
A Partial-Order Approach to the Verification of 
Concurrent Systems: Checking Liveness 

Properties 

Dominique Bolignano 

Bull, 78340 Les Clayes-sous-Bois, France 
D.Bolignano@frcl.bull.fr 

Abs t r ac t .  We present the foundations of an approach for exploiting the 
partial ordering of events ,in the verification of concurrent systems. The 
main objective of the approach is to avoid the state explosion that is due 
to the use of the standard interleaving semantics of concurrency. The 
approach has been applied successfully to the verification of complex 
hardware and software systems such as a shared memory with multi- 
cache for a multi-processor architecture. The technique is described for 
finite state systems and applied to the checking of liveness properties 
using a model-checking approach. Most existing approaches use the par- 
tim ordering of events as a means of reducing the number of traces to 
check: checking is in particular done on normal totally ordered traces and 
the reduction (i.e. the selection of representatives) is dependent on the 
property at hand. We strongly differ from these approaches by directly 
performing the checking on the partial order graphs themselves, not on 
particular linearizations. These partial order graphs axe not dependent 
on the property to check: only the checking is. For this we introduce 
models based on tuples to represent partial orders, and a special kind 
of automaton that we call partial order automaton which generates the 
set of all possible partial ordering that can result from the execution of 
a system. 

1 Introduction 

Various approaches have been developed based on the use of partiM orders. 
They have first concentrated on the checking of specific properties: the verifica- 
tion method of Katz and Peled [7], the method of Mac Millan [9] and the model 
checking approaches of Valmari [11], and Godefroid [5] were l imited to dealing 
with safety properties, termination,  local and stable properties. Later the tech- 
niques have been generalized by Godefroid and Wolper [6], Valmari  [12], and 
Peled [10]. 

Although the various approaches are based on different techniques (the ap- 
proaches in [101, [12] are based on s tubborn set whereas [5] and [6] are based on 
trace au tomata )  in all these approaches, equivalence classes are identified, and at 
least one representative per class is checked. In [6] for example,  the equivalence 
classes are Mazurkievicz's traces [8]. The first characteristic of these approaches 
is that  representatives are particular linearization (total ordering) that  have 



279 

to be chosen and checked. But more importantly,  class partit ioning is strongly 
dependant on the property at hand: the property should be true for the represen- 
tative iff it is true for the whole equivMence class. In our technique, verification 
is done on models directly representing the partial orders that  result from the 
various possible execution of a system. No specific linearization is used, and the 
construction of the model is not done with respect to a particular property. 

The approach has been applied successfully to the verification of complex 
hardware and software systems such as a shared memory with multi-cache for a 
multi-processor architecture. Although relying on asynchronous parallelism the 
approach can be used in the synchronous case when communication delays are 
not constant (serial lines...) or more generally when the correctness of the design 
should not depend on particular timings so as to allow for example for future 
technology evolutions. We present here the approach foundations. 

The paper is organized as follows. In the next section we recall basic concepts 
and notations of Mazurkiewicz's traces and then introduce the notion of feasi- 
ble tuple that  we use for representing the partial  ordering of events that  result 
from the parallel composition of n processes. The third section is devoted to 
the exploitation of partial order. We introduce partial  order au tomata  and use 
them for the checking of order-based properties. In section 4 we show how to 
generate such partial  order automata,  starting from a automaton description of 
each process. We conclude the paper with an illustration of the technique on an 
example and then with a discussion on the benefits, limitations and perspective 
of the proposed approach. 

2 Representation of partial order 

As in [6] we consider a system as being the composition of n concurrent processes 
Pi. Each process is described using a language L~ of w-words (i.e. functions of N 
--+ ~ )  defined over an alphabet ~i .  Each language is defined using a generalized 
Biichi automaton A~, i.e. Ai is a tuple (Z, Q, A, q0, jr)  where: 

- ~ is an alphabet, 
- Q is a set of states, 
- A C Q x Z x Q is a transition relation, 
- q0 E Q is the starting state, and 
_ j r  = {Ft,  ..., Fk) C 2 Q is a family of sets of accepting states. 

A word is accepted by a generalized Biichi au tomata  if and if the automaton 
has an infinite execution sequence that  intersects infinitely often each set Fi of 
9 c. Formally we define the concept of a run over a w-word ala2.., as being an 

infinite sequence q0 -% ql a2 q2... (i.e. a function of N --~ (Q • ~ ) )  such that  
(qi, a~+l, qi+l) C A for all i >_ 0. A run is said to be accepting if and only if for 
each Fj in j r  there exists infinitely many qi in the run such that  qi is in Fj. 

Now we recall some basic results presented in [8]. We associate to each finite 
word w -- ala2...al the set Set(w)  of pairs of the form (al ,ni)  where ni = 



280 

card{j l j  < i, ai = h i )  and 1 < i < I. This set is ordered by the relation Ord(w)  
w h e r e  

{ ( (a l ,  ni), (aj, n j ) ) l l  _< / _< j _< l} 

This relation is the reflexive transitive closure of the relation Succ(w) = 
{((a~, hi), (a~+l, n i+l) ) l l  _< i < l} . Given any word w defined on an alphabet Z 
the projection of w onto Z ~ is a word noted ~w/~ ~ on alphabet Z N Z ~ defined 
as follows: 

- c / ~ '  = c 
- ( w a ) l Z '  = ( w l G ' ) a  , if a �9 Z '  
- ( w a ) l Z '  = ( w l Z ' ) ,  if a ~ Z '  

P r o p o s i t i o n l .  For any word w: w l ( Z  N ~ ' )  = ( w l Z ) I Z '  

Proof. Straightforward by structural induction on words. 

Now Set(w) ,  Ord(w),  Suee(w) can be extended in a straightforward manner  
to apply to any w-word w. According to [4], for any w-word, lim w [nl where 

n - -+  OO 

w In] is the prefix of size n exists and is equal to w. The domain of Z g of w-words 
on alphabet ~ with the distance between two different w-words being defined 
as the inverse of the size of the biggest common (finite) prefix is shown to be a 
metric space. For any w-word w, of Z N, w l  Z~ can be defined as the projection 
w~lZ  ~ on the finite word w ~ when w can be obtained as the concatenation of a 
finite word w' and a w-word w" �9 ( Z  - Z ' )  g .  It is defined as lim (w[n])lZ ~ 

n - -+  oo  

otherwise. 
Given n languages L1 ,...,Ln of w-words, describing n processes with respec- 

tive alphabets Z1,.. . ,~n, the parallel composition of the n processes is described 
using the alphabet ~ l  U ... U Zn and the language 

{w �9 (Z1 U ... U Z,~)Nlwl~ l  �9 n l  h ... A w l ~ n  �9 n,~} 

The parallel composition of these n processes will be noted 
I I(m ...... 2 , )(L~, . . . ,  L,~). A precise modelling of the parallel composition of pro- 
cesses would require the use of finite prefixes in addition to that  of w-words so 
as to be able to model deadlocks resulting from the parallel composition of pro- 
cesses. Such a modelling is done in [2]. For the sake of conciseness we only use 
w-words here. The parallel composition can also be defined for languages on finite 
words: I1( , ..... ~,)(L1, ..., L , ) = { w  �9 (Z,U...UZ,~)*Iw/Z1 �9 L1A. . .Aw/Zn  �9 n,~}. 

A tuple of finite words (a finite tuple for short) or a tuple of w-words (a w- 
tuple for short) can be associated to a tuple of alphabets meaning that  each com- 
ponent of the tuple is defined on the corresponding alphabet. This tuple of alpha- 
bets will be called a signature (e.g. (Z1,. . . ,  Zn) is the signature of (L1,...,  nn)).  
We will only consider tuples with n > 2. 

In [8] the partial order is defined by identifying equivalence classes between 
words. Here we proceed differently. We only consider systems consisting of the 
parallel composition of n processes and derive the partial ordering directly from 
the process parallel composition structure. For this we use particular tuples of 
words: 



281 

D e f i n i t i o n 2 .  A tuple (a finite or w-tuple) (wl, . . . ,w~) with signature 
( ~ l , . . . , ~ )  will be said to be feasible for (i.e. with respect to) signature 
( ~ l , . . . , ~ )  if and only if the composition II(z~,...,z~)({Wl},..., {w~}) is not 
empty. The feasibility will be expressed more formally by using the predicate 
feasible( z~ ..... z~)(wi,  ..., w~). 

Lemma3.  Given a tuple (wi,,...,wn) of n words with signature (Z1,.. . ,Zn), 
than feasible(z~ ..... z . ) (w i , . . . ,  wn) if] 

(Vi, j.1 < i < j < n ~ w d ( Z i  A Z j )  = w j / ( ~ i  A S~)) 

Proof. Directly comes from the definition of the II operator. 

D e f i n i t i o n 4 .  If  (wi,  ..., wn), is a feasible tuple for (Zi,- .- ,  Zn) we define 
Ord(zl, . . . ,z~)(wi,. . . ,w,~) to be the reflexive and transitive closure of the re- 
lation Ul(iinOrd(wi), Set(~l,...,~r.)(Wl,...,Wn) to be Ul<i (nSet(wi)  and 
Succ(z~,. . . ,z .)(wi, . . . ,  wn) to be the relation Ui<i<n Succ(wi)y  - 

L e m m a 5 .  The relation Ord(z~,. . . ,z~)(wi,. . . ,w~) is a partial ordering on the 
set Set(z~ ..... z~)(wi,  ..., wn), for any feasible tuple (wi,  ..., wn). 

Furthermore, the reflexive and transitive closure of the relation 
SUCC(17 i . . . . .  IJ,~)({Wl}, ..., {Wn}) iS equal to Ord(z,,...,B~)(Wl, ..., wn). 

Finally Ord( z , , . . . , z~ ) (Wl , . . . ,wn)=~e l l (~  ..... ~)({~o~} ..... {w~}) Ord(w).  

Proof. The transitivity follows immediately from the transitive closure property 
of the relation. The asymmetry is proved using the fact that  

1 <_ i < j < n ~ (Set(w{) A Set(wj))  = S e t ( w j E i  A Z i )  = Se t (wi /E~ r] E j )  
1 < i < j < n ~ (Ord(wi) (30rd(wj) )  = O r d ( w i / ~ ,  A Z j )  = O r d ( w j / Z ,  A Z j )  

If w is a word (rasp. a tuple) ~ will be the operator corresponding to Ord(w) 
(rasp. Ord(zl , . . . ,z , )(w))  and the operator -<~ will be defined accordingly: x -% y 
iff x -<_w y A x r y. The prefix inclusion will be noted C and so will the tuple 
prefix inclusion (i.e. (ti ,  ...,in) C (tl ,  ...,t~n) i f f t l  E_ tl A ... A t ~  _c t'~ and  t~ C t~ 
for at least one i E 1..n). Given any kind of automaton A, L(A) will stand for 
the language recognized by this automaton. 

D e f i n i t i o n 6 .  If (Wl, ..., w, )  is a tuple with signature (Nl, .--, Zn) then we define 
wordsof(~:~ ..... z~)((wt,  ..., w,~)) to be II(Ih ..... z~)({wi}, ..., {wn}). 

By definition a tuple (wl, ..., wn) is thus feasible for (Z1,.--, Zn) if and only 
if wordsof (z l  ..... z,)((Wl, ..., w,~)) is not empty. 

In the sequel we will use tuples of feasible words as models of partial or- 
ders. In [8] two equivalent notions (i.e. equivalence classes among words and 
dependant graphs) are used for the same purpose. The equivalence of the three 
notions is quite immediate in the case where a system is obtained as the parallel 
composition of n systems. We will neither prove, neither use this fact here. 



282 

D e f i n i t i o n T .  Given a tuple (L1,...,L,~) of n languages with signature 
(El ,  ...Zn) we define feasibleset(z~,. . .z,)(L1, . . . ,Ln) to be the following set of 
tuples: 

{(wl, ..., wn)l(wl, ..., wn) E L1 x ... x Ln A feasible(~l,...s ..., wn)} 

C o r o l l a r y  8. The parallel composition ]l(s163 ..., Ln) of n languages is 

 tEJoa ibz .t(  , . ..... Lo) wordsof(  ,.. 

Proof. We use the definitions 2, 7 and the fact that  II(~,,...~,)(L1, ..., Ln) is equal 

t o  U(wl,...,I1)n)ELIX...xLn ] l (~ l , . . . ,~n) ({Wl)  , ..., {Wn}).  

We now define an operator | that  allows for the concatenation of two tuples: 

D e f i n i t i o n 9 .  Given a finite tuple (tl, ...,tn) and a tuple (sl,  ..., sn) we define 
(tl, ..., t~) | (Sl,. . . ,  s~) to be the tuple ( t ls l , . . . ,  t~s~). 

L e m m a  10. The concatenation (tl,  ~., t~) | (sl , . . . ,  sn) of two tuples (tl, ..., tn) 
and (sl , . . . ,  Sn) feasible for a given signature (~1, ...Zn), is feasible with respect 
to the same signature. 

Proof. This directly follows from the definitions of the | and [[ operators, by 
noting that  for any words s and t and alphabet Z,  ( s t ) / Z  = ( s / Z ) ( t / Z )  

3 P a r t i a l  O r d e r  A u t o m a t a  

We now introduce a special kind of automata  that we call partial order automata 
as a representation of all finite partial ordering of events that  can result from all 
possible execution of n concurrent processes. 

D e f i n i t i o n  11 P a r t i a l  o r d e r  a u t o m a t a .  A partial order au tomata  is a pair 
( A po ~ h} where A po is a generalized Bfichi au tomata  A po = ( ~ PO , S, A 80, JY) 
and h:Zpo --+ (Z1)* x ... x (Zn)* a function whose range only contains feasible 
tuples. The language L( (Apo ,  h)) recognized by such an automaton is defined as 
being the image of L(Aeo) by h5 where ho :Z o (Ei)* • 2 1 5  (Zn)* and h5 (t) 
is defined for any w-word t as l i rn  ho(t[n]). (with ho:Z~o  -+ (Z1)* x ... x (Zn) .  

defined recursively: h| = (e, ..., e) and h| = ho(w ) G h(x)) for any word 
w of Z~, o and element x of 5Y~o. 

Now if a partial order automaton (Apo ,h )  is such that  L( (Apo ,h} )  = 
feasibleset(zl, . . .s ..., Ln) then it can be used according to corollary 8 as 
a description of a system. We will of course want to do the verification on the 
partial order automaton,  without having to consider the various possible lin- 
earizations. 

Instead of using a standard quintuple (Z, S, A, so, 5 ~) to represent a general- 
ized Biichi automaton we will in the case of partial automata,  and to allow for 



283 

more compact representation, use quintuples (~,  S, AI, so, G) where G is a family 
of set of symbols of the alphabet instead of being a family 9 ~ of set of states. 
Now a run will be accepted if and only if it intersects infinitely often each set of 
symbols. It is easy to verify that  any quintuple (~,  S, A, so, ~) represents a gen- 
eralized Biichi automata:  just associate (Z, S • ~ ,  {((ql, a), b, (q2, b))[(ql, b, q~) E 
A, a E Z}, (so, a0), Ua,e6{{(q, a)iq E S A a E Gi}}) where a0 is any element of 
Z. 

4 C h e c k i n g  l i v e n e s s  p r o p e r t i e s  

A number of properties satisfied by the set of words associated to a feasible tuple 
can be checked on the tuple itself in a very efficient manner and in particular 
without having to generate and navigate through the set of words. 

The benefit of using partial order depends on the property at hand: if the 
property expresses all potential linearizations for all events of a given concurrent 
system, the use of partial order based techniques will be of little help. We illus- 
trate the use of our models in a area of high potential benefits when properties 
express sequencing constraint on a subset of events. 

If L is a language of w-words on an alphabet Z resulting from the paral- 
lel composition of n processes we concentrate here on properties that  can be 
expressed using a Biichi automaton Ap on a subset Zp  of Z,  in the form 
n / ~ p  C_ L(Ap)  (or that  L / Z p  = L(Ap)) .  Since liveness (as well as safety) 
properties can be represented using Biichi automata  [1], the particular form of 
property we concentrate on is very general in theory, since we can take Zp  to be 
E. But the technique described in the sequel finds its main interest and efficiency 
in the case where Zp  is smaller than Z.  It is meant to be an illustration of the 
use of partial order automata  for verification. 

L e m m a  12. Given a finite tuple t that is feasible for ( Z 1 , . . . ~ )  and given F a 
subset of Set(~l,...~,)(t), that we call subset of concern, it is possible to associate 
to each element x of Set(~l,...~,)(t), a subset E= of Set(~l,...~,)(t), such that 

y E F A (y ~_~ x) i f f  y E E= (1) 

Furthermore the annotation function E : Set(,~l,...~,)(t ) -+ 7)(Set(~,...s 
that associates each element x with an annotation E~ is computable and can 
defined recursively as follows: 

Ex = i f  x E F then (UyE{yi(y,x)eSucc(~l,...~)(t)} Ey) U {x)  ~ 

else (Uye{yl(y,=)es~r162 ..... ~)(~)) E~) 

where we suppose that by convention ~J=e~ X~ = O 

Proof. The relation Succ(m~,...m~)(t) is compatible with a partial order relation 
since the transitive closure of Succ(s precisely is Ord(m,,...~,)(t) ac- 
cording to lemma 5. All domains (and in particular Succ(2, , . . .~)(t))  are finite. 



284 

It is thus straightforward to show that  the function E is well defined for any ele- 
ment of its domain of definition. Then we prove that  for any x of Set (~  ,...~,) (t), 
E~ satisfies property (1). The property can be shown by natural  induction on 
the size of the greatest strictly increasing chain leading to x. The initial case (i.e. 
for the elements for which the greatest chain is of size 1) is straightforward: the 
only element y such that  y __.t x is x itself and E~ = {x} or E~ = 0 depending 
on whether x is in F or not. If the property is true for i and if x is such that  
the greatest strictly increasing chain leading to x is of size i + 1. Then the set 
{YI(Y, x) 6 Succ(~ , . . .~ ) ( t ) }  of immediate predecessors is not empty and the 
size of the corresponding chain for immediate predecessors are lesser or equal 
to i. Furthermore any element y such that  y ___t x is either x itself, or either 
lesser or equal to at least one of the immediate predecessors. These facts allow 
to conclude easily. 

Note that  annotating the whole set Succ(~,.. .m,)(t) can be done in l steps 
where 1 is the cardinal of Set(2~,...~,)(t) and where each step consists in com- 
puting the annotation of a particular element as the distributed union of the 
annotations of its immediate successors. The annotation process just has to pro- 
ceed in a order that  is compatible with the partial order Succ(s 

L e m m a l 3 .  Given a finite and feasible tuple of words, (tl, ...,tn),with a signa- 
lure (Z~,. . .~n),  and two sets F and F ~ such that F'  C_ F C_ Set(m~,...m,)(t), 
then the annotations Ex and E'~ that can be computed according to the previous 
lemma using respectively F and F p satisfy for each element x of Set(m~,...s 
the following equality: E~ = E~ (3 F ~. 

Proof. This follows directly from property (1) of previous lemma. 

Since we are concerned here with properties that  can be expressed on ab- 
stractions we will use the following property of feasible tnples. 

L e m m a 1 4 .  I f  t = (Wl,.. . ,wn) is a feasible tuple for (~ l , . . .Zn )  and 
if Ord(z l , . . .~)( t  ) defines a total order, let say Ord(z~, . . .z , )( t ) /Zp,  on 
the set {(a,n) e then the projection of the 
set I](~l, . . .~)({wl}, . . . ,{Wn}) onto Z p  is a singleton (i.e. 3 t l . {w/Eplw E 

..., = {t'}). Furthermore, if we note t / Z p  the unique 
element of this singleton, we have the following property: 

= Ord(t/ p) 

Proof. Any projection preserves ordering of elements that  are not abstracted 
away as it is easy to check, and the indices of remaining elements are kept 
unchanged since projection removes all or no instances of a same element of the 
alphabet. 

P r o p o s i t i o n 1 5 .  Given a language tuple (L1, . . . ,Ln)  of signature (S1, . . .Sn) ,  
Zp  a subset of Z1 U ... U Zn and a partial order automaton (Apo ,h )  



285 

such that L((Apo,h))  -- feasibleset(s163 then for any tu- 
ple t o[ the i ( (Apo ,h) ) ,  if Ord(~l,.. .~.)(t)/Zp is a total order then 
I1(~1,...~)(L1, ..., L , ) / Z p  = L((Apo, h)) /Zp.  

Proof. Directly follows from the lemmas ??, ?? and from corollary 8. 

This provides us with a sufficient condition for checking a property ex- 
pressed on a projection. In fact it gives more than that.  First if one of the 
feasible tuple t of the language L((Apo, h)) is such that  Ord(~,...m~)(t)/~p 
is not a total order this means that  the ordering between events that  we are 
willing to check is not imposed by process sequencing and synchronization 
but by interleaving: II({r,~,,v},{y,u,v})({xu, vx}, {uy, yv)) /{x,  y) = {xy, yx} and 
[[({~},{y))({x}, {y})/{x,  y} = {xy, yx} but in the first system x and y are ordered 
in all feasible tuples, while they are not in the second. Our modelling of a system 
based on the language generated by a partial automaton keeps information rela- 
tive to the partial ordering of events imposed by sequencing and synchronization 
constraints and would allow for the checking of more discriminating properties 
based on partial orders and in particular properties involving true concurrency 
aspects. For the sake of conciseness we will not investigate this possibility any 
further in the sequel and consider our technique only as means of simplifying 
verification and not  as a means of expressing or verifying finer properties. Now 
with this objective, it is easy to always consider systems for which the projection 
of all feasible tuples always is a total  order: just use ]](~l,...~,,mp)(L1, ..., Ln, Z~,) 
instead of [[(~,...s ..., Ln). The two sets are equal, as it is easy to see by 
returning to the definition of the ]] operator, and the first one always satisfies 
the total ordering condition: this one is imposed by the last component. 

D e f i n i t i o n l 6 .  Given a partial automaton (A, h) for a signature (~ l ,  ...Z~), 
(i.e. A = (Z ,Q , ,5 ,  q0, G)) and Zp  a subset of Z1 U . . . O Z ~  we define the 
following algorithm that  constructs a partial order automaton (A ~, h') (i.e. 
A ~ = (Z  ~, Q', A~, q~, G')) with unary tuples by adding new nodes or transitions at 
each step until failing or until reaching a fixed point in which no failing condition 
applies: 

1. start with the automaton containing only one node (i.e. q~ = 
{(q0, (v, ..., v))}), and no transition where v is a constant not in Z1 U ... UZ~; 

2. repeat the following operation until reaching a fixed point or failing: if 
(rid, (wl, ..., w~)) is a node of the current automaton and if nd' is such that  
nd --% nd' is a transition of A and h(e) -- (w~,..., w~), 
(a) compute annotations for . the graph Succ(s163174 

(w~, ..., w~)) using the algorithm described in lemma 12 and using 
F ---- {(aj, uj) e Set(~l,...z~n)((wl, ...1 wn) (~ (wl,  ..., wI~,))laj e ~ p  ~J {v))  
as the subset of concern; 

(b) check that  the annotations correspond to a total order 1 for the element 

1 This just meazts checking that corresponding annotations can be ordered as a chain 
of strictly increasing sets. 



286 

F;  if not then fail; if yes then the ordered list of element of F has the 
form (a~, n~), ..., (a~, n~) with (a~, n~) = (v, 1); 

I [ 

" is v i f  w~w~ # (c) add (rid, (Wl, ..., w~)) (~'"~' '~) (rid', (w'~'~ ..., w~)) where wi 
and (a~, n~) is in the annotation of last element of the ordered set 

Set(wiw~) and r otherwise; 
(d) if there exists two nodes (rid, (w~, ..., w=)) and (rid', (W'l, ..., w~)) such 

that  n = n' and (wl, . . . ,  w.) C (w~, ..., w~) then collapse the two nodes 
by replacing the second node by the first one in the automata.  

3. the set g ' =  {G~,..., G'k} is computed from the set g = {G1,..., Gk} by letting 
each G~ = {(w, e) E Q'le ~ G~} 

4. the function h' is defined to be such that  h((w, e) = w. 

T h e o r e m 1 7 .  The algorithm of definition 16 terminates for any partial order 
automaton (A, h), of signature (Z1, ...Zn) and for any subset Z p  of Z1U. . .US~.  
It terminates by a failure i f  and only i f  there exists a word in the language 
generated by the partial automaton which does not impose a complete ordering of 
events in Z p .  It terminates successfully by returning an automaton (A ~, h') whose 
language is equal 2 to (UteL A,2,h) w o r d s o f ( t ) ) / S p  Furthermore in that latter (( ) 
case, i f  the partial automaton describes the parallel composition of n processes 
( i . e . / fL ( (A ,  h)) = feasibleset(z~,...~=)(L~, . . .L,)  where (L~, ...L,~) is a language 
tuple of Signature (S1, . . .Sn)) then Lp is the projection of the composition onto 

L((A' ,  h'}) = (I l(2~,. . .~)(Li,  . . .L~)) /~P 

Proof. The proof of the termination of the algorithm is straightforward since the 
nodes of the tree built by the algorithm range in the finite set Q x {c, v} ~. 

_ . . .Ln))/•p we associate In order to show that  L((A' ,  h'}) C (]1(2 ..... ~ ) ( L 1 ,  
(~1,~1) (~0z-l,~,_~) __+ 

to each run rf = (q0, (v, ..., v)) --+ ... -~ (ndt, (w~, ..., wtn)) (~o',,,) 
e i - - i  

... of A' the run r = qo -% ... --+ ndz -% ... of A. We then show 
that  according to lemma 14, t, the projection onto Zp  of each element of 
wordsof(.vl, . . .s ,)(h~(el. . .e,_let. . .)) ,  where wordsof(.vl,....~.)(h~(ea...et_ie,...)) 
is the set of elements of II(zl,...z,)(L1, ...L=) itself corresponding to r, exist, 
is the same for all elements and is equal to the element t '  = wi . . .wt - lwt . . ,  of 
L((A' ,  h')) corresponding to r'. For this we first show by induction that  the 
property is true for all finite prefixes r [i], and r4i] of size i, and then derive t 
and t ~ as the limit of the same series. The proof by induction relies in particular 
on the following fact: the tuple t being of the form (w~', ..., w~) , and the word 
Wl...wl being of the form xl. . .xm where xi are element of the alphabet, then 
for each i E 1..n, the annotation of the last element of Ord(w~'), if we were to 
apply the algorithm of lemma 12 to tuple t taking F = {(xm, k)} as subset of 
concern, where (xm, k) is the last instance of xm in Ord(z~  ..... ~.)(t), would be 

2 To be more precise it is only isomorphic since it is a set of unary tuples: {t[(t) E 
L((A', h'))} would be equal. 



287 

w][x,~/v] (the set obtained by substituting v by xm in the set w~), if xm exists 
and ~ otherwise. 

Finally we prove using the same correspondence between runs of A and A' 
that  the algorithm fails if and only if there exists a word in the language gen- 
erated by the partial automaton which does not impose a complete ordering 
of events in Zp ,  and that  any run of automaton A will have a corresponding 
element of A ~ if the algorithm does not fail. 

5 G e n e r a t i n g  t h e  p a r t i a l  o r d e r  a u t o m a t a  

Now we come to the construction of the partial order automata.  We define here a 
basic algorithm, that  can be further improved as done in [2]. The objective here 
is to show the existence of such an algorithm as well as the main idea behind it. 
We assume in the following that  all au tomata  have disjoint nodes so as to allow 
to use transition relation without having to make reference to the corresponding 
automata. 

In order to introduce the algorithm we introduce a few additional notations: 
for any sequence xl...xk, the function elerns(xl...xk) returns the set {zl ,  ..., xk} 

of elements of the sequence; nd a~a~ nd' if and only if nd 22~ .ndl..ndk_l ~ 
r~dl...ndk-a 

ns  where k is potentially null; nd a ~ k  nd ~ if and only if nd ~ k  ns  for 
ndl . . .ndk_l  

some sequence of nodes ndl...nd~_l; nd ::~st ns  where St is a set of states if 
and only if nd ~ nd' for some r with elems(r) N St = $ and {nd, nd'} C_ St. 

r 

D e f i n i t i o n l 8 .  Given a tuple (A1, ..., An) of n generalized Biichi au tomata  (i.e. 
Ai = (S~, Qi, A~, q0 9~i)) and a tuple (St1, ..., Stn) where each Sti is a subset 
of Q~, we define an algorithm that  builds a partial order automaton (A, h) (i.e. 
A = (Z,  Q, A, q0, 6i)) in a stepwise manner starting with an automaton with an 
empty transition relation and with only one node: the initial node (qO, ..., qO). 
The family ~ associates one set G(i j )  for each set Fj of each 9ci, i E 1..n. 
All sets are initially empty. The algorithm proceeds by applying the following 
operations repeatedly until the algorithm fails or a fixed point is reached and no 
failing condition applies: 

1. if for some node (ndl, ..., ndn) of the current automaton,  there are some 
~//i W "  i , j  E 1..n such that  ngi ~ s ~  nd~ and ndj ~s~j nd~ and ~ C wi/(Zi NZj) C 

wj / (Si  N Zj) then fai l  

2. if for some node ndi and nd~ both in Sti (i.e. i C 1..n), nd~ ~ nd~ for some 
r 

r, w with elems(r) A Sti = O A r[k] = r[k'] (where r[k] and r[k] are the k th 

and k 'th elements of r) for k # k' then fai l  
3. if (ndl,..., ndn) is a node of the current automaton,  if (wl, . . . ,  wn) is feasi- 

ble for (~1, ..-, Zn) where there exist r~ and wi such that  ndi ~=~ nd~ and 

elems(ri) NSti = O for each i e 1..n and if (wl, ..., wn) is minimal (i.e. there 



288 

W ! I is no other candidate ( 1, ..., w~) such that  c C (w~, ..., w~) C (wl ,  ..., w,~)), 

then add (ndl,  ..., ndn) ((w~,...,__w,),a)(nd~, ..., nd~) where G = {(i, q)lwi r 
e and qFj E ~ i .  q E ( (e lems(r i )U{nd~})NFj)} ,  and add ((wl, ..., w~), G) to 
each G(i,j) such that  (i, q) E G and Fj E 9t'~ and q E Fj.  

The function h is defined to be such that  h(((wl,  ..., w,~), G)) = (wl, ..., wn). 

T h e o r e m  19. The algorithm of definition 18 always terminates. It terminates 
either by failing or either by producing a partial order automaton (A, h) such 
that: 

L((A,h))  = feasibleset(s~ ..... s , ) (L (AI ) , . . . ,L (A~) )  

Proof. In a first step we prove that  any tuple element of L((A,  h)) is in 
feasibleset(21,.. . ,2,)(L(A1), ..., n(An)).  To any such element t we can associate 
by definition w E L(A) such that  h~(w) = t. For each i E 1..n, we can then easily 
associate an infinite run of As. The fact that  the run is an acceptable one directly 
comes from the fact that  w is also an acceptable run (i.e. intersects infinitely of- 
ten each set of:~i). The infinite tuple is in feasibleset(s~ , . . . ,s L(An)) 
since we wcan prove that  for each i , j  E 1..n, w i / (Z i  fq S j ) = w j / ( S i  fq Z j )  by 
returning to the definition of the projection for w-words. 

We then prove that  any tuple element t of feasibleset(s 1 ..... ~.)(L1, ..., L~) 
is in L((A, h)). For this we consider each component t~ of this feasible tuple 
and associate an accepting run for the corresponding automata  As. These n 
runs are than used to build a strictly increasing chain whose limit is t and that  
correspond to a strictly increasing chain of w an element of L(A).  Building a 
strictly increasing chain of prefixes of t is quite easy and mimics the construction 
of the partial order automata.  But even with the constraint imposed by the n 
runs the construction is not necessarily deterministic and the only difficulty is to 
build a chain that  is converging to t. For this we select each t ime there is more 
than one possibilities, the one (or one of those if more than one) that  allows to 
increase the smallest of the n prefixes of the n runs (one of the smallest if more 
than one). It is then quite easy to show by contradiction that  in the case of 
our particular algorithm this guaranties proper convergence: the corresponding 
series is lower and upper bounded by two series converging to the same element. 

C o r o l l a r y 2 0 .  Given any tuple (L1, . . . ,Ln)  of languages with signature 
(Z1, . . . ,Zn) ,  there exists a partial automaton (A,h) such that L( iA,  h)) = 
f easibleset( ~ 1 ..... ~.)(L1, ..., Ln). 

Proof. Take any tuple (A1, ... ,An) of automaton such that  L(Ai)  = Li. Apply 
the algorithm of definition 18 using for each Sti of (St1, ..., Stn) the set of states 
of automaton As. It is then straightforward to check that  the algorithm always 
succeed, and that  the construction is isomorphic to a standard construction for 
the parallel composition. 

The two theorems thus provide a method for checking properties. On one 
hand the property is expressed as a Biichi automaton.  On the other hand we 



289 

build the partial order automaton, corresponding to the system at hand and 
then compute an automaton from it using the algorithm in definition 16. Finally 
we compare this latter automaton with the automaton describing the property. 

6 I l l u s t r a t i o n  

The resulting reduction is in many cases very high as illustrated in [2], but as 
it is the case for other approaches, it is possible to identify situations, mainly 
artificial ones, in which no significant reduction can be obtained using the ap- 
proach. The most significant benefits can be obtained on large and complex 
systems. Here we illustrate the technique and its benefits on a very simple ex- 
ample inspired from the alternated bit protocol, and than try to explain how 
the benefits would become bigger on more complex versions of the same exam- 
ple. Consider the four following Biichi automata  of figure 1 where the fam- 
ilies of acceptance sets for the first and third automaton are both equal to 
{{2, 4, 2a, 2b}, {2, 4, 4a, 4b}}, where the families for the second and fourth are 
both equal to {{1, 3, 2~, 2b}, {1, 3, 4a, 4b}}. 

[figure 1] 

I lo _ _ ~ ~  f '  yO 

yi 
i 

, ,  

Let us now consider the parallel composition of the four processes modelled 
by these automata,  where the respective alphabets are taken to be the symbols 
appearing in each automaton. We than build the partial automaton by providing 
a tuple of states (St1, ..., Stn) to the algorithm of definition 18. The choice of the 
tuple (St1,..., Sty) is an important  issue. The idea is to use sets that  are as small 
as possible, so as to reduce the size of the partial automaton. The tuple chosen 
for the previous proof was clearly not a good choice to this respect: it would not 
bring any reduction in the size of the automaton to visit; it would just allow for 
the possibility of checking partial order based properties, which is an aspect that  
we do not develop here. Although there is no formal criteria for choosing an ap- 
propriate tuple, selecting one state in each loop 3 turns out to be a simple but still 

a Loops of an associated regular expression for example. 



290 

a good strategy. Here using this simple strategy we would provide the following 
tuple ({1, 3}, {1, 2, 3, 4}, {1, 3}, {1, 2, 3, 4}}. The algorithm succeeds and builds 
the partial order automaton of figure 2 where a dot stands for the empty string 
c, al = {(1, 2a), (4, 25), (4, 1)}, a~ = {(1, 2b), (2, 2a), (2, 1)}, ..., 51 = {(1, 2)}, b~ = 
{(1,4b)},... and where the family of 6 acceptance sets would have eight el- 
ements G1,1, G1,2, G2,z, ..., G4,2, and with for example ((rlsl,  c, c, rltl), al) be- 
ing in GI,~, G4,~ and G4,~, ((e0f0, eogo, e, ~), a2) being in G~,I, G2,~ and G2,2, 
((fox1, e, c, ro), 51) being in G~,~ and G~,2, ( (e l f , ,  el, e, E), b2) being in G1,2 only, 
etc ... 

[figure 2] 

((.,.,r 

~ . , . , r  ltl),al) ((10s0,..j0),a$) ((10s0~,.#0),aS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

((Nl.,,~),bl) ({el~,el,,.),~0.) ((..e'l,e'lyl,.),N))((.,.,r,ls, l,~,l),M) ((rlx0,,.$1),N) ((el~,e0,,.)~) ((.,e'0,e'N,.),b7) 

Let us now assume that  we are interested in events that  are instances of 
x0, x l, Y0, Yl, then the application of the Mgorithm of definition 16 would suc- 
ceed and build the partial order automaton of figure 3, where the number of 
states and the size of the family of acceptance Sets is the same as in the previous 
automata,  where the state membership is isomorphic to that  of the previous au- 
tomata,  where for more conciseness only the second component of each state is 
used and where a dot stands for c. The number of states of the partial automata  
is here a few times smaller than the size of the global automaton that  would 
correspond to standard parallel composition, and the abstraction produces an 
automaton describing the total ordering of abstracted events in performing a 
linear wandering through the nodes of each tuple. The produced automaton can 
easily be shown equivalent to the Biichi automaton 4 that  recognizes the lan- 
guage with only one element: the ;o-word that  repeats xlylxoyo for ever (i.e. 
(xlylxoyo) ~). It is indeed easy to check that  this is the only that  intersects each 
acceptance set of the family infinitely many times. Of course many other inter- 
esting abstractions could be investigated (e.g. abstraction focussing on sl, fo, ...) 
in the same way. 

Let us now consider versions of the same protocol in which f0, go are consid- 
ered as actions and each is replaced by a sequence of m finer actions. Then the 
number of states of the global automata will increase as the square root of m and 
up to the power 4 of m if we replace more actions in this way. At the same time 
the number of states of the corresponding partial automata will not change and 
the number of states that the algorithm of definition 16 has to wander through 
will only increase linearly with m, even if the projection includes elements of the 
first action or of the second. 

4 The transformation into a generalized Biichi automaton could in fact be done 
automatically. 



291 

[figure 3] 
(..~) ( (.:,1) ( . ~ )  (.,as) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(.,.~) (.a6) (.,a9) ~ .  

(xl,bl) (.,b2) (yl,b3) (.,b4) (xO,bS) (.b6) (yO,bT) 

7 Conclusion 

We have introduced and used feasible tuples to model the partial ordering of 
events in the case of the parMlel composition of n sequential processes. We have 
seen how to check order-based properties directly on these structures by propa- 
gating information along the partial order graph and without having in partic- 
ular to consider or generate the various corresponding linearizations. We have 
introduced special automata that we call partial order automata which allow to 
generate all partial ordering resulting from all possible executions of the parallel 
composition of n processes, and have shown how to exploit these automata to 
check order based liveness properties. We have seen that the language generated 
by partial order automata was more discriminating then interleaving semantics 
and that such automata could be used to check partial order based properties, 
such as properties involving true concurrency. This has not been exploited here 
and will be the ground for future research. We have finally shown how to build 
partial order automata from the description of the n processes. For the sake of 
conciseness we have used here models based on w-words without considering the 
finite words that would allow to model the potential deadlocks resulting from 
composition. This extension is quite straightforward. Of course the exploitation 
of the partiM order automata that we have introduced here is only meant to be 
an illustration of their potential use in verification. Various other possibilities 
remain to be investigated. 

The presentation has focussed on the main properties of the approach. Many 
improvements can be made to the various algorithms, in particular by performing 
on-the-fly analysis: as an example the approach described was suggesting here 
to first build the partial order automaton, then deriving an automaton from it 
using the algorithm in definition 16 and finally comparing this latter automaton 
with the automaton describing the property at hand. None of these intermediate 
outputs need be generated: the various transformations can be done on-the-fly 
in a very strMghtforward manner. 

As compared to other approaches that exploit partial order, the proposed 
technique has the disadvantage of requiring a human expertise for the identifi- 
cation of a tuple of states to provide to the algorithm of definition 18. But the 
selection of an adequate set of states is in practice very easy as illustrated in the 
previous section. On the other hand our technique presents significant advan- 
tages: first we directly generate and explore the partial order graph instead of 
using equivalence classes that would depend on (and be limited by) the property 



292 

to check; second the direct modeling of partial  order allows for very promising 
possibilities in the expression and verification of part ial  order based properties. 

References  

1. Schneider F.B. Alpern B. Recognizing safety and liveness. Distributed Computing, 
1987. 

2. D. Bohgnano. An approach to the verification of concurrent systems. Technical 
report, Bull Research, December 1994. 

3. A. Bouajjani, J.C. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safety for 
branching semantics. I n  Springer Verlag, editor, LNCS, 12th Colloquium on Au- 
tomata~ Languages, and Programming, 1991. 

4. S. Eflenberg. Automata, Languages, and Machines (Vol. A). Academic Press, 
1974. 

5. P. Godefroid. Using partial orders to improve automatic verification methods. In 
Proc. 1990 Computer-Aided Verification Workshop, June 1990. 

6. P. Godefroid and P. Wolper. A partial approach to model checking. In Proc. 6th 
IEEE Syrup on Logic in Computer Science, July 1991. 

7. Katz and Peled. Verification of distributed programs using representative inter- 
leaving sequences. Distributed Computing, 6, 1992. 

8. A. Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relationship to 
Other Models of Concurrency, Advances in Petri Nets 1986, PART 1I, Advanced 
Course, pages 279-324, Bad Honnefs, September 1986. Berlin, West Germany: 
Springer-Verlag. LNCS-255. 

9. K.1. McMillaxt. Using unfoldings to avoid state explosion problem in the verifica- 
tion of asynchronous circuits. In Proceedings of the ~th International Conference, 
CAW92, 1992. 

10. D. Peled. All from one, one for all: On model checking using representatives. In 
Proceedings of the 5th International Conference, CA V'93, 1993. 

11. A. Valmari. Stubborn sets forreduced state space generation, 10th international 
conference on application and theory of petri nets. In Vol 2, 1989. 

12. A. Valmari. On-the-fly verification with stubborn sets. In Proceedings of the 5th 
International Conference, CA V'93, 1993. 


