interacting with others). They provide a compact linear
presentation and proof methods to support verification of systems properties.
The semantic models of process algebra terms are essentially finite or infinite
state automata, that have often been used for specifying hardware components.
Within the process algebra framework, verification of a given system specifica-
tion against an implementation is usually performed by studying the behavioural
relationships (i.e. equivalence or preorder) between the transition systems asso-
ciated to the different descriptions of the system. Modal and temporal logics
have also been proposed [10, 11, 14] as alternatives to the equivalence (preorder)
based approach. Indeed logics permit more abstract specifications, since they
can be used for describing systems properties rather than systems behaviours.
Properties of a given system are then verified by checking whether the automa-
ton associated to the process algebra term, describing the system, is a model
for the formula expressing the desired property. Moreover, automatic tools have
been devised to support both verification of behavioural equivalence of systems
(see e.g. [2, 4]) and model checking of system properties (see e.g. [2, 3, 4, 7]).

* The work described was partially performed within the LAMBRUSCO project sup-
ported by C.N.R., under the Progetto Finalizzato Sistemi Informatici e Calcolo Par-
allelo, and within the Progetto Coordinato C.N.R. Specifica ad Alto Livello e Verifica
Formale di Sistemi Digitali.

247

In this paper we describe the architecture of the integrated verification en-
vironment J A C K (Just Another Concurrency Kit) [2], that provides both be-
havioural and logical verification on concurrent systems defined by automata.
We show how it can be used to support specification and verification of a buffer
circuit. The goal of J A C K is to provide a general environment that offers a
series of functionalities. The J A C K system has grown out of a set of tools devel-
oped separately that have been successively integrated. It covers many aspects
of the formal system development process, including the formalization of re-
quirements [12], rewriting techniques [8], behavioural equivalence proofs [19, 16],
graph transformations [19], logical verifications [5, 7]. In this paper we show on a
case study how J A C K supports a verification methodology which takes advan-
tage of different descriptions of a hardware component: a graphical description
is used to support the behavioural specification of the system; a temporal logic
description is used to express its abstract properties.

2 B a c k g r o u n d

We introduce now the action based version of CTL [11], called ACTL, defined
in [9]; it is a branching time logic suitable for expressing properties of reactive
systems defined by means of Labelled Transition Systems. We start introducing
Labelled Transition Systems, on which reactive systems are modelled and ACTL
formulae are interpreted.

D e f i n i t i o n l L a b e l l e d T r a n s i t i o n S y s t e m . A Labelled Transition System
(LTS in short) is a 4-tuple .4 = (Q, qo, Act LJ {~-}, R), where:

1. Q is a finite set of states. We let q, r, s , . . . range over states;
2. q0 is the initial state;
3. Act is a finite set of observable actions and v is the unobservable action. We

let a, b , . . . range over Act, and a, j3, . . , range over Act LJ {7-};
4. I~ C_ Q • (Act U {v}) • Q is the transition relation.

D e f i n i t i o n 2 P a t h s . Let A = (Q, qo, Act U {7}, R) be a LTS. Then cr is a path
from r0 E Q if either cr = r0 (the empty path from r0) or ~ is a (possibly infinite)
sequence (r0, a l , r l) (r l , a2, r2) . . , such that (ri, a~+l, r~+l) e R for each i > 0.

ACTL is a temporal logic of state formulae (denoted by r in which a path
quantifier prefixes an arbitrary path formula (denoted by 7). ACTL models are
all total, i.e. each of their paths has infinite length; this is not a limitation, since
each finite length path can be transformed into an infinite one by adding an
edge from its last state into itself. The definition of ACTL includes the logic for
the definition of action formulae (denoted by X). Some of the ACTL operators
we used in the case study and their informal semantics are reported in Table 1,
while the formal semantics of the full set of the ACTL operators is described in
[7, 9].

Several modalities can be defined starting from the basic ones. We will write
< a > q~ for E[true{true}U{a}r and [X]r for ,.~< X > ~ r Moreover, by using

248

the until operator it is possible to define the derived modal i ty AGr tha t means
from now on r is always true.

Finally, we note tha t the ACTL logic allows one to simply express safety
and liveness properties in terms of the actions a system can perform. Safety
properties permit to say that nothing bad does happen. Liveness properties
state that something good eventually happens.

Table 1. ACTL operators

Ac t ion fo rmulae

X ::= true "any action"
false "no action"

"c~ action"
-X "not X"
X I X ~ "X or X ~"

Sta te fo rmu lae

T
F
~ r
r162

E'~
AT

"any behaviour"
"no behaviour"
" not r
"r and r
"there exists a path in which 7"
"for all paths 3"

P a t h fo rmu lae

::= [r162

X{T}r

X{x}r

"r is true for the states of the path until
a state that satisfies r is reached by executing an action
satisfying X'- Before it, only actions satisfying X or r
can be executed."
"the next state of the path satisfies r and is reached
by executing a r action"
"the next state of the path satisfies r and is reached
by executing an action satisfying X"

3 The JACK Environment

The idea behind the J A C K environment was to combine different specification
and verification tools, independently developed at different sites.

A first experiment in building verification tools, s tar t ing from existing ones,
is described in [7]. Following this a t tempt , we have developed an environment

249

(whose structure is shown in Fig. 1) that exploits the Fc2 format [17] for au-
tomata. We had the objectives to provide an environment in which a user can
choose between several verification tools by a simple, user-friendly graphic inter-
face and to create a general system for managing any tool that has an input or
output based on Fc2 format files. Such tools can be easily added to the J A C K
system, thus extending its potentiality.

Some of the tools within J A C K allow a process specification to be built. This
can be done both by entering a specification in a textual form and by offering
sophisticated graphical procedures to build a specification as an automaton.

Other tools provide different verification strategies ranging from behavioural
equivalence proofs to logical verifications by model checking algorithms. The
access to both specification and verification tools is realized by means of a user-
friendly interface (Fig. 2). Below, we introduce the J A C K tools that are ex-
ploited for our case study.

�9 NL2ACTL is a specification tool. It provides a prototype translator from Natu-
ral Language expressions to ACTL formulae [12]. NL2ACTL has a friendly inter-
face and makes easier the expression of system properties in the logic. Actually,
NL2ACTL deals with sentences describing occurrence of actions performed by
systems. A precise semantic meaning in terms of ACTL formulae is associated
with each sentence. If the sentence does not have an ambiguous interpretation,
an immediate ACTL translation is provided; otherwise, an interactive dialog
with the user is estabilished to solve ambiguities.
�9 ATG is a graphic specification tool [19] for the design of parallel and commu-
nicating processes that provides functionalities for a compositional development
of a specification. Process construction starts by drawing the automata that
represent single sequential processes. Processes surrounded by boxes are said to
he networks and boxes are used to hide details of low-level specification and to
represent parallel composition. If two networks are drawn at the same level, they
can synchronize via the signals they emit. A network could simply be an empty
box: it is sufficient to specify its external synchronization signals; this permits
a top-down approach in the ATG specification process. ATG can translate a
graphic specification into a custom format, the Fc2 format, or Postscript.

�9 FC2LINK is a linker for Fc2 files; it inputs a set of files (that describe the
components of a system) and a network description file (that describes how
such components interact and synchronize together) and outputs a single Fc2
network (that describes the global behaviour of the system).

�9 HOGGAR is a tool that offers minimization procedures (based on bisimulation)
for systems described as a single transition system, or networks of transition
systems. The algorithms are based on a symbolic representation of global tran-
sition systems by means of a Binary Decision Diagram (BDD) and permits the
analysis of very large systems with a reasonable cost in terms of time and space.
�9 AMC, the model checker for ACTL logic formulae [7, 13] permits checking
validity of ACTL formulae over an LTS in linear time on the size of the model.
Whenever an ACTL formula 9 does not hold, the model checker exhibits also
a path of the LTS given in input, that falsifies 9, (called counterexample) and
provides useful information on how to modify the LTS to satisfy the formula 9-

250

3.1 O t h e r Tools

There are various other tools within JACK that we did not use in our case
study. MAUTO [19], a tool for the specification and the verification of concurrent
systems described by process algebra terms such as MEIJE and CCS [18]; PMC
[5], a parallel model checker for CTL and (via translations) for ACTL. Nss [6], a
tool providing a verification methodology to check ACTL properties on full CCS
terms, i.e. also those corresponding to infinite automata. CRLAB [8], a system
based on rewriting and on proof strategies for algebraic terms. PIsATOOL [16], a
verification tool for checking equivalence of CCS terms that is parametric with
respect to the granularity of the observations chosen or defined by the user.

Graphic/FC2 editor

Algebraic/automata
Manipulations

Graphic

Specifications

)l Algebraic
Specifications

Automata minimizations

FC2 nets linkage

Specifications

ACTL model checking
& counterexamples generator

A CTL parallel
model checking

I FC2LINK 1

Infinite-states algebraic
specs into finite FC2 partial models

Term rewriting
and equivalence checking

Non-interleaving semantics

J

Natural language
into A CTL for~lae

Properties
ACTL , English i

(formal) , (informal)
i

Fig. 1. A general view of the JACK toolset.

4 C a s e S t u d y : a H a r d w a r e B u f f e r

In this section we study the specification and verification of a hardware buffer
and some other related units. First we will present the informal requirements
specification of the units composing the system, then we will Proceed using
JACK as follows:

251

Fig. 2. The JACK interface

1. We wilt use ATG for providing the formal specification of the buffer and
of the other units. Each unit will have a separate Fc2 specification file,
automatically generated by ATG from the graphic specification. Then, by
means of Fc2LINK we will get a single Fc2 model of our system.

2. By means of HOGGAlZ we will perform an automatic minimization of the
number of states of the buffer global system, getting an automaton that is
equivalent to the original one with respect to the weak bisimulation.

3. We will use NL2ACTL to formalize the properties our system has to meet;
this is useful to avoid some of the errors that are often made when one tries
to go from natural language propositions to ACTL formulae.

4. Finally, we will use AMC providing it with the global automaton and a list
of formulae, to check whether the properties represented by the formulae are

252

satisfied by our specification or not. In case an error forbids the satisfiability
of a logical requirement, we have to face the problem of discovering why the
checked formula is false. Such a task will be accomplished by the facilities of
AMC in a semi-automatic way. Once the error in the specification has been
recognized, a correct automaton can be defined, going back to phase 1.

To better exploit J A C K functionalities we will introduce an error on the
formal specification of our buffer system, that will be discovered by using the
model checker AMC.

4.1 Hardware Requirements Specif ication

The hardware units that we are going to describe are a two positions FIFO buffer,
a producer, that writes data in the buffer and a consumer, that reads data from
the buffer. Only data instability is considered as a relevant event (datain). The
level signals wr_req, rd_req and end_rd are raised by either the consumer or the
producer, whilst wr_ack, rd_ack, end_wr, bf_full and bf_empty are raised by the
buffer. For each of these signals, we consider their transition from 0 to] and
from 1 to 0 as relevant event. The three units mentioned above can be reset by
the asynchronous signal rst_req, that is an external request.

When the producer has to write a datum into the buffer, it waits for such a
datum to become stable, then forces a transition from 0 to 1 of the wr_req signal.
When the buffer is ready to serve the request, it raises the signal wr_ack and
then, if the buffer is empty, the bf_empty signal goes to 0. After that wr_ack has
gone to 1, the write operation can start. When the writing has been completed,
the buffer should make a transition from 0 to 1 on the signal end_wr to signal the
end of the write operation to the producer; if the buffer is full, the bf_full signal
goes to 1. In the end, wr_ack returns to 0. Notice that the data are required to
be stable during the t ime interval between the service request and the end of
the write operation.

When the consumer has to read a datum from the buffer, it forces a tran-
sition from 0 to 1 on rd_req. When the buffer is ready to serve this request, it
acknowledges the consumer via a transition from 0 to 1 on rd_ack. The end of
the read operation is signaled by the consumer with a transition from 0 to 1 on
end_rd; then the bf_empty signal goes to 1 if the buffer is empty and rd_ack goes
to 0. Depending on the state of the buffer before the reading, a transition from
1 to 0 of the bf_full signal is done.

Notice that the read and the write operations are executed sequentially;
hence, at most one operation can be issued at a given time.

The reset operation is requested by the rst_req asynchronous signal; its ef-
fect is to empty the buffer and stop the execution of its current operation. In
particular, wr_ack, rd_ack, end_wr, bf_full go to 0 and bf_emply goes to 1.

4.2 Phase 1: Formal Specif ication with ATG

The first phase in the specification of the system consists of building the au-
tomata describing the components of the system. The actions beginning with a

253

"!" prefix are outputs of a component automaton, while the actions that begin
with a "?" prefix are inputs. The initial states of the automata are the double-
circled ones.

In Fig. 3, Fig. 4 and Fig. 5 the automata describing the consumer, the pro-
ducer and the buffer modules are shown. Notice that three states of the buffer
automaton have been labelled by buffer_O, buffer_l and buffer_2 respectively, to
emphasize how many positions of the buffer are occupied.

Moreover, to specify the reset operation requested by the rst_req signal, a
new automaton has been created (Fig. 6) that describes a reset event handler.
Then suitable synchronization actions have been added to the au tomata describ-
ing the other components of the system, to realize the communication between
them and the reset automaton. In its initial state, the reset automaton waits first
for a ?rst_req external request, then for the end-of-reset signal ?end_rst from the
buffer and finally sends the /on_{prod, con} signals to restart the producer and
the consumer.

To build the automaton corresponding to the whole system, we have to link
together all the automata described above. This is done by drawing a network
of automata with ATG (Fig. 7), in which each box of the net represents an
automaton, and the labels of the ports (the small circles that are on the sides of
the boxes) represent the actions that the automaton is able to perform. Whenever
two ports are linked by an edge, the actions at these ports are synchronized; in the
automaton corresponding to the system described by the net, synchronizations
will be represented by means of the name of the synchronization event: this
event can be observable, and in this case it takes the name labelling the edge,
or unobservable, if no name labels the edge. Ports without links denote the
asynchronous actions issued by the components, and they will appear with the
same name in the automaton corresponding to the system described by the net.
For example, we synchronize the action /wr_req_set of the producer with the
action ?wr_req_set of the buffer simply by drawing an edge between the related
ports; in the automaton corresponding to the system described by the net, the
synchronization between the two action takes the name wr_req, meaning that
the wr_req signal is raised.

Notice that between the reset box and the buffer box there is a small disk
(called web) having four outgoing edges; it is used to synchronize together such
four edges: all the actions that are related to ports linked to the same web must
occur at the same time; this corresponds to have a "line" that is used to send
the reset signal to the whole system.

As we said previously, we have introduced an error in the specification of the
system. The error is contained in the automata specifying the buffer; when the
second position of the buffer is filled, no /end_wr_set signal is sent by the buffer
in order to signal the end of the write operation. This may cause the producer
waits indefinitely for the end of the write operation, unless a reset operation
reinitializes the whole system.

254

The Fc2 file that contains the global automaton of our specification is ob-
tained by using Fc2LINK to link the Fc2 files (previously saved by ATG) in a
single network that is contained in a single Fc2 file (systera_/k.fc2).

- ~ ?rst_con >~

?rd_ack_set /

Fig. S. The consumer

S
!end_wr_set !wr. req_set / / ~

Fig. 4. The producer

4.3 Ph ase 2: M i n i m i z i n g our M o d e l w i th HOGGAR

The file sys te ra~k. fc2 obtained by FC2LINK is passed to HOGGAR to trans-
form the automata network into the corresponding single automaton, that is
the global model of the system that will be used (after a minimization step)
for model checking. HOGGAR generates a model that is reduced with respect to
the weak bisimulation. In our case the global buffer system model has 53 states
before reduction, while the weak bisimulation reduction leads to a model with
38 states by stripping off most of the silent actions.

?rst_bf

bf

~ set

!rdack_reset

~nd_wrreset

!bf_empty_sel

!bf_fun._reset

.%vr_req set

255

?rst..bf

?rst..bf

~st..bf

~st. bf

?rst_bf

?rst bf

?rst bf

?rstbf

?rstbf

?rstbf

!wr._ackset

!end_wr_se!

'rd_req._set

/ , ~ ! w r a c k _ r e s e t

!bf_full_set
?end rd_set

set
!bf..empty reset wr ack_set

!wr..aek reset ?wr._req_set

buffer_l

Fig. 5. The buffer

!rd ack reset

!bf._full_reset

4.4 Ph ase 3: t he P rope r t i e s and the i r Formal iza t ion

Several properties of the buffer can be defined in terms of the sequence of event
occurring at its input/output pins. Below we give three representative example
requirements.

D a t a stabil i ty. Data instability must not occur between the write service re-
quest and the end of the write operation.
It is important to check this property on the whole system to guarantee that
possibly detected malfunctions are not due to a misuse of the buffer. Moreover,
we have also to consider that a reset operation can interrupt the write operation
and release the stability requirement. Hence, the property can be expressed in
terms of actions by:

O
~

I
pr

od
uo

er
 'w

~-
re

~
~

(~
 !d

at
ai

n
?e

nd
_w

r_
se

t ~

w
r.

.r
eq

w
r_

ac
k

en
d_

w
r

re
se

t
!o

np
ro

d
!o

n_
co

n
?e

nd
_r

st
?r

st
 re

q

e
n

d
_

r
s

t
~

!e
nd

_r
st

?r
st_

bf

~]
~

?w
r r

eq
_s

et

?r
d_

re
q_

se
t

~ !w
r a

ck
 s

et

!rd
_a

ck
_s

et

'~
 !e

nd
 w

r s
et

bu

ffe
r

?e
nd

_r
d se

t

~ !b
f f

ul
l s

et

~
!b

f f
ul

l r
es

et

!rd
 a

ck
_r

es
et

[)

!b
f_

em
pt

y_
se

t
!w

r_
ac

k_
re

se
t

V
!b

f_
em

pt
y r

es
et

!e

nd
_w

r r
es

et

rd
_r

eq

I<

rd
_a

ck

en
d

rd

n

i =

rO

cn

03

257

�9 For all states, after wr_req it is not possible !datain until end_wr or rst.

P r o p e r r e s e t . After the rst asynchronous signal the level signals wr_ack, rd_ack,
end_wr, bf_full should go tO 0 and bLempty should go to 1.
Since we are dealing with an automaton in which actions are executed sequen-
tially, we can express the fact that all these actions should be performed in a
sequence immediately after the reset action:

�9 For all states, after rst it is possible only !end_wr_reset or !bf_full.xeset or
!wr_ack_reset or !bf_empty_set until !rd_ack_reset.

This property express only the fact that four of the five actions can be performed
before !rd_ack_reset occurs: to match the proper reset requirement we have to add
to it other four properties, each with the same structure of the first one, but with
a different action (taken from the above mentioned five ones) after the until. The
reset requirement will be the logical conjunction of such five properties. However,
for the sake of space, we will consider only one of them.

L iveness . Under the assumption that the units are not reset, we want that the
system has always the possibility to get and process a new datum.
We don't want that the processing of a new datum is bound to a reset operation,
since we want that liveness is ensured by the pure hardware units data exchange
protocols. Since the event related to the fetch of a datum is signalled by a !datain
action, our property becomes:

�9 For all states, there exists a path in which it is not possible rst until !datain.

All the informal requirements above can be formalized using NL2ACTL: the
three sentences above can be given as input to the tool that, after some interac-
tion with the user, gives the following results:

For all states, after wr req it is not possible !datain until !end_wr

or rst

Parsed in: 11.400 sees.

AG [wr req] A[true {~!datain} U {(end_wr I rst)} true]

For all states, after rst it is possible !end_wr_reset or !bf_full_reset

or !wr_ack_reset or !bf_empty_set until !rd_ack_reset

Parsed in: 36.583 sees.

AG [rst] A[true {!end_wr_reset ~ !bf_full_reset ~ !wr_ack_reset

I !bf_empty_set} U {!rd_ack_reset} true]

For all states, there exists a path in which it is not possible rst until
!datain

Parsed in: 9.437 sees.

AG(E[true {~ rst}U{!datain} true])

258

4.5 Phase 4: Formal Verification of the Propert ies

In this phase we use AMC to verify the properties described in Sect. 4.4 for the
model that was generated in Sect. 4.2 and 4.3. The outputs of NL2ACTL are
given to AMC, to perform the model checking; the AMC output is shown below:

I = AG([wr_req]A[true {~ !datain} U {end_wr I rst} trlle])

The formula is TRUE in state I0 time: (llser: 0.02 sea, sys: 0.00 sec)

I = AG([rst] (A[true {!end_wr_reset I !bf_full_reset I !wr_ack_reset I

!bf_empty_set}U{!rd_ack_reset} trlle]))

The formula is TRUE in state i0 time: (llser: 0.02 sea, sys: 0.00 sec)

I = AG (E[trlle {~ rst}U{!datain} trlle])

The formula is FALSE in state 4 time: (llser: 0.00 sec, sys: 0.00 sea)

We have that the third formula is not verified: this means that our system is
not able to stay "alive". The error is in our buffer design. Now we will show how
we can trace it, by taking advantage of the AMC model counterexample facilities.
We simply ask AMC to tell us why the liveness formula is false: the tool exhibits
us a path in which the formula is falsified; if there is more than one path that
falsify the formula, AMC asks us to pick one of them; this happens also if there
are more than one subformula that are falsified by a path. However, users can
disable such AMC interactions and ask it to go through a path by performing
some default choices. Below a subset of the semi-automatic explanations of AMC
are reported:

why: (E[true {(~ "rst")} U {!"datain"} true]) false 22

22 :

labelled by : "wr_ack" which satisfy : (- "rst") or tall

42 :

labelled by : !"bf_full_set" which satisfy : (~ "rst") or tan

43 :

labelled by : !"wr_ack_reset" which satisfy : (~ "rst") or tau

50 :

labelled by : "rd_req" which satisfy : (~ "rst") or tall

39 :

labelled by : "rd_ack" which satisfy : (~ "rst") or tall

48 :

labelled by : !"bf_fllll_reset" which satisfy : (~ "rst") or tall

5i :

labelled by : "end_rd" which satisfy : (~ "rst") or tall

4i :
labelled by : !"rd_ack_reset" which satisfy : (- "rst") or tall

45 :

labelled by : "rd_req" which satisfy : (~ "rst") or tall

47 :

labelled by : "rd_ack" which satisfy : (" "rst") or tall

52 :

labelled by : "end_rd" which satisfy : (~ "rst") or tall

49 :

259

I labelled by : !"bf_empty_set" which satisfy : (- "rst") or tau

46 :

I labelled by : !"rd_ack_reset" which satisfy : (" "rst") or tau

44 :

I (~ (EX{!"datain"} true I EX{(~ "rst")} true)) is true

I labelled by : "rst" which don't satisfy : -"rst"] !"datain" or tau

14 : END

Numbers represent states. To make reading easy we have reported such num-
bers in Fig. 5. The (sub)path 22--44 falsifies the liveness property. By analyizing
the counterexample, we are able to recognize where the error is, and eventually
to correct it. After having fixed the bug the user should repeat the phases 1-3,

�9 in order to check if the new specification meets the requirements.
In our case, to fix the error we need to add a new state between the states

42 and 43 of the buffer automaton, causing the execution of a }end_wr_set action
between the]wr_ack_set action and the !bf_fulLset: in this way, the producer can
be acknowledged of the end of the write operation and fetch new data to store
in the buffer. As usual, in such a new state there should be an edge leading to
the reset state R by the action ?rst_bf.

Acknowledgements

The authors would like to thank C. Bernardeschi, A. Bouali, N. De Francesco, R.
de Simone, G. Ferro, P. Inverardi, E. Madelaine, A. Masini, M. Nesi, S. Polverini,
C. Priami, V. Roy, D. Yankelevich, the AiTech team and ~the Ansaldo Trasporti
team for their contribution to the development and the experimentation of the
JACK environment.

References

1. A. Bouali and R. de Simone. Symbolic bisimulation minimisation. In Fourth
Workshop on Computer-Aided Verification, Montreal, 1992, LNCS 663, Springer-
Verlag.

2. A. Bouafi, S. Gnesi, S. Larosa. The integration Project for the JACK Environment.
Bulletin of the EATCS, n.54, October 1994, pp. 207-223.

3. E.M. Clarke, E.A. Emerson, A.P. Sistla: Automatic Verification o] Finite State
Concurrent Systems using Temporal Logic Specifications, ACM Toplas, 8 (2), 1986,
pp. 244-263.

4. R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench'. In Auto-
matic Verification Methods for Finite State Systems, LNCS 407, Springer-Verlag,
1989, pp. 24-37.

5. M. Danelutto, G. DiCaprio, and A. Masini. Parallelizing a Model Checker. sub-
mitted for publication, 1995.

6. N. De Francesco, A. Fantechi, S. Gnesi, P. Inverardi. Model Checking of non-finite
state processes by Finite Approximations. TACAS Workshop, LNCS, Springer-
Verlag. May 1994.

260

7. R. De Nicola, A. Fantechi, S. Gnesi, G. Ristori. An action-based framework for
verifying logical and behavioural properties of concurrent systems. Computer Net-
work and ISDN systems, Vol. 25, No.7, North Holland, 1993, pp. 761-778.

8. R. De Nicola, P. Inverardi, and M. Nesi. Equational reasoning about LOTOS spec-
ifications: A rewriting approach. In Sixth International Workshop on Software
Specification and Design, 1991, pp. 54-67.

9. R. De Nicola and F.W. Vaandrager. Action versus state based logics for transi-
tion systems. In I. Guessarian, editor, Semantics of Systems of Concurrent Pro-
cesses, Proceedings LITP Spring School on Theoretical Computer Science, LNCS
469, Springer-Verlag, 1990, pp. 407-419.

10. R. De Nicola and F.W. Vaandrager. Three Logics for Branching Bisimulation.
Journal ofACM, Vol. 42, N. 2, 1995, pp. 458-487.

11. E. A. Emerson, J. Y. Halpern. "Sometimes" and "Not Never" Revisited: on
Branching Time versus Linear Time Temporal Logic. Journal of ACM, 33 (1),1986,
pp. 151-178.

12. A. Fantechi, S. Gnesi, G. Ristori, M. Carenini, M. Vanocchi, and P. Moreschini.
Assisting requirement formalization by means of natural language translation.
Formal Methods in Systems Design, 4(2), Elsevier Science Publisher, 1994, pp.
243-263.

13. G. Ferro. AMC: ACTL Model Checker. Reference Manual. IEI-Internal Report,
B4-47 December 1994.

14. M. Hennessy and R. Milner. Algebraic Laws for Nondeterminism and Concurrency.
Journal of ACM, 32, 1985, pp. 137-161.

15. C.A.R. ttoare. Communicating SequentialProcesses. Prentice Hall, London, 1985.
16. P. Inverardi, C. Priami, and D. Yankelevich. Verifing concurrent systems in SML.

In SIGPLAN ML Workshop, San Francisco, June 1992.
17. E. Madelaine and R. De Simone. The fc2 reference manual. Technical report,

INRIA, 1993.
18. R. Milner. Communication and Concurrency. Prentice-Hall International, Engle-

wood Cliffs, 1989.
19. V. Roy and R. de Simone. AUTO and autograph. In R. Kurshan, editor, Work-

shop on Computer Aided Verification, New-Brunswick, June 1990. LNCS 531,
Springer-Verlag, pp. 65-75.

