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Abstract .  JACK (the acronym for Just Another Concurrency Kit) is 
a workbench integrating a set of verification tools for concurrent system 
specifications, supported by a graphical interface offering facilities to 
use these tools separately or in combination. The environment offers 
several functionalities to support the design, analysis and verification of 
systems specified using process algebras. In this paper we use JACK to 
formally specify the hardware components of a buffer system. Then we 
verify, by using the checking capabilities of JACK, the correctness of the 
specification with respect to some safety requirements, expressed in the 
action based temporal logic ACTL. 

1 I n t r o d u c t i o n  

Process algebras [18, 15] are generally recognized as a convenient tool for de- 
scribing reactive systems (i.e. those systems that  do not work in isolation but 
perform their task by interacting with others). They provide a compact linear 
presentation and proof methods to support verification of systems properties. 
The semantic models of process algebra terms are essentially finite or infinite 
state automata,  that  have often been used for specifying hardware components. 
Within the process algebra framework, verification of a given system specifica- 
tion against an implementation is usually performed by studying the behavioural 
relationships (i.e. equivalence or preorder) between the transition systems asso- 
ciated to the different descriptions of the system. Modal and temporal  logics 
have also been proposed [10, 11, 14] as alternatives to the equivalence (preorder) 
based approach. Indeed logics permit  more abstract specifications, since they 
can be used for describing systems properties rather than systems behaviours. 
Properties of a given system are then verified by checking whether the automa- 
ton associated to the process algebra term, describing the system, is a model 
for the formula expressing the desired property. Moreover, automatic tools have 
been devised to support both verification of behavioural equivalence of systems 
(see e.g. [2, 4]) and model checking of system properties (see e.g. [2, 3, 4, 7]). 

* The work described was partially performed within the LAMBRUSCO project sup- 
ported by C.N.R., under the Progetto Finalizzato Sistemi Informatici e Calcolo Par- 
allelo, and within the Progetto Coordinato C.N.R. Specifica ad Alto Livello e Verifica 
Formale di Sistemi Digitali. 
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In this paper we describe the architecture of the integrated verification en- 
vironment J A C K  (Just Another Concurrency Kit) [2], that  provides both be- 
havioural and logical verification on concurrent systems defined by automata.  
We show how it can be used to support specification and verification of a buffer 
circuit. The goal of J A C K  is to provide a general environment that  offers a 
series of functionalities. The J A C K  system has grown out of a set of tools devel- 
oped separately that  have been successively integrated. It covers many aspects 
of the formal system development process, including the formalization of re- 
quirements [12], rewriting techniques [8], behavioural equivalence proofs [19, 16], 
graph transformations [19], logical verifications [5, 7]. In this paper we show on a 
case study how J A C K  supports a verification methodology which takes advan- 
tage of different descriptions of a hardware component: a graphical description 
is used to support the behavioural specification of the system; a temporal logic 
description is used to express its abstract properties. 

2 B a c k g r o u n d  

We introduce now the action based version of CTL [11], called ACTL, defined 
in [9]; it is a branching time logic suitable for expressing properties of reactive 
systems defined by means of Labelled Transition Systems. We start introducing 
Labelled Transition Systems, on which reactive systems are modelled and ACTL 
formulae are interpreted. 

D e f i n i t i o n  l L a b e l l e d  T r a n s i t i o n  S y s t e m .  A Labelled Transition System 
(LTS in short) is a 4-tuple .4 = (Q, qo, Act LJ {~-}, R), where: 

1. Q is a finite set of states. We let q, r, s , . . .  range over states; 
2. q0 is the initial state; 
3. Act is a finite set of observable actions and v is the unobservable action. We 

let a, b , . . .  range over Act, and a,  j3, . . ,  range over Act LJ {7-}; 
4. I~ C_ Q • (Act U {v}) • Q is the transition relation. 

D e f i n i t i o n 2  P a t h s .  Let A = (Q, qo, Act U {7}, R) be a LTS. Then cr is a path 
from r0 E Q if either cr = r0 (the empty path from r0) or ~ is a (possibly infinite) 
sequence (r0, a l ,  r l ) (r l ,  a2, r2 ) . . ,  such that  (ri, a~+l, r~+l) e R for each i > 0. 

ACTL is a temporal logic of state formulae (denoted by r in which a path 
quantifier prefixes an arbitrary path formula (denoted by 7). ACTL models are 
all total, i.e. each of their paths has infinite length; this is not a limitation, since 
each finite length path can be transformed into an infinite one by adding an 
edge from its last state into itself. The definition of ACTL includes the logic for 
the definition of action formulae (denoted by X). Some of the ACTL operators 
we used in the case study and their informal semantics are reported in Table 1, 
while the formal semantics of the full set of the ACTL operators is described in 
[7, 9]. 

Several modalities can be defined starting from the basic ones. We will write 
< a > q~ for E[true{true}U{a}r and [X]r for ,.~< X > ~  r Moreover, by using 
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the until operator  it is possible to define the derived modal i ty  AGr tha t  means 
from now on r is always true. 

Finally, we note tha t  the ACTL logic allows one to simply express safety 
and liveness properties in terms of the actions a system can perform. Safety 
properties permit  to say that  nothing bad does happen.  Liveness properties 
state that  something good eventually happens. 

Table  1. ACTL operators 

Ac t ion  fo rmulae  

X ::= true "any action" 
false "no action" 

"c~ action" 
-X "not X" 
X I X ~ "X or  X ~" 

Sta te  fo rmu lae  

T 
F 
~ r  
r162 

E'~ 
AT 

"any behaviour" 
"no behaviour" 
" not r 
"r and r  
"there exists a path in which 7" 
"for all paths 3" 

P a t h  fo rmu lae  

::= [r162 

X{T}r 

X{x}r 

"r is true for the states of the path until 
a state that satisfies r is reached by executing an action 
satisfying X'- Before it, only actions satisfying X or r 
can be executed." 
"the next state of the path satisfies r and is reached 
by executing a r action" 
"the next state of the path satisfies r and is reached 
by executing an action satisfying X" 

3 The JACK Environment  

The idea behind the J A C K  environment was to combine different specification 
and verification tools, independently developed at different sites. 

A first experiment in building verification tools, s tar t ing from existing ones, 
is described in [7]. Following this a t tempt ,  we have developed an environment 
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(whose structure is shown in Fig. 1) that  exploits the Fc2  format [17] for au- 
tomata.  We had the objectives to provide an environment in which a user can 
choose between several verification tools by a simple, user-friendly graphic inter- 
face and to create a general system for managing any tool that  has an input or 
output  based on Fc2  format files. Such tools can be easily added to the J A C K  
system, thus extending its potentiality. 

Some of the tools within J A C K  allow a process specification to be built. This 
can be done both by entering a specification in a textual form and by offering 
sophisticated graphical procedures to build a specification as an automaton. 

Other tools provide different verification strategies ranging from behavioural 
equivalence proofs to logical verifications by model checking algorithms. The 
access to both specification and verification tools is realized by means of a user- 
friendly interface (Fig. 2). Below, we introduce the J A C K  tools that  are ex- 
ploited for our case study. 

�9 NL2ACTL is a specification tool. It provides a prototype translator from Natu- 
ral Language expressions to ACTL formulae [12]. NL2ACTL has a friendly inter- 
face and makes easier the expression of system properties in the logic. Actually, 
NL2ACTL deals with sentences describing occurrence of actions performed by 
systems. A precise semantic meaning in terms of ACTL formulae is associated 
with each sentence. If the sentence does not have an ambiguous interpretation, 
an immediate ACTL translation is provided; otherwise, an interactive dialog 
with the user is estabilished to solve ambiguities. 
�9 ATG is a graphic specification tool [19] for the design of parallel and commu- 
nicating processes that  provides functionalities for a compositional development 
of a specification. Process construction starts by drawing the automata  that  
represent single sequential processes. Processes surrounded by boxes are said to 
he networks and boxes are used to hide details of low-level specification and to 
represent parallel composition. If two networks are drawn at the same level, they 
can synchronize via the signals they emit. A network could simply be an empty 
box: it is sufficient to specify its external synchronization signals; this permits 
a top-down approach in the ATG specification process. ATG can translate a 
graphic specification into a custom format, the Fc2  format, or Postscript. 

�9 FC2LINK is a linker for Fc2 files; it inputs a set of files (that describe the 
components of a system) and a network description file (that describes how 
such components interact and synchronize together) and outputs a single Fc2 
network (that describes the global behaviour of the system). 

�9 HOGGAR is a tool that  offers minimization procedures (based on bisimulation) 
for systems described as a single transition system, or networks of transition 
systems. The algorithms are based on a symbolic representation of global tran- 
sition systems by means of a Binary Decision Diagram (BDD) and permits the 
analysis of very large systems with a reasonable cost in terms of time and space. 
�9 AMC, the model checker for ACTL logic formulae [7, 13] permits checking 
validity of ACTL formulae over an LTS in linear time on the size of the model. 
Whenever an ACTL formula 9 does not hold, the model checker exhibits also 
a path of the LTS given in input, that  falsifies 9, (called counterexample) and 
provides useful information on how to modify the LTS to satisfy the formula 9- 
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3.1 O t h e r  Tools  

There are various other tools within JACK that we did not use in our case 
study. MAUTO [19], a tool for the specification and the verification of concurrent 
systems described by process algebra terms such as MEIJE and CCS [18]; PMC 
[5], a parallel model checker for CTL and (via translations) for ACTL. Nss [6], a 
tool providing a verification methodology to check ACTL properties on full CCS 
terms, i.e. also those corresponding to infinite automata. CRLAB [8], a system 
based on rewriting and on proof strategies for algebraic terms. PIsATOOL [16], a 
verification tool for checking equivalence of CCS terms that is parametric with 
respect to the granularity of the observations chosen or defined by the user. 

Graphic/FC2 editor 

Algebraic/automata 
Manipulations 

Graphic 

Specifications 

)l Algebraic 
Specifications 

Automata minimizations 

FC2 nets linkage 

Specifications 

ACTL model checking 
& counterexamples generator 

A CTL parallel 
model checking 

I FC2LINK 1 

Infinite-states algebraic 
specs into finite FC2 partial models 

Term rewriting 
and equivalence checking 

Non-interleaving semantics 

J 

Natural language 
into A CTL for~lae 

Properties 
ACTL , English i 

(formal) , (informal) 
i 

Fig. 1. A general view of the JACK toolset. 

4 C a s e  S t u d y :  a H a r d w a r e  B u f f e r  

In this section we study the specification and verification of a hardware buffer 
and some other related units. First we will present the informal requirements 
specification of the units composing the system, then we will Proceed using 
JACK as follows: 
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Fig. 2. The JACK interface 

1. We wilt use ATG for providing the formal specification of the buffer and 
of the other units. Each unit will have a separate Fc2  specification file, 
automatically generated by ATG from the graphic specification. Then, by 
means of Fc2LINK we will get a single Fc2  model of our system. 

2. By means of HOGGAlZ we will perform an automatic minimization of the 
number of states of the buffer global system, getting an automaton that  is 
equivalent to the original one with respect to the weak bisimulation. 

3. We will use NL2ACTL to formalize the properties our system has to meet; 
this is useful to avoid some of the errors that  are often made when one tries 
to go from natural language propositions to ACTL formulae. 

4. Finally, we will use AMC providing it with the global automaton and a list 
of formulae, to check whether the properties represented by the formulae are 
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satisfied by our specification or not. In case an error forbids the satisfiability 
of a logical requirement, we have to face the problem of discovering why the 
checked formula is false. Such a task will be accomplished by the facilities of 
AMC in a semi-automatic  way. Once the error in the specification has been 
recognized, a correct automaton can be defined, going back to phase 1. 

To better exploit J A C K  functionalities we will introduce an error on the 
formal specification of our buffer system, that  will be discovered by using the 
model checker AMC. 

4.1 Hardware Requirements  Specif ication 

The hardware units that  we are going to describe are a two positions FIFO buffer, 
a producer, that  writes data in the buffer and a consumer, that  reads data  from 
the buffer. Only data  instability is considered as a relevant event (datain). The 
level signals wr_req, rd_req and end_rd are raised by either the consumer or the 
producer, whilst wr_ack, rd_ack, end_wr, bf_full and bf_empty are raised by the 
buffer. For each of these signals, we consider their transition from 0 to ] and 
from 1 to 0 as relevant event. The three units mentioned above can be reset by 
the asynchronous signal rst_req, that  is an external request. 

When the producer has to write a datum into the buffer, it waits for such a 
datum to become stable, then forces a transition from 0 to 1 of the wr_req signal. 
When the buffer is ready to serve the request, it raises the signal wr_ack and 
then, if the buffer is empty, the bf_empty signal goes to 0. After that  wr_ack has 
gone to 1, the write operation can start. When the writing has been completed, 
the buffer should make a transition from 0 to 1 on the signal end_wr to signal the 
end of the write operation to the producer; if the buffer is full, the bf_full signal 
goes to 1. In the end, wr_ack returns to 0. Notice that  the data are required to 
be stable during the t ime interval between the service request and the end of 
the write operation. 

When the consumer has to read a datum from the buffer, it forces a tran- 
sition from 0 to 1 on rd_req. When the buffer is ready to serve this request, it 
acknowledges the consumer via a transition from 0 to 1 on rd_ack. The end of 
the read operation is signaled by the consumer with a transition from 0 to 1 on 
end_rd; then the bf_empty signal goes to 1 if the buffer is empty and rd_ack goes 
to 0. Depending on the state of the buffer before the reading, a transition from 
1 to 0 of the bf_full signal is done. 

Notice that the read and the write operations are executed sequentially; 
hence, at most one operation can be issued at a given time. 

The reset operation is requested by the rst_req asynchronous signal; its ef- 
fect is to empty the buffer and stop the execution of its current operation. In 
particular, wr_ack, rd_ack, end_wr, bf_full go to 0 and bf_emply goes to 1. 

4.2 Phase  1: Formal Specif ication with  ATG 

The first phase in the specification of the system consists of building the au- 
tomata  describing the components of the system. The actions beginning with a 
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"!" prefix are outputs of a component automaton,  while the actions that  begin 
with a "?" prefix are inputs. The initial states of the automata  are the double-  
circled ones. 

In Fig. 3, Fig. 4 and Fig. 5 the automata  describing the consumer, the pro- 
ducer and the buffer modules are shown. Notice that  three states of the buffer 
automaton have been labelled by buffer_O, buffer_l and buffer_2 respectively, to 
emphasize how many positions of the buffer are occupied. 

Moreover, to specify the reset operation requested by the rst_req signal, a 
new automaton has been created (Fig. 6) that  describes a reset event handler. 
Then suitable synchronization actions have been added to the au tomata  describ- 
ing the other components of the system, to realize the communication between 
them and the reset automaton.  In its initial state, the reset automaton waits first 
for a ?rst_req external request, then for the end-of-reset  signal ?end_rst from the 
buffer and finally sends the /on_{prod, con} signals to restart the producer and 
the consumer. 

To build the automaton corresponding to the whole system, we have to link 
together all the automata  described above. This is done by drawing a network 
of automata  with ATG (Fig. 7), in which each box of the net represents an 
automaton,  and the labels of the ports (the small circles that  are on the sides of 
the boxes) represent the actions that  the automaton is able to perform. Whenever 
two ports are linked by an edge, the actions at these ports are synchronized; in the 
automaton corresponding to the system described by the net, synchronizations 
will be represented by means of the name of the synchronization event: this 
event can be observable, and in this case it takes the name labelling the edge, 
or unobservable, if no name labels the edge. Ports without links denote the 
asynchronous actions issued by the components, and they will appear with the 
same name in the automaton corresponding to the system described by the net. 
For example, we synchronize the action /wr_req_set of the producer with the 
action ?wr_req_set of the buffer simply by drawing an edge between the related 
ports; in the automaton corresponding to the system described by the net, the 
synchronization between the two action takes the name wr_req, meaning that  
the wr_req signal is raised. 

Notice that  between the reset box and the buffer box there is a small disk 
(called web) having four outgoing edges; it is used to synchronize together such 
four edges: all the actions that  are related to ports linked to the same web must 
occur at the same time; this corresponds to have a "line" that  is used to send 
the reset signal to the whole system. 

As we said previously, we have introduced an error in the specification of the 
system. The error is contained in the automata  specifying the buffer; when the 
second position of the buffer is filled, no /end_wr_set signal is sent by the buffer 
in order to signal the end of the write operation. This may cause the producer 
waits indefinitely for the end of the write operation, unless a reset operation 
reinitializes the whole system. 
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The Fc2 file that contains the global automaton of our specification is ob- 
tained by using Fc2LINK to link the Fc2 files (previously saved by ATG) in a 
single network that is contained in a single Fc2 file (systera_/k.fc2). 

- ~ ?rst_con >~  

?rd_ack_set / 

Fig. S. The consumer 

S 
!end_wr_set !wr. req_set / / ~  

Fig. 4. The producer 

4.3 Ph ase  2: M i n i m i z i n g  our  M o d e l  w i th  HOGGAR 

The file sys te ra~k. fc2  obtained by FC2LINK is passed to HOGGAR to trans- 
form the automata network into the corresponding single automaton, that is 
the global model of the system that will be used (after a minimization step) 
for model checking. HOGGAR generates a model that is reduced with respect to 
the weak bisimulation. In our case the global buffer system model has 53 states 
before reduction, while the weak bisimulation reduction leads to a model with 
38 states by stripping off most of the silent actions. 
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bf 

~ set 

!rdack_reset 

~nd_wrreset 
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!bf_fun._reset 
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?rst..bf 

?rst..bf 

~st..bf 

~st. bf 

?rst_bf 

?rst bf 

?rst bf 

?rstbf 

?rstbf 

?rstbf 

!wr._ackset 

!end_wr_se! 

'rd_req._set 

/ , ~ ! w r a c k _ r e s e t  

!bf_full_set 
?end rd_set 

set 
!bf..empty reset wr ack_set 

!wr..aek reset ?wr._req_set 

buffer_l 

Fig. 5. The buffer 

!rd ack reset 

!bf._full_reset 

4.4 Ph ase  3: t he  P rope r t i e s  and  the i r  Formal iza t ion  

Several properties of the buffer can be defined in terms of the sequence of event 
occurring at its input/output pins. Below we give three representative example 
requirements. 

D a t a  stabil i ty.  Data instability must not occur between the write service re- 
quest and the end of the write operation. 
It is important to check this property on the whole system to guarantee that 
possibly detected malfunctions are not due to a misuse of the buffer. Moreover, 
we have also to consider that a reset operation can interrupt the write operation 
and release the stability requirement. Hence, the property can be expressed in 
terms of actions by: 
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�9 For all states, after wr_req it is not possible !datain until end_wr or rst. 

P r o p e r  r e s e t .  After  the rst asynchronous signal the level signals wr_ack, rd_ack, 
end_wr, bf_full should go tO 0 and bLempty  should go to 1. 
Since we are dealing with an automaton in which actions are executed sequen- 
tially, we can express the fact that  all these actions should be performed in a 
sequence immediately after the reset action: 

�9 For all states, after rst it is possible only !end_wr_reset or !bf_full.xeset or 
!wr_ack_reset or !bf_empty_set until !rd_ack_reset. 

This property express only the fact that  four of the five actions can be performed 
before !rd_ack_reset occurs: to match the proper reset requirement we have to add 
to it other four properties, each with the same structure of the first one, but  with 
a different action (taken from the above mentioned five ones) after the until. The 
reset requirement will be the logical conjunction of such five properties. However, 
for the sake of space, we will consider only one of them. 

L iveness .  Under the assumption that the units are not reset, we want that the 
system has always the possibility to get and process a new datum. 
We don't  want that  the processing of a new datum is bound to a reset operation, 
since we want that  liveness is ensured by the pure hardware units data  exchange 
protocols. Since the event related to the fetch of a datum is signalled by a !datain 
action, our property becomes: 

�9 For all states, there exists a path in which it is not possible rst until !datain. 

All the informal requirements above can be formalized using NL2ACTL: the 
three sentences above can be given as input to the tool that,  after some interac- 
tion with the user, gives the following results: 

For all states, after wr req it is not possible !datain until !end_wr 

or rst 

Parsed in: 11.400 sees. 

AG [wr req] A[true {~!datain} U {(end_wr I rst)} true] 

For all states, after rst it is possible !end_wr_reset or !bf_full_reset 

or !wr_ack_reset or !bf_empty_set until !rd_ack_reset 

Parsed in: 36.583 sees. 

AG [rst] A[true {!end_wr_reset ~ !bf_full_reset ~ !wr_ack_reset 

I !bf_empty_set} U {!rd_ack_reset} true] 

For all states, there exists a path in which it is not possible rst until 
!datain 

Parsed in: 9.437 sees. 

AG( E[ true {~ rst}U{!datain} true ] ) 
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4.5 Phase  4: Formal Verification of  the Propert ies  

In this phase we use AMC to verify the properties described in Sect. 4.4 for the 
model that  was generated in Sect. 4.2 and 4.3. The outputs of NL2ACTL are 
given to AMC, to perform the model checking; the AMC output  is shown below: 

I = AG([wr_req]A[true {~ !datain} U {end_wr I rst} trlle]) 

The formula is TRUE in state I0 time: (llser: 0.02 sea, sys: 0.00 sec) 

I = AG([rst] (A[true {!end_wr_reset I !bf_full_reset I !wr_ack_reset I 

!bf_empty_set}U{!rd_ack_reset} trlle])) 

The formula is TRUE in state i0 time: (llser: 0.02 sea, sys: 0.00 sec) 

I = AG ( E[ trlle {~ rst}U{!datain} trlle ] ) 

The formula is FALSE in state 4 time: (llser: 0.00 sec, sys: 0.00 sea) 

We have that  the third formula is not verified: this means that  our system is 
not able to stay "alive". The error is in our buffer design. Now we will show how 
we can trace it, by taking advantage of the AMC model counterexample facilities. 
We simply ask AMC to tell us why the liveness formula is false: the tool exhibits 
us a path in which the formula is falsified; if there is more than one path that  
falsify the formula, AMC asks us to pick one of them; this happens also if there 
are more than one subformula that are falsified by a path. However, users can 
disable such AMC interactions and ask it to go through a path by performing 
some default choices. Below a subset of the semi-automatic  explanations of AMC 
are reported: 

why: (E[ true {(~ "rst")} U {!"datain"} true ]) false 22 

22 : 

labelled by : "wr_ack" which satisfy : (- "rst") or tall 

42 : 

labelled by : !"bf_full_set" which satisfy : (~ "rst") or tan 

43 : 

labelled by : !"wr_ack_reset" which satisfy : (~ "rst") or tau 

50 : 

labelled by : "rd_req" which satisfy : (~ "rst") or tall 

39 : 

labelled by : "rd_ack" which satisfy : (~ "rst") or tall 

48 : 

labelled by : !"bf_fllll_reset" which satisfy : (~ "rst") or tall 

5i : 

labelled by : "end_rd" which satisfy : (~ "rst") or tall 

4i : 
labelled by : !"rd_ack_reset" which satisfy : (- "rst") or tall 

45 : 

labelled by : "rd_req" which satisfy : (~ "rst") or tall 

47 : 

labelled by : "rd_ack" which satisfy : (" "rst") or tall 

52 : 

labelled by : "end_rd" which satisfy : (~ "rst") or tall 

49 : 
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I labelled by : !"bf_empty_set" which satisfy : (- "rst") or tau 

46 : 

I labelled by : !"rd_ack_reset" which satisfy : (" "rst") or tau 

44 : 

I (~ (EX{!"datain"} true I EX{( ~ "rst")} true)) is true 

I labelled by : "rst" which don't satisfy : -"rst"] !"datain" or tau 

14 : END 

Numbers represent states. To make reading easy we have reported such num- 
bers in Fig. 5. The (sub)path 22--44 falsifies the liveness property. By analyizing 
the counterexample, we are able to recognize where the error is, and eventually 
to correct it. After having fixed the bug the user should repeat the phases 1-3, 

�9 in order to check if the new specification meets the requirements. 
In our case, to fix the error we need to add a new state between the states 

42 and 43 of the buffer automaton,  causing the execution of a }end_wr_set action 
between the ]wr_ack_set action and the !bf_fulLset: in this way, the producer can 
be acknowledged of the end of the write operation and fetch new data  to store 
in the buffer. As usual, in such a new state there should be an edge leading to 
the reset state R by the action ?rst_bf. 
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