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Abstract 
This paper presents the main principles for building a symbolic transition system from a 
description written in a subset of VHDL'87 (temporal information is excluded and objects 
are restricted to bit, bit_vector and Boolean types). This transition system is used for 
formal verification of the VHDL description. It consist of a system of Boolean equations 
indicating the next state of the system in terms of its current state. It is automatically 
generated from an intermediate representation of the VHDL description by means of a Petri 
Net. The deterministic nature of VHDL 87 and the exclusion of temporal elements in the 
description permit us to abstract the behavior of the system : only one state per delta cycle 
is represented instead of all intermediate states encountered in simulation. This abstraction 
reduces the size of the transition system and the cost of subsequent analysis. The 
construction of the system of Boolean equations from the Petri Net is presented first, and 
then an example of verification of a temporal logic property illustrates its use for 
Symbolic Model Checking. Experimental results are given which demonstrate the 
feasibility of this approach. 

1. Introduction 

The increasing complexity of hardware systems makes their design verification 
difficult by classical simulation techniques. Formal verification techniques have 
appeared as a complementary verification method of hardware systems. Their links 
with VHDL began at the end of the 80's, and since much research has been done in 
this area. Different formal semantics of VHDL'87 [VHDL'87] were proposed to apply 
automatic formal verification : theorem proving techniques [VanTasse193] [BPS92], 
stream functions [BS-FD-K94], process algebra [BSCPB94], structural Petri Nets 
analysis [OC93], Symbolic Model Checking [DB93] DB95] [DH95a]... 

Symbolic Model Checking techniques require the description of the behavior of the 
system by means of a transition system determining the states of the system and the 
relations between them. Recent trends of symbolic representation of transition 
systems by means of BDDs [Bryant86] have established the viability of symbolic 
Model Checking for real hardware systems [BCMDH90] [McMillan93]. Our aim is to 
further the link between VHDL descriptions and Symbolic Model Checking 
techniques. This requires the definition of a formal model representing the VHDL 
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system, from which a symbolic transition system is extracted. Once this transition 
system is obtained, classical Symbolic Model Checking algorithms can be applied 
[McMillan93]. 

Building the transition system characterizing the behavior of the system is a difficult 
task : the building mechanism is simple but the explicit representation of states and 
relations induces a combinatorial explosion. The time needed to build the explicit 
transition system and the space to store it become prohibitive. A symbolic 
representation of the transition system and a symbolic simulation engine overcome 
these complexities. This approach is well suited to non deterministic systems (such 
as VHDL'93 where the use of shared variables introduces non determinism in the 
simulation cycle). 

The deterministic nature of VHDL'87 can be exploited to directly obtain the symbolic 
transition system from the structure of the formal model without symbolically 
simulating it. This approach is the one adopted by [DH95b] who build a detailed 
symbolic transition relation representing the behavior of the VHDL system in all the 
intermediate states of the simulation. Their approach is applicable to a fairly large 
subset of VHDL (all finite types and timing constructs are allowed in their 
descriptions). [DB95] also define a semantics, based on abstract machines, that 
represents the behavior of a subset of VHDL (timing constructs are excluded but all 
finite types are treated). The symbolic transition system built in [DB95] is coarser 
than the one in [DH95b] as the only states considered are the ones at the end of each 
delta cycle. 

We present a way to obtain a symbolic transition system from a restricted VHDL 
description (timing constructs are excluded and objects are of bit, bit-vector and 
Boolean types). The transition relation is expressed as a system of Boolean equations, 
each of which is built from the structure of an intermediate Petri Net. The level of 
abstraction is similar to [DB95] : only states at the end of each delta cycles are 
considered. We illustrate the use of the symbolic transition system by presenting a 
means of detecting never-ending simulation cycles in a VHDL description. With 
present simulation tools, these are difficult to detect and to correct. Experimental 
results of symbolic model checking show the relevance and feasibility of our 
approach. 

This paper is organized as follows : Section 1 briefly presents the structure of the 
Petri Net derived from a VHDL description and shows that, in our case, the state at 
the end of a delta cycle depends only on the state at the end of the previous delta cycle 
and the configuration of stimuli applied. Thus, the behavior of the system can be 
abstracted to end-of-delta states only. Section 2 presents the major rules for building a 
symbolic transition system from an intermediate Petri Net. Section 3 presents an 
application of this system of Boolean equations to symbolic model checking. The 
requirement that a VHDL simulation stabilizes is represented as a temporal logic 
formula to be verified. Verification of this property is presented on a scalable example 
with experimental results. Section 4 concludes and suggests some directions for 
future work. 
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1. A Formal Model for a VHDL Description 

VHDL semantics is informaly expressed by means of its simulation engine. One has 
to develop a formal model to reason about a VHDL description. We chose the Petri 
Net formalism as it supports non determinism that will be necessary for VHDL'93, 
but it can also represent deterministic systems, such as VHDL'87. Various techniques 
of construction of the transition system representing all behaviors of the modeled 
system can be applied to this formalism. An overview of Petri Nets can be found in 
[Murata89]. 

A VHDL description is automatically translated into a Petri Net [BEC94]. The Petri 
Net represents the control structure of VHDL processes and their synchronization 
reproducing the VHDL simulation semantics. An external data part of the Petri Net 
contains the data modified by the firing of transitions in the control part. The 
construction and behavior of the Petri Net are presented in [EB95]. They are briefly 
reviewed in the following section. 

1.1. Petri  Net  Features  

The Petri Net is composed of subnets, reproducing the structure of each VHDL 
process and their synchronization according to VHDL'87 semantics. Each process is 
composed of places and transitions. Places refer to the states of the process and 
transitions are fired to pass from one state to the next, representing the VHDL 
statement executed between these two states. Connections between places and 
transitions are expressed by Pre and Post matrices. Pre(t,p) = 1 indicates an arc from p 
to t, and Post(t,p) = 1 indicates an arc from t to p. Transitions modeling processes are 
split into two disjoint sets. Those modeling VHDL wait statements belong to the 
I ~ S  set, they are only firable during the resumption phase of VHDL delta cycles. All 
other VHDL statements are represented by EXE transitions, which are firable during 
the execution phase of VHDL delta cycles. 

A global scheduler emulates the delta cycle functioning of VHDL simulation by 
decomposing the delta cycle into RESUME, EXECUTE and UPDATE phases which 
provide synchronization barriers for the processes. 

This Petri Net interacts with an external data part that represents the VHDL data 
objects. We consider variables, constant and signals : effective, driven, resolved, 
driver connection values and signal attributes (event and transaction). These objects 
are restricted to bit, bit_vector and Boolean types. 

Interactions between the control part and the data part occur while transitions are fired. 
These interactions are represented by means of attributes associated to each transition, 
t, of the Petri Net : 

�9 g(t) is the guard of transition t : t may fire only if its guard is true. g(t) is a 
Boolean function of data contained in the data part. 

�9 ASG(t) is the set of data modified while firing transition t. 
�9 TRF(t) is the set of transformations applied to the data in ASG(t). TRF(t) is a 

set of couples (d,trfd,t) where d ~ ASG(t) and trfd, t is a Boolean function of 
data in the data part. 
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In VHDL'87 ,  all statements enclosed between two wait  statements in a process are 
a tomic : instead of  being represented by a sequence of EXE transitions, each 
corresponding to a V H D L  statement, they can be represented by a unique EXE 
transition grouping all the data transformations. 

We  characterize SQ(tinit,tout), a sequence of  EXE transitions between two RES 

transitions of  a given process : 

SQ(tinit , tout) = tinit -~ t a ~ tb --* tc ~ ...tn ~ tout 
where tinit �9 RES, tout �9 RES, and t a ..... tn �9 EXE. 

This sequence can be reduced to SQ(tinit,tout)reduced = tinit ~ tinitout ~ tout 
where tinitout �9 EXE, and 

�9 ASG(tinitout) = ASG(ta) u ASG(tb) u ... u ASG(tn) 
~ = g(ta) A g(tb) ... A g(tn) 
oTRF(tinitout) = TRF(ta) ~" TRF(tb) ~" ... ~" TRF(tn) 

"~"" means  "fol lowed by" : the data modif icat ions of  t a are combined  
appropriately with those of  tb, etc... 

Reduction rules are defined in [EB95]. The example on Figure 1 illustrates the Petri 
Net structure and the data formalism introduced here. 

e n t i t y  add_ lb  is 
p o r t  ( a0,b0,ci0 : in bit; 

s0,co0: out bit ) 
end add_l;  
a r c h i t e c t u r e  example  o f  add_lb  is 
begin  
add__O : process 

beg in  
wait  on a0,b0,ci0 -- t l  
sO <= a0 xor b0 xor ci0; -- t2 
coo <= (a0 and b0) or -- t3 
(a0 and ci0) or (b0 and ci0); 

end process add_0; 
end example;  

~ begin 

t l  (RES) 
g(tl) 

t l l  (EXE) 
TRF(t11) 
ASG(tl 1) 

DATA = {(a0,eff_a0,drv_a0,evt__a0), (b0,eff_b0,drv_b0,evt_b0), 
(ci0,eff_ci0,drv_ci0,evt_ci0), (s0,eff_s0,drv_s0,evt_s0), 
(co0,eff_co0,drv_co0,evt_co0) } 

ASG(t l )  = 0 ASG(t l  1) = {drv_s0,drv_co0} TRF(t l )  = 0 
TRF( t l  1) = {(drv_s0,eff_a0 xor eff_b0 xor eff_ci0), (dry ct0,(eff_a0 and eff_b0) or 
(eff_a0 and eff ci0) or (eft_b0 and eff_ci0) } 
g( t l )  = evt._a0 or evt_b0 or evt_ci0 ~(tl 1) = TRUE 
Fig. 1. Petri Net representation, interacting data part (DATA) and attributes derived from 

a VHDL description. 
t l  belongs to the RES set as it represents the wait  on statement, and t l l  represents  
the sequence of  statements executeddur ing an EXECUTE phase. It results from the 
merging of  statements t2 and t3. 
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1.2. Behavior of the Petri Net 

The behavior of the Petri Net reproduces the sequences of states of the VHDL 
program encountered during a simulation. In particular stable states (stabilization of 
the VHDL simulation cycle) and non-stable simulation cycles are represented. 

A state S of the Petri Net is defined as : S = < M ,  D >, where 
�9 M is a marking of the Petri Net : a configuration of tokens in places of the 

Petri Net, indicating the current state of each process and of the scheduler. 
�9 D is a data configuration : the value of each data element in the interacting data 

part. 

The structure of the reachability graph of the Petri Net exhibits the deterministic 
nature of delta-cycles in VHDL'87 semantics : the state reached at the end of an 
execute phase is entirely determined by the stimuli applied to the system and the 
state, at the beginning of this execute phase. 

This final state depends exclusively on the following elements before the resumption 
of processes : 

�9 The state of each process, 
�9 The value of readable internal or output data (current value of variables and 

effective value of internal or output signals), 
�9 The value of some attributes (event of internal or output signals), 
�9 The configuration of stimuli applied to the system (their effective values and 

their event attributes). 

In the general case, the update of effective values and the generation of events depend 
on the sequence of transactions in drivers and on the previous effective value of the 
signal. This implies a global clock that time stamps all transactions in all drivers and 
maintains their consistency. 

I f  we assume that each driver contains one unique future value, and updates of the 
effective values of signals are performed during the update phase following their 
assignment, no global clock is needed : the effective values and events of internal and 
output signals depend only on the execution during the previous delta cycle. This 
assumption restricts the VHDL signal assignment : the clause after is not allowed. 
The absence of a global time excludes the use of wait for statement. 

Thus, we are able to determine a state at the end of an execute phase from the state at 
the end of  the previous execute phase. The evolution of such a system may be 
represented as a set of Boolean equations representing the next state of the system 
from the knowledge of the current state. Such a system of Boolean equations can 
serve as the basis for further analysis of systems, such as Symbolic Model Checking 
or Automata Equivalence. 

This relation between end-of-delta states hides all intermediate states encountered 
during the delta cycle. This reduction of the number of states is beneficial for analyses 
that follows : the transition system is represented with a smaller number of variables 
and the number of iterations of Symbolic Model Checking algorithms is reduced : 
micro-steps inside a VHDL delta cycle are replaced by a unique step representing the 
whole delta cycle. 



333 

The next section presents the rules for building the system of Boolean equations 
from the Petri Net, and this is followed by an example of its applicability to 
Symbolic Model Checking. 

2. Expression of a State in Terms of the Previous One 

This section describes the behavior of the Petri Net as a set of Boolean equations. 
This representation of the transition system, characterizing the deterministic behavior 
of the Petri Net, is directly extracted from the structure of the Petri Net, avoiding an 
-often long and costly in space!- reachability graph construction. This representation 
is applicable to deterministic systems (the Boolean equations are deterministic by 
nature), and the representation of one state per delta cycle is applicable under the 
assumption that events in an update phase come either from changes in the stimuli or 
from changes in the internal or output data generated during the previous execute 
phase. It can be applied to VHDL'87 descriptions from which temporal clauses are 
excluded. 

2.1. Location of Boolean Variables in the Delta Cycle 

2.1.1. Set of Boolean Variables 
From the previous remarks, a state S = <M,D> at the end of the execute phase of a 
delta cycle can be expressed in terms of the state at the end of the execute phase of the 
previous delta cycle. 
The Boolean variables that define a state S are : 

�9 Places Pk of the Petri Net preceding RES transitions (when not in the execute 
phase, all processes are on a wait statement, hence the only potentially marked 
places are the preconditions of RES transitions). Places Pk represent 

breakpoints in processes. 
�9 Information concerning each signal sig : 

�9 effective value : eff_sig, 
�9 driven values of internal or output signals : drv_sig, (in case of multiple 

drivers :drv pi_sig) 
�9 event (transactions if necessary) : evt_sig (trs_sig) , 
�9 driver connection of internal or output resolved signals : 

connex_drv_pi_sig, 
�9 Variables : vark, 

Let V be the set of these Boolean variables. V can be split into disjoint sets, each 
representing a particular category of Boolean variables : P represents breakpoints in 
processes, eff the effective values of signals, dry (or drv_pi ) the driven values, evt 
the events, connex_drv_pi the connection of driver, and var the VHDL variables. 

The value of all variables at instant i can be expressed as a function of the value of 
the variables at instant i-1. 

V Vk ~ V, vk[i] = fk(v[i-1] ~ V) 

fk is a Boolean function extracted from the structure of the Petri Net and the guard and 
data transformations associated with the transitions. 
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2.1.2. Locating the State Relative to the Delta Cycle 
Each simulation cycle is composed of an update phase followed by an execute phase. 
The future state of a system, S[i+l], can be expressed in terms of the current state 
s[i]. 
We could locate S[i] at the end of the ith delta cycle, in other words between the 
execute and update phases. In this representation, events on signals need not be 
represented : they are computed from driven and effective variables in each equation 
where an event is needed. 

Another location of S[i] is at the end of the update phase of the i+lth delta cycle. In 
this case, for a non resolved signal, driven and effective values are equal. Hence, the 
driven values of non resolved signals need not enter into the functions. 

Both approaches for S[i] induce similar systems of equations. However, the location 
of S[i] between update and execute phases seems better for systems that do not not 
contain resolved signals : event generation is computed only once. With the location 
between execute and update phases, event generation is computed in every equation 
where it is necessary. In the case of systems containing resolved signals, the number 
of Boolean variables in the location of S[i] between the execute and update phases is 
smaller. Figure 2 shows the Boolean variables defining S[i] between the update and 
execute phases. The notation introduced in Figure 2 are used throughout the paper. 

We distinguish external variables, representing stimuli, from internal and output 
variables. Internal or output variables have their behavior constrained by the system, 
and their evolution can be expressed by predicates. External variables have no 
predictable evolution, and they appear as non constrained variables. 

i th delta cycle 

4 *"- 
I 

UPDATE EXECUTE 
I 

I modification of I modification of PN 
effective values and marking, variables 
event attributes I and driven values in 
induced by the ~ the ith delta cycle 
klth delta cycle 1 

1 
P[i-1] 
eff_sig[i-1] 

~/ evUsig[i-1] 
var[i-1] 
drv_pi_sig[i- 1 ] 

~onnex_drv pi_sig[i- 1 ] 

i+1 th delta cycle 

UPDATE 

modification of 
effective values and 
event attributes 
induced by the ith 
delta cycle 

I 
EXEOJIE 

I 
I modification of PN 

marking, variables 
i and driven values in 

the i+ l th delta cycle 

[i] 
sig[i] 

vt_sig[i] 
ar[i] 
rv_pi sig[i] 
onnex drv_pi_sig[i] 

Fig. 2. Location of Boolean variables in the VHDL delta cycles. 

Marking of places in the Petri Net and values of data at a given instant can be 
expressed in terms of the same variables at the previous instant. Boolean variables 
that represent driven values of signals and connections of drivers are only needed for 
resolved signals. 
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2.2. Equations of Boolean variables representing a state S 

Four classes of Boolean functions are introduced. They represent the expression of the 
six types of variables defined in section 2.1.1. at instant i+1 in terms of their values 
at instant i. 

The construction of the equation of each variable follows a simple reasoning : We try 
to answer the question "what are the conditions the Petri Net must meet at instant i, 
for  a place (resp. a datum) to be marked (resp. to be true) at instant i+1?". These 
conditions are translated into a Boolean formula that becomes the right hand side of 
the equation characterizing the evolution of the place or datum considered. 

For conciseness, we will only consider the case of non resolved signals. In the 
following four sections, we present the method for generating the Boolean equations 
of variables of type T, eff, var and evt. 

2.2.1. Equations for Preconditions of RES Transitions 
The task for determining the equation for the precondition of a RES transition 
presented and illustrated on an example. 

Let Pk be a place Precondition of a RES transition t k. t k represents a breakpoint of 
the process and the marking of Pk indicates if the process is waiting in the wait  
statement indicated by tk. By construction of the Petri Net, there exists at least one 
sequence of VHDL execution statements leading to the wait statement represented by 
tk. 

The fact that a place Pk is marked in S[i+l] results from two possibilities: 

�9 Pk was already marked in S[i], and either the token didn't leave Pk, or it did 
leave Pk and it returned to Pk, or 

�9 Pk was not marked in S[i], but the execution sequence which was fired during 
the delta cycle leads to the marking of Pk. 

Figure 3 presents a general configuration of Pk and illustrates the construction of its 
equation. 

The marking of place Pk in S[i+l] can be represented as a predicate reproducing the 
alternatives detailed above : 

[ lgk[i+l] = (Pk[i] ^ -1 (g(tk)[i])) v (VSQ (Pinit[i] ^ g(tinit)[i]) ^ g(tinitout)[i]) ) [ (1) 

where SQ = SQ(tinit,tout)reduce d = tinit __, tinitou t __. tout, s.t. Pre(Pinit,tinit ) = 1, 
and tou t = tk 

The first part of the right hand side of the equation corresponds to the previous 
marking of Pk, and the second part corresponds to a disjunction of all sequences 
terminating in tk, with a given initiator Pinit. 

The guard of a RES or EXE transition is represented by a Boolean function of var, 
elf and evt variables. 
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Pi 

ti ~ .  (RES) 
g(ti) 

p i k ( )  

tik ,d .(EXE) 
TRF(fi] 
g(tik). ~ . ~  
ASG(uk) Pk "~  

( REs ) tk.2 ~ 
g(tik) 

p kk/pkl ( 

tkl 2 

PI ~ 

(RES) t l .  
g(tik)l 

(RES~ tj  
g(tj) 

C bpjk 

(EXE)~ tj, 
/ rRF(tjk) 

, / g(tjk) 
_Air" ASG(tjk) 

% T ~ ( t k k )  
/ g(~) 

ASG(tldO 

,_(EXE) 
TRF(tld) 

ASG(tkl) 

Place Pk is precondition of a RES 
transition tk. tk is the output transition 
of sequences SQ(ti,tk) and SQ(tj,tk), and 
the input transition of sequences 
SQ(tk,tk) and SQ(tk,tl). 

Pk is marked in S0+I] if : 

�9 Pk was marked in S[i] and transition tk 
was not firable 

Pk[i] A -~ (g(tk)[i]) 

�9 or, Pk was marked in S[i], t k was 
firable and SQ(tk,t k) was the sequence 
fired during the i+ 1 th delta cycle 

Pk[i] A (g(tk)[i] n g(tkk[i])) 

�9 or, Pk was not marked in S[i] but the 
execution sequence fired during the delta 
cycle leads to the marking of Pk- This 
means that Pi (resp. Pj) was marked, and 
the corresponding sequence was fired : ti 
(resp. tj) was firable and the data values 
were such that g(tik) (resp. g(tjk)) was 
firable. 

(Pi[i] A g(ti)[i] ^ g(tik[i])) v (Pj[i] ^ 
g(tj)[i] A g(tjk[i])) 

Fig. 3. Expression of the marking of place Pk (in black) at instant i+l in terms of 
markings of other places (in grey) and firability of RES transitions at instant i. 

2.2.2. Equa t ions  for  the Effective Value of an In te rna l  or  Output 
Signal  
With the signal assignment restriction in mind, the effective value of an internal or 
output signal in S[i+l] is not modified if no sequence assigning a value to this signal 
was fired during the previous delta cycle. If a sequence modified at least one of the 
signal's drivers, the effective value of the signal is updated with a consistent value 
(the driven value in the case of non resolved signals, and the resolved value in the 
case of resolved signals). In the particular case of non resolved signals, no driven 
value variable is needed because of the definition of S[i]. There may be more than one 
assignment to the given signal in the process pi; this is expressed as a disjunction of 
all sequences modifying the driver in pi. At a given instant, at most one sequence in 
the process pi is firable. 

eff_sig[i+l] = (eff_sig[i] A -- (MsQ c pi Pinit [i] ^ g(tinit )[i] ^ g(tinitout)[i])) [ (2) 

v (VSQ ~ pi trfdrv-sig'tinitout ̂  Pinit [i] A g(tinit)[i] A g(tinitout)[i] ) I 
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where SQ = SQ(tinit,tout)reduced and Pinit is a place in process pi, such that 

Pre (tinit,Pinit) = 1, and drv_sig ~ ASG(tinitout). 

The first part of the right hand side of the equation stipulates that no sequence 
modifying drv_sig was fired, and the second part corresponds to the firing of one 
sequence modifying drv_sig. In this last case the new value assigned to the driver, 
t r fdrv_s ig , t in i tout ,  is the new value for eff_sig after the update phase. 
trfdrv_sig,tinitout is a Boolean function of var, effand evt variables representing the 
assignment of the driven value of signal sig in the sequence SQ. 

2.2,3. Equat ions for the Value of a Variable 
The equation for a variable var k is similar to that for the effective value of a non 
resolved signal, except that "eff_sig" is replaced by "vark" in equation 2. 

2.2.4. Equat ions for the Value of an Event of an In ternal  or  Output  

S i g n a l  
With our assignment restriction (no after clauses allowed in signal assignment), the 
occurrence of an event on an internal or output signal in S[i+l] implies that one of 
the processes assigning this signal has resumed in the previous delta cycle, and the 
assigned value was different from the effective value. 

In the case of non-resolved signals, the expression of an event is straightforward : it 
is an exclusive OR of its driven value at the end of the i+lth delta cycle and its 
previous effective value. 

evt_sig[i+l] = drv_sig[i+l] ~ eff_sig[i] 

The driven and effective values are equal for non resolved signals, thus drv_sig[i+l] = 
eff_sig[i+l]. The expression of evt_sig[i+l] can be rewritten as : 

I evt_sig[i+l] = VSQ c pi (Pinit [i] ^ g(tinitout)[i] ^ (trfdrv-sig,tinitout @ ] (3) 
eff_sig[i])), I 

where SQ = SQ(tinit,tout)reduced and Pinit is a place in process pi, such that 

Pre (tinit,Pinit) = 1, and drv_sig ~ ASG(tinitout). 

The fight hand side of the equation indicates that an event occurs only if a sequence 
modifying the driven value was fired, and this driven value, represented by 
trfdrv_sig,tinitout, is different from the effective value of the signal. The disjunction 
considers all sequences in process pi modifying the driver of the given signal. 

2.3. System of  Boolean Equat ions 

We have shown in section 2.2. that each Boolean variable of a state S[i+l] can be 
expressed as a predicate of the variables in S[i]. This model is applicable to VHDL 
descriptions where temporal information is excluded. 

The size of the transition system is known from the VHDL description : if signals 
are non resolved, a system containing S stimuli, I internal signals, O output signals, 
V variables and W wait statements will induce a system of (W + 2(I + O) + V) 
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Boolean equations with 2(W + 2(S + I+ O) + V) Boolean variables. Each Boolean 
variable is duplicated in order to distinguish the current state from the next one. This 
is an upper bound : we may not represent the event variable of non assigned signals, 
or the Pvariables of processes containing a unique wait statement. 

In the case of resolved signals, two sets of variables are added as they are necessary to 
express event and effective values : the driven values for each signal and for each 
assigning process, and the driver connections for each driver of each resolved signal. 

This system of equations represents the functional transition system of the VHDL 
program. The transition relation is expressed as R = {vj[i+l] = fj(vl[i],...vn[i]) }, and 
Symbolic Model Checking algorithms can be applied [McMillan93]. As an example, 
we propose to study the stability of simulation cycles under the assumption of 
stability of stimuli. 

3. Example : Characterizing the Stability of a Simulation 
Cycle 

3.1. VHDL Simulation and Stabilization Points. 

A VHDL simulation is composed of simulation phases taking place at real-time 
instants; themselves are composed of a sequence of delta cycles taking no real-time to 
execute. A simulation phase ends when a stable state is reached : only a real time 
increment will force the system to evolve, thus inducing a new simulation phase. 

It may happen that a simulation phase never ends, this means that the system never 
encounters a stable state in a given simulation cycle. Two kinds of non stabilization 
can occur : a process never ends its execution (never-ending delta cycle) or two or 
more processes resume each other in the same simulation phase (never-ending 
simulation phase). 

These non stabilizations are difficult to detect and to correct. They are generally 
detected while a simulation is performed : a simulation cycle never stops and as a 
consequence, expected results are not obtained. The detection of a never-ending delta 
cycle is simpler as one has only to insure that each loop in each process terminates. 
Never-ending simulation phases may imply more than one process, and the absence 
of simulation results make the detection of dependency cycles difficult. The only 
prevention from infinite loops proposed by some simulators is the imposition of a 
maximum number of delta cycles per simulation phase. When this maximum number 
of delta cycles is reached in a given simulation phase, the simulation halts. 

Classical examples of such non stabilizing systems are RS flip-flops or memory 
elements with a bad initialization. For elements known to be unstable, an assert 
VHDL statement can be used to warn of a bad configuration of signal values when it 
occurs in simulation. This prevention is only possible when the user is aware of non 
stable elements, and the verification is limited to the simulation. The difficulty 
comes from the fact that a system may present non stabilizations which are not 
anticipated. 
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Synchronous designs adopting strict description rules avoid this problem [DJ92]. But 
in a general case, [VHDL'87] does not prevent from these never-ending loops. 

Conditions for never ending simulation cycle, provided stimuli do not change during 
the cycle, are of two types : the system structure and signal values have to be taken 
into account. The system must contain cyclic processes dependencies with no timing 
clauses. This condition however is not sufficient. In some cases, a cylic processes 
dependency will never oscillate. In other cases, it will oscillate if certain signal values 
are present. And then there are also cases where it will oscillate regardless of the 
signal values. 

The next section proposes the use of Symbolic Model Checking techniques to 
characterize systems presenting these never-ending simulation cycles. 

3.2. Detection of non Stabilizing Simulation Phases using the 
System of Boolean Equations. 

The system of Boolean equations developed in section 2 can help detect never-ending 
simulations. The stabilization of a simulation cycle corresponds to a termination 
property that can be expressed in CTL and checked by Symbolic Model Checking 
techniques [McMillan93] : 

Let T be the termination property to be verified : T is an atomic property that is true 
in the terminal states. The detection of sequences that always stabilize comes down to 
the computation of the CTL formula AF(T). This computation returns all states 
from which all outgoing paths contain a state where T is true. The set of states 
inducing a never-ending simulation cycle are the result of the negation of AF(T) : 
EG(-~T). 

In the system of Boolean equations, a stable state is characterized by 

[ r = ( -~Vs i~  I u O ev t s ig  ) I 

Thus the characterization of never-ending VHDL simulations comes down to the 
computation of 

[ EG(Vsi~ e I u O evt_sig ) I 

where EG(p) is the greatest fixed point of the iterative equation : 

[ iter[i+l] = iter[i] A Bv' (R ^ iter[i](v <_ v')) I 

iter[i] is the result of the equation at the ith iteration, R is the symbolic transition 
relation (it is a conjunction of all Boolean equations obtained as presented in section 
2.), 3v' is the existential quantification of primed variables, and (v <-v') indicates that 
ordinary variables are replaced by primed variables in the boolean function. 

If the intersection of the set of bad states with the set of reachable states is non 
empty, the resulting set contains the set of reachable states from which a non 
stabilization occurs. 
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3.3. Example : a bus arbiter with combinatorial loops 

The example used for demonstrating our approach is composed of n cells of a bus 
arbiter proposed by [Mc Millan 93]. A VHDL description of this device is described 
in [Clarke94]. 

The VHDL description of one cell of the bus arbiter is composed of three processes. 
The interconnection of cells induces cyclic dependencies which may drive the system 
into a never-ending simulation. 

Questions we want to answer are : Does such a system present never-ending 
simulation phases under the assumption that stimuli do not change during the 
simulation phase ? If so, can we characterize the states that induce this non stability ? 

The CTL property to verify is : EG(Vsig ~ I evt_sig ) which returns all states from 

which some outgoing paths will never stabilize. 

Experimental Results 
All experiments have been performed on a Sun SPARCStation 10 with 32Mbytes of 
memory. We used the BDD package supplied by [Long] to manipulate Boolean 
functions. 

nbr of nbr of (current) 
cells variables : 

total (wait,evt,eff) 

2 44 (7,18,19) 
3 63 (10,26,27) 
4 80 (13,30,37) 
5 104 (16,42,46) 
6 120 (19,50,51) 

Equation system 

(CPU time in s) 

Image 
Computation 
(CPU time in s) 

EG Computation 
(CPU time in s) 

0.1 6.5 1.3 
0.2 36.9 3.0 
0.3 158 6.7 
0.5 
0.7 

323 15.7 
2709 150 

The set of states inducing never-stabilization is haracterized. Its intersection with the 
set of reachable states returns an empty set : the non stabilizing sequences are not 
reachable from the initial state. Other initilisations may have induce non 
stabilization. The performance results show that : 
1) The computation of the system of Boolean equations from the Petri Net does not 
take very much time and grows quite linearly with the size of the system. 

2) The longuest part of the time is spent during the image computation. Once this 
image built, the computation of the bad states takes a few seconds because the 
intermediate results from an iterative equation of the EG computation are constrainted 
by the image set. 

4. Conc lus ion  and Future  Work  

In this paper, we have presented a method to extract a symbolic transition system 
from a restricted VHDL description to automate Symbolic Model Checking. The 
symbolic transition system is expressed as a system of Boolean equations that 
characterizes the behavior of deterministic systems. The system of Boolean equations 
is derived from the structure of an intermediate Petri Net formalism. All intermediate 
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states encountered in a VHDL simulation are not represented : only one state per delta 
cycle is taken into account. This grouping of states in a delta cycle speeds up the 
analysis methods by abstracting the behavior of the system. This abstraction is only 
possible for VHDL descriptions without temporal clauses. Major principles of the 
construction of the system of Boolean equations from the Petri Net are presented in 
this paper. This Boolean system can then be used for Symbolic Model Checking or 
Automata Equivalence. An example of Temporal Logic Property verification is given 
: the stabilization of VHDL simulation cycles under the stability of stimuli is 
expressed as the termination property of a system and verified by Symbolic Model 
Checking algorithms. Experimental results scaling up to a system of 100 variables 
show the applicability of such an approach. 

It is our intention to extend this approach to the verification of classical temporal 
logic properties on larger systems. Future directions include : 

1) The evaluation of state encoding : the state encoding presented here is not fully 
compact : if a process contains several (say q) wait statements, each wait 
statement will be encoded on a Boolean variable. As each process is an 
automaton, the state of each process could be represented with log2q Boolean 
variables. The drawbacks of this compact representation are the management of 
non relevant combinations and the resulting increase in complexity of the 
Boolean equations. Tests will have to be performed to evaluate the benefits of 
a compact encoding of states. 

2) The evaluation of Symbolic Model Checking algorithms on the system of 
Boolean equations without building the image of the system. This implies a 
caracterisation of the behaviour of stimuli, that may only change at 
stabilisation points. The equations of these stimuli will be added to the 
relation. 

3) The study of good heuristics for variable ordering in BDDs by examining the 
variable dependencies between the left and right parts of equations. An 
intuitive approach consists of pairing each current variable with its next state 
representation. This could be extended to other dependencies. 
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