
A Symbolic Relation for a Subset

Descriptions and its Application

Model Checking

of VHDL'87

to Symbolic

Emmanuelle Encrenaz

Laboratoire MASI / IBP,
Universit6 Pierre et Made Curie,

4 place Jussieu,
75252 Pads Cedex 05, FRANCE

e-mail : Emmanuelle.Encrenaz@masi.ibp.fr

Abstract
This paper presents the main principles for building a symbolic transition system from a
description written in a subset of VHDL'87 (temporal information is excluded and objects
are restricted to bit, bit_vector and Boolean types). This transition system is used for
formal verification of the VHDL description. It consist of a system of Boolean equations
indicating the next state of the system in terms of its current state. It is automatically
generated from an intermediate representation of the VHDL description by means of a Petri
Net. The deterministic nature of VHDL 87 and the exclusion of temporal elements in the
description permit us to abstract the behavior of the system : only one state per delta cycle
is represented instead of all intermediate states encountered in simulation. This abstraction
reduces the size of the transition system and the cost of subsequent analysis. The
construction of the system of Boolean equations from the Petri Net is presented first, and
then an example of verification of a temporal logic property illustrates its use for
Symbolic Model Checking. Experimental results are given which demonstrate the
feasibility of this approach.

1. Introduction

The increasing complexity of hardware systems makes their design verification
difficult by classical simulation techniques. Formal verification techniques have
appeared as a complementary verification method of hardware systems. Their links
with VHDL began at the end of the 80's, and since much research has been done in
this area. Different formal semantics of VHDL'87 [VHDL'87] were proposed to apply
automatic formal verification : theorem proving techniques [VanTasse193] [BPS92],
stream functions [BS-FD-K94], process algebra [BSCPB94], structural Petri Nets
analysis [OC93], Symbolic Model Checking [DB93] DB95] [DH95a]...

Symbolic Model Checking techniques require the description of the behavior of the
system by means of a transition system determining the states of the system and the
relations between them. Recent trends of symbolic representation of transition
systems by means of BDDs [Bryant86] have established the viability of symbolic
Model Checking for real hardware systems [BCMDH90] [McMillan93]. Our aim is to
further the link between VHDL descriptions and Symbolic Model Checking
techniques. This requires the definition of a formal model representing the VHDL

329

system, from which a symbolic transition system is extracted. Once this transition
system is obtained, classical Symbolic Model Checking algorithms can be applied
[McMillan93].

Building the transition system characterizing the behavior of the system is a difficult
task : the building mechanism is simple but the explicit representation of states and
relations induces a combinatorial explosion. The time needed to build the explicit
transition system and the space to store it become prohibitive. A symbolic
representation of the transition system and a symbolic simulation engine overcome
these complexities. This approach is well suited to non deterministic systems (such
as VHDL'93 where the use of shared variables introduces non determinism in the
simulation cycle).

The deterministic nature of VHDL'87 can be exploited to directly obtain the symbolic
transition system from the structure of the formal model without symbolically
simulating it. This approach is the one adopted by [DH95b] who build a detailed
symbolic transition relation representing the behavior of the VHDL system in all the
intermediate states of the simulation. Their approach is applicable to a fairly large
subset of VHDL (all finite types and timing constructs are allowed in their
descriptions). [DB95] also define a semantics, based on abstract machines, that
represents the behavior of a subset of VHDL (timing constructs are excluded but all
finite types are treated). The symbolic transition system built in [DB95] is coarser
than the one in [DH95b] as the only states considered are the ones at the end of each
delta cycle.

We present a way to obtain a symbolic transition system from a restricted VHDL
description (timing constructs are excluded and objects are of bit, bit-vector and
Boolean types). The transition relation is expressed as a system of Boolean equations,
each of which is built from the structure of an intermediate Petri Net. The level of
abstraction is similar to [DB95] : only states at the end of each delta cycles are
considered. We illustrate the use of the symbolic transition system by presenting a
means of detecting never-ending simulation cycles in a VHDL description. With
present simulation tools, these are difficult to detect and to correct. Experimental
results of symbolic model checking show the relevance and feasibility of our
approach.

This paper is organized as follows : Section 1 briefly presents the structure of the
Petri Net derived from a VHDL description and shows that, in our case, the state at
the end of a delta cycle depends only on the state at the end of the previous delta cycle
and the configuration of stimuli applied. Thus, the behavior of the system can be
abstracted to end-of-delta states only. Section 2 presents the major rules for building a
symbolic transition system from an intermediate Petri Net. Section 3 presents an
application of this system of Boolean equations to symbolic model checking. The
requirement that a VHDL simulation stabilizes is represented as a temporal logic
formula to be verified. Verification of this property is presented on a scalable example
with experimental results. Section 4 concludes and suggests some directions for
future work.

330

1. A Formal Model for a VHDL Description

VHDL semantics is informaly expressed by means of its simulation engine. One has
to develop a formal model to reason about a VHDL description. We chose the Petri
Net formalism as it supports non determinism that will be necessary for VHDL'93,
but it can also represent deterministic systems, such as VHDL'87. Various techniques
of construction of the transition system representing all behaviors of the modeled
system can be applied to this formalism. An overview of Petri Nets can be found in
[Murata89].

A VHDL description is automatically translated into a Petri Net [BEC94]. The Petri
Net represents the control structure of VHDL processes and their synchronization
reproducing the VHDL simulation semantics. An external data part of the Petri Net
contains the data modified by the firing of transitions in the control part. The
construction and behavior of the Petri Net are presented in [EB95]. They are briefly
reviewed in the following section.

1.1. Petri Net Features

The Petri Net is composed of subnets, reproducing the structure of each VHDL
process and their synchronization according to VHDL'87 semantics. Each process is
composed of places and transitions. Places refer to the states of the process and
transitions are fired to pass from one state to the next, representing the VHDL
statement executed between these two states. Connections between places and
transitions are expressed by Pre and Post matrices. Pre(t,p) = 1 indicates an arc from p
to t, and Post(t,p) = 1 indicates an arc from t to p. Transitions modeling processes are
split into two disjoint sets. Those modeling VHDL wait statements belong to the
I ~ S set, they are only firable during the resumption phase of VHDL delta cycles. All
other VHDL statements are represented by EXE transitions, which are firable during
the execution phase of VHDL delta cycles.

A global scheduler emulates the delta cycle functioning of VHDL simulation by
decomposing the delta cycle into RESUME, EXECUTE and UPDATE phases which
provide synchronization barriers for the processes.

This Petri Net interacts with an external data part that represents the VHDL data
objects. We consider variables, constant and signals : effective, driven, resolved,
driver connection values and signal attributes (event and transaction). These objects
are restricted to bit, bit_vector and Boolean types.

Interactions between the control part and the data part occur while transitions are fired.
These interactions are represented by means of attributes associated to each transition,
t, of the Petri Net :

�9 g(t) is the guard of transition t : t may fire only if its guard is true. g(t) is a
Boolean function of data contained in the data part.

�9 ASG(t) is the set of data modified while firing transition t.
�9 TRF(t) is the set of transformations applied to the data in ASG(t). TRF(t) is a

set of couples (d,trfd,t) where d ~ ASG(t) and trfd, t is a Boolean function of
data in the data part.

331

In VHDL'87 , all statements enclosed between two wait statements in a process are
a tomic : instead of being represented by a sequence of EXE transitions, each
corresponding to a V H D L statement, they can be represented by a unique EXE
transition grouping all the data transformations.

We characterize SQ(tinit,tout), a sequence of EXE transitions between two RES

transitions of a given process :

SQ(tinit , tout) = tinit -~ t a ~ tb --* tc ~ ...tn ~ tout
where tinit �9 RES, tout �9 RES, and t a tn �9 EXE.

This sequence can be reduced to SQ(tinit,tout)reduced = tinit ~ tinitout ~ tout
where tinitout �9 EXE, and

�9 ASG(tinitout) = ASG(ta) u ASG(tb) u ... u ASG(tn)
~ = g(ta) A g(tb) ... A g(tn)
oTRF(tinitout) = TRF(ta) ~" TRF(tb) ~" ... ~" TRF(tn)

"~"" means "fol lowed by" : the data modif icat ions of t a are combined
appropriately with those of tb, etc...

Reduction rules are defined in [EB95]. The example on Figure 1 illustrates the Petri
Net structure and the data formalism introduced here.

e n t i t y add_ lb is
p o r t (a0,b0,ci0 : in bit;

s0,co0: out bit)
end add_l;
a r c h i t e c t u r e example o f add_lb is
begin
add__O : process

beg in
wait on a0,b0,ci0 -- t l
sO <= a0 xor b0 xor ci0; -- t2
coo <= (a0 and b0) or -- t3
(a0 and ci0) or (b0 and ci0);

end process add_0;
end example;

~ begin

t l (RES)
g(tl)

t l l (EXE)
TRF(t11)
ASG(tl 1)

DATA = {(a0,eff_a0,drv_a0,evt__a0), (b0,eff_b0,drv_b0,evt_b0),
(ci0,eff_ci0,drv_ci0,evt_ci0), (s0,eff_s0,drv_s0,evt_s0),
(co0,eff_co0,drv_co0,evt_co0) }

ASG(t l) = 0 ASG(t l 1) = {drv_s0,drv_co0} TRF(t l) = 0
TRF(t l 1) = {(drv_s0,eff_a0 xor eff_b0 xor eff_ci0), (dry ct0,(eff_a0 and eff_b0) or
(eff_a0 and eff ci0) or (eft_b0 and eff_ci0) }
g(t l) = evt._a0 or evt_b0 or evt_ci0 ~(tl 1) = TRUE
Fig. 1. Petri Net representation, interacting data part (DATA) and attributes derived from

a VHDL description.
t l belongs to the RES set as it represents the wait on statement, and t l l represents
the sequence of statements executeddur ing an EXECUTE phase. It results from the
merging of statements t2 and t3.

332

1.2. Behavior of the Petri Net

The behavior of the Petri Net reproduces the sequences of states of the VHDL
program encountered during a simulation. In particular stable states (stabilization of
the VHDL simulation cycle) and non-stable simulation cycles are represented.

A state S of the Petri Net is defined as : S = < M , D >, where
�9 M is a marking of the Petri Net : a configuration of tokens in places of the

Petri Net, indicating the current state of each process and of the scheduler.
�9 D is a data configuration : the value of each data element in the interacting data

part.

The structure of the reachability graph of the Petri Net exhibits the deterministic
nature of delta-cycles in VHDL'87 semantics : the state reached at the end of an
execute phase is entirely determined by the stimuli applied to the system and the
state, at the beginning of this execute phase.

This final state depends exclusively on the following elements before the resumption
of processes :

�9 The state of each process,
�9 The value of readable internal or output data (current value of variables and

effective value of internal or output signals),
�9 The value of some attributes (event of internal or output signals),
�9 The configuration of stimuli applied to the system (their effective values and

their event attributes).

In the general case, the update of effective values and the generation of events depend
on the sequence of transactions in drivers and on the previous effective value of the
signal. This implies a global clock that time stamps all transactions in all drivers and
maintains their consistency.

I f we assume that each driver contains one unique future value, and updates of the
effective values of signals are performed during the update phase following their
assignment, no global clock is needed : the effective values and events of internal and
output signals depend only on the execution during the previous delta cycle. This
assumption restricts the VHDL signal assignment : the clause after is not allowed.
The absence of a global time excludes the use of wait for statement.

Thus, we are able to determine a state at the end of an execute phase from the state at
the end of the previous execute phase. The evolution of such a system may be
represented as a set of Boolean equations representing the next state of the system
from the knowledge of the current state. Such a system of Boolean equations can
serve as the basis for further analysis of systems, such as Symbolic Model Checking
or Automata Equivalence.

This relation between end-of-delta states hides all intermediate states encountered
during the delta cycle. This reduction of the number of states is beneficial for analyses
that follows : the transition system is represented with a smaller number of variables
and the number of iterations of Symbolic Model Checking algorithms is reduced :
micro-steps inside a VHDL delta cycle are replaced by a unique step representing the
whole delta cycle.

333

The next section presents the rules for building the system of Boolean equations
from the Petri Net, and this is followed by an example of its applicability to
Symbolic Model Checking.

2. Expression of a State in Terms of the Previous One

This section describes the behavior of the Petri Net as a set of Boolean equations.
This representation of the transition system, characterizing the deterministic behavior
of the Petri Net, is directly extracted from the structure of the Petri Net, avoiding an
-often long and costly in space!- reachability graph construction. This representation
is applicable to deterministic systems (the Boolean equations are deterministic by
nature), and the representation of one state per delta cycle is applicable under the
assumption that events in an update phase come either from changes in the stimuli or
from changes in the internal or output data generated during the previous execute
phase. It can be applied to VHDL'87 descriptions from which temporal clauses are
excluded.

2.1. Location of Boolean Variables in the Delta Cycle

2.1.1. Set of Boolean Variables
From the previous remarks, a state S = <M,D> at the end of the execute phase of a
delta cycle can be expressed in terms of the state at the end of the execute phase of the
previous delta cycle.
The Boolean variables that define a state S are :

�9 Places Pk of the Petri Net preceding RES transitions (when not in the execute
phase, all processes are on a wait statement, hence the only potentially marked
places are the preconditions of RES transitions). Places Pk represent

breakpoints in processes.
�9 Information concerning each signal sig :

�9 effective value : eff_sig,
�9 driven values of internal or output signals : drv_sig, (in case of multiple

drivers :drv pi_sig)
�9 event (transactions if necessary) : evt_sig (trs_sig) ,
�9 driver connection of internal or output resolved signals :

connex_drv_pi_sig,
�9 Variables : vark,

Let V be the set of these Boolean variables. V can be split into disjoint sets, each
representing a particular category of Boolean variables : P represents breakpoints in
processes, eff the effective values of signals, dry (or drv_pi) the driven values, evt
the events, connex_drv_pi the connection of driver, and var the VHDL variables.

The value of all variables at instant i can be expressed as a function of the value of
the variables at instant i-1.

V Vk ~ V, vk[i] = fk(v[i-1] ~ V)

fk is a Boolean function extracted from the structure of the Petri Net and the guard and
data transformations associated with the transitions.

3 3 4

2.1.2. Locating the State Relative to the Delta Cycle
Each simulation cycle is composed of an update phase followed by an execute phase.
The future state of a system, S[i+l], can be expressed in terms of the current state
s[i].
We could locate S[i] at the end of the ith delta cycle, in other words between the
execute and update phases. In this representation, events on signals need not be
represented : they are computed from driven and effective variables in each equation
where an event is needed.

Another location of S[i] is at the end of the update phase of the i+lth delta cycle. In
this case, for a non resolved signal, driven and effective values are equal. Hence, the
driven values of non resolved signals need not enter into the functions.

Both approaches for S[i] induce similar systems of equations. However, the location
of S[i] between update and execute phases seems better for systems that do not not
contain resolved signals : event generation is computed only once. With the location
between execute and update phases, event generation is computed in every equation
where it is necessary. In the case of systems containing resolved signals, the number
of Boolean variables in the location of S[i] between the execute and update phases is
smaller. Figure 2 shows the Boolean variables defining S[i] between the update and
execute phases. The notation introduced in Figure 2 are used throughout the paper.

We distinguish external variables, representing stimuli, from internal and output
variables. Internal or output variables have their behavior constrained by the system,
and their evolution can be expressed by predicates. External variables have no
predictable evolution, and they appear as non constrained variables.

i th delta cycle

4 *"-
I

UPDATE EXECUTE
I

I modification of I modification of PN
effective values and marking, variables
event attributes I and driven values in
induced by the ~ the ith delta cycle
klth delta cycle 1

1
P[i-1]
eff_sig[i-1]

~/ evUsig[i-1]
var[i-1]
drv_pi_sig[i- 1]

~onnex_drv pi_sig[i- 1]

i+1 th delta cycle

UPDATE

modification of
effective values and
event attributes
induced by the ith
delta cycle

I
EXEOJIE

I
I modification of PN

marking, variables
i and driven values in

the i+ l th delta cycle

[i]
sig[i]

vt_sig[i]
ar[i]
rv_pi sig[i]
onnex drv_pi_sig[i]

Fig. 2. Location of Boolean variables in the VHDL delta cycles.

Marking of places in the Petri Net and values of data at a given instant can be
expressed in terms of the same variables at the previous instant. Boolean variables
that represent driven values of signals and connections of drivers are only needed for
resolved signals.

335

2.2. Equations of Boolean variables representing a state S

Four classes of Boolean functions are introduced. They represent the expression of the
six types of variables defined in section 2.1.1. at instant i+1 in terms of their values
at instant i.

The construction of the equation of each variable follows a simple reasoning : We try
to answer the question "what are the conditions the Petri Net must meet at instant i,
for a place (resp. a datum) to be marked (resp. to be true) at instant i+1?". These
conditions are translated into a Boolean formula that becomes the right hand side of
the equation characterizing the evolution of the place or datum considered.

For conciseness, we will only consider the case of non resolved signals. In the
following four sections, we present the method for generating the Boolean equations
of variables of type T, eff, var and evt.

2.2.1. Equations for Preconditions of RES Transitions
The task for determining the equation for the precondition of a RES transition
presented and illustrated on an example.

Let Pk be a place Precondition of a RES transition t k. t k represents a breakpoint of
the process and the marking of Pk indicates if the process is waiting in the wait
statement indicated by tk. By construction of the Petri Net, there exists at least one
sequence of VHDL execution statements leading to the wait statement represented by
tk.

The fact that a place Pk is marked in S[i+l] results from two possibilities:

�9 Pk was already marked in S[i], and either the token didn't leave Pk, or it did
leave Pk and it returned to Pk, or

�9 Pk was not marked in S[i], but the execution sequence which was fired during
the delta cycle leads to the marking of Pk.

Figure 3 presents a general configuration of Pk and illustrates the construction of its
equation.

The marking of place Pk in S[i+l] can be represented as a predicate reproducing the
alternatives detailed above :

[lgk[i+l] = (Pk[i] ^ -1 (g(tk)[i])) v (VSQ (Pinit[i] ^ g(tinit)[i]) ^ g(tinitout)[i])) [(1)

where SQ = SQ(tinit,tout)reduce d = tinit __, tinitou t __. tout, s.t. Pre(Pinit,tinit) = 1,
and tou t = tk

The first part of the right hand side of the equation corresponds to the previous
marking of Pk, and the second part corresponds to a disjunction of all sequences
terminating in tk, with a given initiator Pinit.

The guard of a RES or EXE transition is represented by a Boolean function of var,
elf and evt variables.

336

Pi

ti ~ . (RES)
g(ti)

p i k ()

tik ,d .(EXE)
TRF(fi]
g(tik). ~ . ~
ASG(uk) Pk "~

(REs) tk.2 ~
g(tik)

p kk/pkl (

tkl 2

PI ~

(RES) t l .
g(tik)l

(RES~ tj
g(tj)

C bpjk

(EXE)~ tj,
/ rRF(tjk)

, / g(tjk)
_Air" ASG(tjk)

% T ~ (t k k)
/ g(~)

ASG(tldO

,_(EXE)
TRF(tld)

ASG(tkl)

Place Pk is precondition of a RES
transition tk. tk is the output transition
of sequences SQ(ti,tk) and SQ(tj,tk), and
the input transition of sequences
SQ(tk,tk) and SQ(tk,tl).

Pk is marked in S0+I] if :

�9 Pk was marked in S[i] and transition tk
was not firable

Pk[i] A -~ (g(tk)[i])

�9 or, Pk was marked in S[i], t k was
firable and SQ(tk,t k) was the sequence
fired during the i+ 1 th delta cycle

Pk[i] A (g(tk)[i] n g(tkk[i]))

�9 or, Pk was not marked in S[i] but the
execution sequence fired during the delta
cycle leads to the marking of Pk- This
means that Pi (resp. Pj) was marked, and
the corresponding sequence was fired : ti
(resp. tj) was firable and the data values
were such that g(tik) (resp. g(tjk)) was
firable.

(Pi[i] A g(ti)[i] ^ g(tik[i])) v (Pj[i] ^
g(tj)[i] A g(tjk[i]))

Fig. 3. Expression of the marking of place Pk (in black) at instant i+l in terms of
markings of other places (in grey) and firability of RES transitions at instant i.

2.2.2. Equa t ions for the Effective Value of an In te rna l or Output
Signal
With the signal assignment restriction in mind, the effective value of an internal or
output signal in S[i+l] is not modified if no sequence assigning a value to this signal
was fired during the previous delta cycle. If a sequence modified at least one of the
signal's drivers, the effective value of the signal is updated with a consistent value
(the driven value in the case of non resolved signals, and the resolved value in the
case of resolved signals). In the particular case of non resolved signals, no driven
value variable is needed because of the definition of S[i]. There may be more than one
assignment to the given signal in the process pi; this is expressed as a disjunction of
all sequences modifying the driver in pi. At a given instant, at most one sequence in
the process pi is firable.

eff_sig[i+l] = (eff_sig[i] A -- (MsQ c pi Pinit [i] ^ g(tinit)[i] ^ g(tinitout)[i])) [(2)

v (VSQ ~ pi trfdrv-sig'tinitout ̂ Pinit [i] A g(tinit)[i] A g(tinitout)[i]) I

337

where SQ = SQ(tinit,tout)reduced and Pinit is a place in process pi, such that

Pre (tinit,Pinit) = 1, and drv_sig ~ ASG(tinitout).

The first part of the right hand side of the equation stipulates that no sequence
modifying drv_sig was fired, and the second part corresponds to the firing of one
sequence modifying drv_sig. In this last case the new value assigned to the driver,
t r fdrv_s ig , t in i tout , is the new value for eff_sig after the update phase.
trfdrv_sig,tinitout is a Boolean function of var, effand evt variables representing the
assignment of the driven value of signal sig in the sequence SQ.

2.2,3. Equat ions for the Value of a Variable
The equation for a variable var k is similar to that for the effective value of a non
resolved signal, except that "eff_sig" is replaced by "vark" in equation 2.

2.2.4. Equat ions for the Value of an Event of an In ternal or Output

S i g n a l
With our assignment restriction (no after clauses allowed in signal assignment), the
occurrence of an event on an internal or output signal in S[i+l] implies that one of
the processes assigning this signal has resumed in the previous delta cycle, and the
assigned value was different from the effective value.

In the case of non-resolved signals, the expression of an event is straightforward : it
is an exclusive OR of its driven value at the end of the i+lth delta cycle and its
previous effective value.

evt_sig[i+l] = drv_sig[i+l] ~ eff_sig[i]

The driven and effective values are equal for non resolved signals, thus drv_sig[i+l] =
eff_sig[i+l]. The expression of evt_sig[i+l] can be rewritten as :

I evt_sig[i+l] = VSQ c pi (Pinit [i] ^ g(tinitout)[i] ^ (trfdrv-sig,tinitout @] (3)
eff_sig[i])), I

where SQ = SQ(tinit,tout)reduced and Pinit is a place in process pi, such that

Pre (tinit,Pinit) = 1, and drv_sig ~ ASG(tinitout).

The fight hand side of the equation indicates that an event occurs only if a sequence
modifying the driven value was fired, and this driven value, represented by
trfdrv_sig,tinitout, is different from the effective value of the signal. The disjunction
considers all sequences in process pi modifying the driver of the given signal.

2.3. System of Boolean Equat ions

We have shown in section 2.2. that each Boolean variable of a state S[i+l] can be
expressed as a predicate of the variables in S[i]. This model is applicable to VHDL
descriptions where temporal information is excluded.

The size of the transition system is known from the VHDL description : if signals
are non resolved, a system containing S stimuli, I internal signals, O output signals,
V variables and W wait statements will induce a system of (W + 2(I + O) + V)

338

Boolean equations with 2(W + 2(S + I+ O) + V) Boolean variables. Each Boolean
variable is duplicated in order to distinguish the current state from the next one. This
is an upper bound : we may not represent the event variable of non assigned signals,
or the Pvariables of processes containing a unique wait statement.

In the case of resolved signals, two sets of variables are added as they are necessary to
express event and effective values : the driven values for each signal and for each
assigning process, and the driver connections for each driver of each resolved signal.

This system of equations represents the functional transition system of the VHDL
program. The transition relation is expressed as R = {vj[i+l] = fj(vl[i],...vn[i]) }, and
Symbolic Model Checking algorithms can be applied [McMillan93]. As an example,
we propose to study the stability of simulation cycles under the assumption of
stability of stimuli.

3. Example : Characterizing the Stability of a Simulation
Cycle

3.1. VHDL Simulation and Stabilization Points.

A VHDL simulation is composed of simulation phases taking place at real-time
instants; themselves are composed of a sequence of delta cycles taking no real-time to
execute. A simulation phase ends when a stable state is reached : only a real time
increment will force the system to evolve, thus inducing a new simulation phase.

It may happen that a simulation phase never ends, this means that the system never
encounters a stable state in a given simulation cycle. Two kinds of non stabilization
can occur : a process never ends its execution (never-ending delta cycle) or two or
more processes resume each other in the same simulation phase (never-ending
simulation phase).

These non stabilizations are difficult to detect and to correct. They are generally
detected while a simulation is performed : a simulation cycle never stops and as a
consequence, expected results are not obtained. The detection of a never-ending delta
cycle is simpler as one has only to insure that each loop in each process terminates.
Never-ending simulation phases may imply more than one process, and the absence
of simulation results make the detection of dependency cycles difficult. The only
prevention from infinite loops proposed by some simulators is the imposition of a
maximum number of delta cycles per simulation phase. When this maximum number
of delta cycles is reached in a given simulation phase, the simulation halts.

Classical examples of such non stabilizing systems are RS flip-flops or memory
elements with a bad initialization. For elements known to be unstable, an assert
VHDL statement can be used to warn of a bad configuration of signal values when it
occurs in simulation. This prevention is only possible when the user is aware of non
stable elements, and the verification is limited to the simulation. The difficulty
comes from the fact that a system may present non stabilizations which are not
anticipated.

339

Synchronous designs adopting strict description rules avoid this problem [DJ92]. But
in a general case, [VHDL'87] does not prevent from these never-ending loops.

Conditions for never ending simulation cycle, provided stimuli do not change during
the cycle, are of two types : the system structure and signal values have to be taken
into account. The system must contain cyclic processes dependencies with no timing
clauses. This condition however is not sufficient. In some cases, a cylic processes
dependency will never oscillate. In other cases, it will oscillate if certain signal values
are present. And then there are also cases where it will oscillate regardless of the
signal values.

The next section proposes the use of Symbolic Model Checking techniques to
characterize systems presenting these never-ending simulation cycles.

3.2. Detection of non Stabilizing Simulation Phases using the
System of Boolean Equations.

The system of Boolean equations developed in section 2 can help detect never-ending
simulations. The stabilization of a simulation cycle corresponds to a termination
property that can be expressed in CTL and checked by Symbolic Model Checking
techniques [McMillan93] :

Let T be the termination property to be verified : T is an atomic property that is true
in the terminal states. The detection of sequences that always stabilize comes down to
the computation of the CTL formula AF(T). This computation returns all states
from which all outgoing paths contain a state where T is true. The set of states
inducing a never-ending simulation cycle are the result of the negation of AF(T) :
EG(-~T).

In the system of Boolean equations, a stable state is characterized by

[r = (-~Vs i~ I u O ev t s ig) I

Thus the characterization of never-ending VHDL simulations comes down to the
computation of

[EG(Vsi~ e I u O evt_sig) I

where EG(p) is the greatest fixed point of the iterative equation :

[iter[i+l] = iter[i] A Bv' (R ^ iter[i](v <_ v')) I

iter[i] is the result of the equation at the ith iteration, R is the symbolic transition
relation (it is a conjunction of all Boolean equations obtained as presented in section
2.), 3v' is the existential quantification of primed variables, and (v <-v') indicates that
ordinary variables are replaced by primed variables in the boolean function.

If the intersection of the set of bad states with the set of reachable states is non
empty, the resulting set contains the set of reachable states from which a non
stabilization occurs.

340

3.3. Example : a bus arbiter with combinatorial loops

The example used for demonstrating our approach is composed of n cells of a bus
arbiter proposed by [Mc Millan 93]. A VHDL description of this device is described
in [Clarke94].

The VHDL description of one cell of the bus arbiter is composed of three processes.
The interconnection of cells induces cyclic dependencies which may drive the system
into a never-ending simulation.

Questions we want to answer are : Does such a system present never-ending
simulation phases under the assumption that stimuli do not change during the
simulation phase ? If so, can we characterize the states that induce this non stability ?

The CTL property to verify is : EG(Vsig ~ I evt_sig) which returns all states from

which some outgoing paths will never stabilize.

Experimental Results
All experiments have been performed on a Sun SPARCStation 10 with 32Mbytes of
memory. We used the BDD package supplied by [Long] to manipulate Boolean
functions.

nbr of nbr of (current)
cells variables :

total (wait,evt,eff)

2 44 (7,18,19)
3 63 (10,26,27)
4 80 (13,30,37)
5 104 (16,42,46)
6 120 (19,50,51)

Equation system

(CPU time in s)

Image
Computation
(CPU time in s)

EG Computation
(CPU time in s)

0.1 6.5 1.3
0.2 36.9 3.0
0.3 158 6.7
0.5
0.7

323 15.7
2709 150

The set of states inducing never-stabilization is haracterized. Its intersection with the
set of reachable states returns an empty set : the non stabilizing sequences are not
reachable from the initial state. Other initilisations may have induce non
stabilization. The performance results show that :
1) The computation of the system of Boolean equations from the Petri Net does not
take very much time and grows quite linearly with the size of the system.

2) The longuest part of the time is spent during the image computation. Once this
image built, the computation of the bad states takes a few seconds because the
intermediate results from an iterative equation of the EG computation are constrainted
by the image set.

4. Conc lus ion and Future Work

In this paper, we have presented a method to extract a symbolic transition system
from a restricted VHDL description to automate Symbolic Model Checking. The
symbolic transition system is expressed as a system of Boolean equations that
characterizes the behavior of deterministic systems. The system of Boolean equations
is derived from the structure of an intermediate Petri Net formalism. All intermediate

341

states encountered in a VHDL simulation are not represented : only one state per delta
cycle is taken into account. This grouping of states in a delta cycle speeds up the
analysis methods by abstracting the behavior of the system. This abstraction is only
possible for VHDL descriptions without temporal clauses. Major principles of the
construction of the system of Boolean equations from the Petri Net are presented in
this paper. This Boolean system can then be used for Symbolic Model Checking or
Automata Equivalence. An example of Temporal Logic Property verification is given
: the stabilization of VHDL simulation cycles under the stability of stimuli is
expressed as the termination property of a system and verified by Symbolic Model
Checking algorithms. Experimental results scaling up to a system of 100 variables
show the applicability of such an approach.

It is our intention to extend this approach to the verification of classical temporal
logic properties on larger systems. Future directions include :

1) The evaluation of state encoding : the state encoding presented here is not fully
compact : if a process contains several (say q) wait statements, each wait
statement will be encoded on a Boolean variable. As each process is an
automaton, the state of each process could be represented with log2q Boolean
variables. The drawbacks of this compact representation are the management of
non relevant combinations and the resulting increase in complexity of the
Boolean equations. Tests will have to be performed to evaluate the benefits of
a compact encoding of states.

2) The evaluation of Symbolic Model Checking algorithms on the system of
Boolean equations without building the image of the system. This implies a
caracterisation of the behaviour of stimuli, that may only change at
stabilisation points. The equations of these stimuli will be added to the
relation.

3) The study of good heuristics for variable ordering in BDDs by examining the
variable dependencies between the left and right parts of equations. An
intuitive approach consists of pairing each current variable with its next state
representation. This could be extended to other dependencies.

Bibliography
[BCMDH90] J.R.Burch, E.M.Clarke, K.L. McMillan, D.L.Dill, L.H.Hwang, "Symbolic

Model Checking : 1020 states and beyond", Proc. 5th 1EEE Symposium on
Logic in Computer Science, 1990, pp 428-439.

[BEC94] R.K.Bawa, E. Encrenaz, J.M. Couvreur, "VPN Technical Report", technical
report IBP-MASI 94-13, Apr.94.

[BPS92] D.Borrione, L.Pierre, A.Salem,"PREVAIL: A proof environment for VHDL
descriptions",in Correct Hardware Design Methodologies, ed P.Camurati
and P.Prinetto, North Holland 1992

[Bryant86] R.E.Bryant, "Gral~h Based Algorithms for Boolean Function
Manipulation", Transaction on Computers, Vol C-35, pp. 677-691, 1986.

[CBM90] O. Coudert, C. Berthet, J-C. Madre, "Verification of sequential machines
using functional vectors", in International Workshop on Applied Formal

342

Methods for Correct VLSI Design, volume VLSI Design Methods II, pp.
179-196, Belgium 1989. IFIP WG 10.2/WG 10.5, North Holland 1990.

[Clarke94] E. Clarke, "A VHDL subset for Model Checking", CMU Internal Report, feb.
95.

[DJ92] A. Debreil, D. Jaillet,"Synchronous description in VHDL for formal proof
and resulting guidelines proposed by BULL", Advanced Report, BULL
Produits et Syst~mes, Dpt D6veloppements Assist6s, Les Clayes sous Bois,
France, Jul 1992. BULL/92.0001 rev.A.

[BS-FD-K94] P.T.Breuer,L.Sanchez-Fernandez, C.Delgado-Kloos, "Proof Therory and a
Validation Condition Generator for VHDL", Proc of the EURO-
DAC,Grenoble, 1994, pp 512-517.

[BSCPB94] C.Bayol, B.Soulas, F.Corno, P.Prinetto, D.Borrione,"A Process Algebra
Interpretation of a Verification Oriented Overlanguage of VHDL" .Proc of
the EURO-VHDL, Grenoble France 1994, pp. 506-511.
D.D6harbe,D.Borrione,"Symbolic Model Checking of VHDL Design
Entities", Technical Report of IMAG Institut, RR 925 -I, dec 1993
D.Dgharbe,D.Borrione,"A qualitative finite subset of VHDL and semantics",
Technical Report of IMAG Institut, RR 943 -I, feb 1995
G. DOhmen, "Petri Nets as Intermediate Representation between VHDL and
Symbolic Transition Systems", Proc of the EURO-VHDL, Grenoble France
1994, pp. 572-577.

[DH95a] G.Dtihmen, R.Herrmann,"A Deterministic Finite-State Model for VHDL",
Formal Semantics for VHDL, edited by C. Delgado Kloos and P.T. Breur,
Universitad Politecnica de Madrid, Spain, feb 1995.

[DH95b] G.D0hmen, R Herrmann, "Translating VHDL into functional symbolic
finite-state models", special issue of Formal Methods In System Design,
D.Borrione Editor, Kluwer Academic Publisher. To appear in 1995.

[ECB93] E. Encrenaz, J-M. Couvreur, R-K. Bawa, "Validation of VHDL systems based
on Petri Net modeling", in : Proc Workshop on Design Methodologies for
Microelectronics and Signal Processing, Poland, 1993

[EB95] E. Encrenaz, R-K. Bawa, "A Petri Net Model for Verifying Properties of
VHDL programs", Research Report MASI-IBP 95-07, Feb 95.

[Long] D.E. Long, "A Binary Decision Diagram Package", manual page.
[McMillan93] K. Mc Millan, "Symbolic Model Checking", Kluwer Academic

Publisher, Norwell Massachusetts, 1993
[Murata89] T.Murata, "Petri Nets : Properties, Analysis and Applications". Proc 1EEE,

vol 77 n~ apr 89, pp 541-580.
[OC93] Olcoz - Colom , "A Petri Net Approach for the Analysis of VHDL

Descriptions", in: Proc of the CHARME 1993.
[TSLBS-V90] H.J.Touati, H. Savoj, B. Lin, R.V. Brayton, A. Sangiovanni-

Vincentelli,"Implicite State enumeration using bdd's",Repot, University of
California, Berkeley, USA, 1990.

[vanTasse193] J.P. Van Tassel, "Femto-VHDL: The Semantics of a Subset of VHDL and
its Embedding in the HOL Proof Assitant", PhD Thesis , University of
Cambridge, 1993.

[VHDL'87] "IEEE Standard VHDL Language Reference Manual" IEEE Std 1076-1987.

[DB93]

[DB95]

[D/Shmen94]

