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Abstract. In this paper, we address the problem of finding a simple and efficient 
functional form for describing synchronous sequential circuits in the Boyer-Moore 
logic. By simple, we mean that it must be both user-readable and easily obtained by 
translation from a Hardware Description Language like VHDL. By efficient, we mean 
that it must be well-adapted to the proof mechanisms of the tool, Nqthm. 
We propose two different recursive models, which are inspired from former results. 
We explain how they can be expressed in the Boyer-Moore logic, and we compare 
them on simple but illustrative examples. We also give the Nqthm proof of their 
equivalence. Finally, we conclude about their respective advantages and drawbacks. 

I. INTRODUCTION. 

To guarantee the correctness of circuits being designed, formal verification provides an 
alternative approach to simulation which is usually time-consuming and not always 
completely safe. In this framework, the circuit and its expected behaviour (called below 
the "specification") are described using a mathematical model, and formal reasoning is 
applied to this representation. Since we use the Boyer-Moore theorem prover Nqthm 
[BM,88], our mathematical model is functional. In our approach, formal proof means 
verifying that a given realization is equivalent to (or at least implies) its specification. 
Let us mention that the concept of formal proof covers various other aspects (special- 
purpose methods for verification of finite state machines, validation of temporal 
properties . . . .  ), see the survey papers [CP,88], [Gu,92]. 

In cooperation with the team of D.Borrione, we are implementing a prototype proof 
environment, called PREVAIL [BP,92], to be embedded into a complete CAD system. 
This system takes as input circuit descriptions which are written in a synchronous 
subset of the Hardware Description Language VHDL [Ie,88], [BF,93]. The translation 
from VHDL to the input of the proof tool is automatic. Several proof tools (among 
them, Nqthm) are included in this environment, and the most appropriate one is 
selected depending on the features of the circuit to be validated. 

Nqthm is essentially based on the principles of recursion and induction. Thus, it is 
well-adapted to categories of circuits that can naturally be expressed by recursive 
functions. In particular, we have evaluated its usefulness for describing and verifying 
replicated parameterized architectures [Pi,94], and synchronous sequential circuits : 

- for repetitive devices, the recursive pattern translates the regularity of  the 
structure, 
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- for sequential circuits, recursion implicitly represents the transformation of the 
circuit state between two time steps. This is the purpose of this paper. 

We are interested in providing a functional model for synchronous sequential devices 
considered at the RT level, which satisfies the following criteria : 

- this model must be acceptable by Nqthm, according to its definition principle, 

- proof CPU times must be competitiye with respect to other approaches, 

- the automatic translation from a VHDL description of the circuit to this model 
must be feasible. 

Related works. 

For the purpose of simulation, synthesis or formal verification, various models have 
been proposed for the representation of sequential devices by means of recursive 
equations. Let us mention some of them : 

- In [Jo,84/86], S.Johnson explains that functional notation is natural for the 
description of digital circuits and proposes a method to synthesize synchronous 
devices starting from recursive functional specifications. Successive steps of 
correctness-preserving transformations yield an iterative description that corres- 
ponds to an implementation, which is correct by construction. 

- J.O'Donnell defines a method, called HDRE, for recursively modelling hardware 
[OD,87]. He uses stream recursion equations to describe the behaviour of a 
circuit. A sequential system is represented by one function of the primary inputs, 
the state variables are local variables which are updated by means of recursive 
equations. 

- In [Br,89], A.Bronstein develops a "String-Functional Semantics" which is 
inspired from the notion of streams given in [Ka,74]. He associates an equation 
with each element in the circuit, which relates the output to the inputs. This 
system of equations is recursive as soon as the circuit includes structural loop(s). 

These authors have probably been influenced by the results of M.Gordon. In [Go,80], 
he associates a sequential machine with a tuple (S M, out M, next M, s M) where 

S M is the domain of states, s M e S M is the starting state, 

out M : IN x S M ~ OUT is the output function, 

next M : IN x S M ~ S M is the next state function, 

Then he gives the following "behaviour function" fM, where B is the least solution of 
the domain equation B = IN ---) (OUT x B) : 

fM: SM ""> B 
s --~ fM s = L i .  (out M (i,s), fM (nextM (i,s))) 

On each recursive call, outM(i,s) computes the new output values, and nextM(i,s) 
updates the values of the state variables. The behaviour of the machine is defined by 
bM = fM SM" This representation is very close to the usual view of a Mealy machine, 
but the behaviour is modelled by a fix point equation. 

In [Go,84], he refines this model and gives an implementation in the language LSM. 
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Synchronous circuits and Nqthm. 

We will be strongly inspired by all these previous works, but let us recall that our aim 
is to determine a Nqthm-oriented model, and that this model must be such that we will 
be able to generate automatically the corresponding functions from our synchronous 
VHDL subset. In the following, we propose two recursive formulations and their 
Nqthm implementations. One of them is very close to the model above, the function 
takes as inputs the circuit primary inputs and state variables, and recursion is in fact 
pseudo-iteration. The other one characterizes each state variable and primary output by a 
higher-order function, and (mutual) recursion appears if the circuit contains structural 
loops. We give a mechanical proof of the equivalence of these models, using Nqthm. 

We will see that the pseudo-iterative one is more interesting as far as Nqthm is 
concerned, from the point of view of efficiency as well as from the point of view of 
translation. This claim is illustrated by the Boyer-Moore verification of two simple 
examples : a BCD code recognizer [Di,78], and an implementation of the factorial 
function [Ca,87]. 

H. OVERVIEW OF N Q T H M .  

The Boyer-Moore system, Nqthm [BM,88], is based on a quantifier-free first order 
logic. Its main principles are : 

- The shell principle, which is used to define inductive abstract data types by 
means of : a bottom object, a constructor, and one or more accessors. A boolean 
function, called a recognizer, checks whether an object belongs to the shell. 
Natural numbers is a well-known example of such an abstract data type : the 
bottom object of this type is 0, the constructor is +1, and the accessor (the 
inverse of the function +1) is -1. The predicate recognizer of this type in Nqthm 
is called numberp .  

- T h e  de f in i t ion  pr inc ip le ,  which allows to define recursive functions, with a 
strong verification of the correctness of the recursive form by the system. There 
must be a measure which decreases on each recursive call. For instance, we can 
define recursively the function "times" over natural numbers : 

times(i, j)  =def i f  i = 0 then 0 else j + times (i-1, j)  

The system finds out that the measure of the first parameter decreases on each 
recursive call, and that the recursion stops when i equals 0. Thus this definition is 
acceptable under the definition principle. 

The  i n d u c t i o n  p r i n c i p l e ,  on which the induction heuristics of the proof 
mechanism is based. An induction scheme is automatically generated according to 
the definition(s) of the recursive function(s) involved in the theorem to be proved. 
For example, if we want to verify the following proposition P(x,y) : 

numberp (x) and numberp (y) ~ times (x, y+ l )  = x+times (x, y) 

The induction scheme generated for the proof of P(x,y) is : 

1. x = 0  ~ P(x,y) 

2. (x ~: 0) and P(x-l,y) ~ P(x,y) 
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This prover can be applied to various fields : proof of mathematical theorems, valida- 
tion of algorithms, hardware verification. Among the most important applications, we 
can mention the proof of the Church-Rosser theorem [Sh,85], of the Gauss law of 
quadratic reciprocity [Ru,92], of theorems in group theory [Yu,90], of the arithmetic- 
geometric mean theorem [KP,94], of the Goeders incompleteness theorem, etc.., and 
the verification of many algorithms such, as a real-time control algorithm, compilers, 
the invertibilty of a public key encryption algorithm, etc... 

As far as hardware verification is concerned, many applications have been developed, for 
instance : 

- one of the first significant proofs has been achieved by W.Hunt who validated the 
FM8501 microprocessor [Hu,86], and also the ALU of the FM8502 [HB,89], 

- the "String-Functional Semantics" mentioned above has been implemented in the 
Boyer-Moore logic, and devices such as pipelined architectures have been verified 
[BT,89], 

- at IMEC (Belgium), Nqthm has been applied to the verification of parameterized 
architectures [VV,92]. Proving parameterized hardware with the Boyer-Moore 
system was also reported in [GW,85], 

- at the University of Newcastle, this prover was included within a synthesis 
environment for DSP devices, to verify the correctness of such circuits during the 
synthesis process [BK,91 ]. 

In all these approaches, the Boyer-Moore code has been manually generated. Our 
purpose is mechanized proof and also automatic translation. 

IH. TWO POSSIBLE RECURSIVE FUNCTIONAL MODELS. 

All along this paragraph, we consider a discrete time scale which corresponds to the 
rising edges of the main clock. The circuit is considered at the Register Transfer Level 
and is characterized by : 

- a vector of primary inputs < I1, I2 . . . . .  In > = I, 

- a vector of primary outputs < O1, 02 . . . . .  Om > = O, 

- a vector of state variables < S1, $2 . . . . .  Sq > = S, and the initial state s 0, 

- the (vectorial) state function q0 : ~ x ~ --4 ~, where 7I is the input alphabet and 
is the set of states, 

- the (vectorial) output function II/: 2[ x ~ ---> ~ ,  where (~ is the output alphabet. 

III .1 Fi rs t  f o r m .  

The first representation associates a function Sj with each state variable (i.e. memory 
element) and a function Oj with each primary output. Primary inputs are functions of 
time, and state variables and primary outputs, which depend on these primary inputs, 
correspond to higher-order functions, i.e. 

V j ,  l<j<n,  I j :  gq-->~lj 
t --> Ij (t) 

V j  , 1-<j<q, Sj : (gq ---->3") ~ (6'4 --> ;ffj) 
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V j  , l<j<m, Oj : (N ---)~[) ~ (~1 ~ Ctj) 
I ~ (t ~ Oj (I)(t)) 

Thus, the inputs, state variables and outputs can be globally represented by the 
functions : 

n 

I :  N--> 71= I-I :/j 
j=l 

t ---) I (t) = < II(t), I2(t) . . . . .  In(t) > 

S: ( R ~  7) ~ ~ )  
I ~ (t ~ S(I)(t) = < Sl(I)(t), S2(I)(t) . . . . .  Sq(I)(t) >) 

q 
where $ is the product H $ j of the sets of values of the functions S 1 . . . . .  Sq.  

j=l 

O: ~ 7 )  ~ ( N - ~  O) 
I --) (t --~ O(I)(t) = < Ol(I)(t), O2(I)(t) . . . . .  Om(I)(t) >) 

m 

where 0 is the product H Oj. 
j=l 

Let C denote the function that describes the whole synchronous sequential circuit, for 
all t > 0, C(I)(t) consists in the pair <S(I)(t), O(I)(t)>, i.e. we have : 

c (I)(t) = < s ( I ) (0 ,  o (t)(t) > 

Let us see what are the definitions of the functions S and O. The registers are memory 
elements with a one-unit delay, thus they depend on the past values of the primary 
inputs and also on the past values of themselves if there are structural loops. The 
outputs depend on the current values of the primary inputs and of the state variables. It 
means that S and O are associated with the following higher-order functions : 

S (I)(t) = i f ( t  = O) then s o else r I ( t - I ) ,  S (1)(t- l))  

0 (l)(t) = ~ ( I (t) ,  S ( l )( t ))  

An advantage of this representation is that it clearly expresses the circuit structure. 
Moreover, automatic translation from a HDL description to this formalism could be 
feasible. However, Nqthm does not support higher-order logic and this model must 
significantly be modified to fit the Boyer-Moore logic. For that reason, even if this 
formulation can be implemented in Nqthm, the examples will show that this is not the 
best choice. It could probably be more interesting in the framework of a higher-order 
proof assistant such as HOL [Go,85]. 

But let us examine how this model can be transformed to be implemented in Nqthm. 
First, since we have to express it in first-order logic, we use the method which consists 
in considering the history of the inputs. Instead of describing primary inputs as time 
functions, we consider them as lists of values which represent their histories. Thus, 
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output and state variable functions are simply first-order functions. For lists of bits, we 
use the bit-vector shell given in [Hu,86], it is characterized by : 

- the bottom : (btm) 
- the constructor : bitv 
- the accessors : bit (first bit) and vec (rest of the vector) 
- the recognizer : bitvp 

Another problem with Nqthm is that our model involves mutually recursive functions, 
and Nqthm does not support mutual recursion. To avoid this problem, we use a well- 
known trick : we write a unique function, with an extra parameter (a "flag"), which 
contains all bodies of the mutually recursive forms. The appropriate body part is 
selected according to the flag value. 

Example .  We consider a device which checks if a four-bit sequence is a valid BCD 
code. Two possible implementations are proposed in [Di,78], and we will verify their 
equivalence in the next paragraph. First, let us just describe one of these circuits, given 
by Figure 1 below, with the model above. 
I is the input, O is the output, and S 1, S 2, S 3 and S 4 are registers. The four input 
bits are analyzed sequentially, starting from the least significant one. The output is 
significant when the four bits have been read, i.e. after four time units. The registers 
S 3 and S 4 must be initialized to f a l s e ,  the initial values of  S l and S 2 have no 

importance, we choose to give each of them the initial value false. 

"r 

0 

Figure 1 : Simple implementation of the BCD code recognizer 

At any time t equal to 3 modulo 4, the sequence <I(t), I(t-1), I(t-2), I(t-3)> represents a 
valid BCD code (i.e. a natural number<10) if the following boolean expression holds : 

not I (t) or (not I (t -1) and not I (t -2)) 

At the same time, the value of the output O is true in that case, and false otherwise. 

This circuit will be referred to as BCD 1. The function CBCD1 for this device is : 

CBCD1 (l)(t) = < < S 1 (I)(t) , S 2 (1)(t) , S 3 (I)(t) , S 4 (I)(t) >, 0 (l)(t) > 

with 

$1(I)(0 =def / f t  = 0 then fa lse  else I ( t- l)  

$2(I)(0 =def i f  t = 0 then fa l se  else Sl(I)(t-1) 
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S3(l)(t) =def if t = 0 then false else not S3(1)(t-1) 

S4(I)(0 =def if t = 0 
then fa l se  
else (not S4(I)(t-1) and $3(I)(t-1)) or ($4(I)(t-1) and not S3(I)(t-1) ) 

0(I)(0 =def  not ($4(I)(0 and $3(I)(t)) or not (I (0 and ($1(I)(0 or $2(I)(0)) 

When we translate these functions in Nqthm, the input function I is represented by the 
list of its successive values, i.e. a bit sequence denoted i, and i = <I(t), I(t-1) . . . . .  I(0)>. 
The function definitions, given below in the Boyer-Moore syntax, check that their 
parameter i satisfies the recognizer "bitvp". The function S-BCD1 is the global 
expression of S 1, $2, $3, and S 4, and O-BCDI corresponds to O. We can remark that, 
in this particular case, there is no mutual recursion and that we could have defined S 1, 
S 2, S 3, and S 4 as four independent functions. We have preferred the general 
methodology, in particular to guarantee a similar processing of this circuit and of its 
alternative implementation that will be seen in the next paragraph. 

(defn S-BCDI (flag i) 
(if (bitvp i) 

(if (equal flag 'sl) 
(if (equal i (btm)) 

f 
(if (equal (vec i) (btm)) 

f ; initial value of sl 
(bit (vec i) ) ) ) 

(if (equal flag 's2) 
(if (equal i (btm)) 

f 
(if (equal (vec i) (btm)) 

f ; initial value of s2 
(S-BCDI 'sl (vec i)))) 

(if (equal flag 's3) 
(if (equal i (btm)) f 

(if (equal (vec i) (btm)) 
f ; initial value of s3 
(not (S-BCDI 's3 (vec i))))) 

(if (equal flag 's4) 
(if (equal i (btm)) f 

(if (equal (vec i) (btm)) 
f ; initial value of s4 

f) ) 
f)))) 

(or (and (not (S-BCDI 's4 (vec i))) 
(S-BCDI 's3 (vec i))) 

(and (S-BCDI 's4 (vec i)) 
(not (S-BCDI 's3 (vec i))))))) 

(defn O-BCDI (i) 
(if (bitvp i) 

(if (equal i (btm)) 
f 

(or (not (and (S-BCDI 's4 i) (S-BCDI 's3 i))) 
(not (and (bit i) (or (S-BCDI 'sl i) (S-BCDI 

f) ) 
's2 i)))))) 
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III.2 Second form. 

The second format is closer to the model proposed by M.Gordon. It consists in a 
unique first-order tail-recursive (i.e. pseudo-iterative) function, referred to as C', which 
expresses the behaviour of the circuit from time 0 to the time point given by the 
length of i. 

C '  " 

OO 

Id 7 1 k x 8  o 8  x O  
k=l 

(i, s) ---) i f l e n g t h ( i ) = l  

then < s, ~(head(i) ,s)  > 

else C' (tail (i) , tp(head(i), s)) 

The parameters of this function are the (vector of) inputs, and the (vector of) state 
variables. The inputs are represented by their histories, and the functions denoted head, 
tail and length give respectively the first element of the sequence, the sequence without 
its first element, and the length of the sequence; here i = <I(0) . . . . .  I(t-1), I(t)>. State 
variables are accumulating parameters that are updated on each recursive call. 

Example. For the circuit of Figure 1, the function C'BCD1 associated with the second 
model is : 

C'BCD1 (i, < s 1, s 2, s 3, s 4 >) =def 
i f  length (i) = 1 
then < s 1, s 2, s 3, s 4, no t  (s 4 a n d  s3) or  not  (head (i) and  (s I or s2)) > 

else C'BCD1 ( tail (i), 

< head (i), s I , no t  s 3, 

(not  s 4 a n d  s3) or  (s 4 a n d  no t  s3) > ) 
and it is true that 

C'BCD1 (< I (0), I (1) . . . . .  I (t) >, < false ,  fa lse ,  fa lse ,  f a l s e  >) = CBCD1 (I)(t) 

In the corresponding Nqthm representation, the condition "length(i) = 1" is replaced by 
"tail(i) is empty" for reasons of efficiency. In fact, since i is a bit-vector in this 
example, "head" corresponds to b i t ,  "tail" corresponds to vec, and thus "tail(i) is 
empty" is expressed by "vec(i) = (btm)". Therefore, the Boyer-Moore function 
associated with C'BCD1 is : 

(defn C2-BCDI (i sl s2 s3 s4) 
(if (bitvp i) 

(if (equal i (btm)) 
f 
(if (equal (vec i) (btm)) 

(or (not (and s4 s3)) (not 
(C2-BCDI (vec i) (bit i) sl 

f) ) 
(or (and (not 

(and (bit i) (or sl s2) ) ) ) 
(not s3) 

s4) s3) (and s4 (not s3)))))) 
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To be acceptable under the definition principle, this function also has to check that its 
parameter i satisfies the recognizer "bitvp". Another remark is that, since we are not 
interested in the final register values, this function only returns the final output value. 

III.3 Equiva lence  of  these two models .  

With Solange Coupet-Grimal, we have made a hand-proof of the equivalence of these 
two models [CP,91], i.e. we have : 

v( t ,  O ~ ~I x ( ~  ~ ~),  c (I) (0 = c'(< I(O), I(1), .... I(O >, s o) 

In fact, there are at least two ways of achieving this proof. First, we can use general 
results about transformation of recursion into pseudo-iteration (see for instance 
[BD,77], [HL,78], [HK,92]). Second, a simpler inductive proof is also feasible since 
the problem here is less general than the ones considered in the previous references. We 
have proposed both hand-proofs. 

Here, we give a mechanical proof of this equivalence, using Nqthm. To fit the Boyer- 
Moore logic, the first model has been modified such that I is considered as the history 
of  its successive values. Thus, the history is seen as < I(t), I(t-1) . . . . .  I(1), I(0) > in 
the first representation (where we reason from the current time to the initial one), and is 
considered as < I(0), I(1) . . . . .  I(t-1), I(t) > in the second one (where we "look at" the 
future). In the following proof script, we first define the "shell" of sequences of 
anything (with recognizer sequp), and various functions about these sequences, in 
particular revseq which allows one to reverse a sequence, to be able to deal with <I(t), 
I(t-1) . . . . .  I(0)> and < I(0) . . . . .  I(t-1), I(t) > in the same theorems. 

; Declaration of the shell of sequences (of anything) 

(add-shell sequ ; constructor 
empty ; bottom 
sequp ; recognizer 
((first (none-of) false) ; first element. 

(rest (one-of sequp) empty))) ; rest of the sequence. 

(dcl phi (i s)) ; We don't need to know the definitions of ~, 

(dcl psi (i s)) ; and error. 

(dcl error ()) 

; ("dcl" allows one to declare a function identifier without giving 

; the function body) 

; F u n c t i o n s  o n  s e q u e n c e s  : 

(defn a p p e n d s e q  (vl v2) ; concatenation of 2 sequences 

(if (sequp vl) 
(if (equal vl (empty)) 

v2 
(sequ (first vl) (appendseq (rest vl) v2))) 

v2)) 

(defn sizeseq (x) ; size of a sequence 

(if (sequp x) 
(if (equal x (empty)) 0 (addl (sizeseq (rest x)))) 
0)) 
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(defn revseq (v) ; reverse of a sequence 

(if (sequp v) 
(if (equal v (empty)) 

(empty) 
(appendseq (revseq (rest v)) (sequ (first v) (empty)))) 

(empty))) 

(defn lastseq (s) ; last element of a sequence 

(if (sequp s) 
(if (equal s (empty)) 

f 
(if (equal (rest s) (empty)) (first s) (lastseq (rest s)))) 

f)) 

; + some elementary lemmas on these functions. 

; Description of Model 1 (the model of S III.l) : 

~defn S (seqi time state0) ; here, seqi = < I(t), I(t-1) .... I(0) > 

(if (numberp time) 
(if (equal time 0) 

state0 
(phi (first (rest seqi)) 

(S (rest seqi) (subl time) state0))) 
(error))) 

(defn 0 (seqi time stateO) ; here, seqi = < I(t), I(t-l) .... i(O) > 

(psi (first seqi) 
(S seqi time stateO))) 

; To facilitate the proof, we introduce the intermediate function S' : 

(defn Sprime (seqi time stateO) 
(if (numberp time) 

(if (equal time 0) 
stateO 
(phi (first seqi) 

(Sprime (rest seqi) (subl time) stateO))) 
(error))) 

; and we prove the equivalence between the terms S(x.v, time, sO) and 

; S'(v, time, sO) : 

(prove-lemma equiv-S-Sprime (rewrite) 
(equal (S (sequ x v) time sO) 

(Sprime v time sO))) 

; Description of Model 2 (the model of w III.2) : 

(defn C (seqi state) ; here, seqi = < I(0) ..... I(t-1), I(t) > 

(if (sequp seqi) 
(if (equal seqi (empty)) 

(error) 
(if (equal (rest seqi) (empty)) 

(list state (psi (first seqi) state)) 
(C (rest seqi) (phi (first seqi) state)))) 

(error))) 

; To facilitate the proof, we introduce the intermediate function $2 

; (which models C without the output) : 
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(defn S2 (seqi state) 
(if (sequp seqi) 

(if (equal seqi (empty)) 
(error) 
(if (equal (rest seqi) (empty)) 

state 
($2 (rest seqi) (phi (first seqi) state)))) 

(error))) 

; ... and the simpler form $2 : 

(defn S2prime (seqi state) 
(if (sequp seqi) 

(if (equal seqi (empty) 
state 
(S2prime (rest seqi) (phi (first seqi) state))) 

(error))) 

; and we prove the equivalence between the terms S2(v.x.empty, sO) and 

; S2'(v, sO) : 

(prove-lemma equiv-S2-S2prime (rewrite) 
(implies (sequp v) 

(ecg/al ($2 (appendseq v (sequ x (empty))) sO) 
(S2prime v sO)))) 

; Proof of the equivalence : 

; ..... i. Equivalence between $2' and S ...... : 

(prove-lemma generalization-for-equiv-Sprime-S2prime (rewrite) 
(implies (sequp v) 

(equal (phi a (S2prime v state)) 
(S2prime (appendseq v (sequ a (empty))) state)))) 

(prove-lemma equiv-Sprime-S2prime (rewrite) 
(implies (and (sequp seqi) (numberp time) 

(equal (sizeseq seqi) time)) 
(equal (Sprime seqi time state0) 

(S2prime (revseq seqi) state0)))) 
; S'(seqi, time, sO) = S2'(revseq(seqi), sO) 

; ..... 2. Equ.ivalence between $2 and S ..... : 

(prove-lemma equiv-S-S2 (rewrite) 
(implies (and (sequp seqi) (numberp time) 

(equal (sizeseq seqi) (addl time))) 
(equal (S seqi time state0) ($2 (reVseq seqi) state0)))) 

; S(seqi, time, sO) = S2(revseq(seqi), sO) 

; ..... 3. Final equivalence ..... : 

(prove-lemma equiv-C-list-S2-psi (rewrite) 
(implies (and (sequp seqi) (not (equal seqi (empty))) 

(equal (C seqi s) 
(list (S2 seqi s) 

(psi (lastseq seqi) (S2 seqi s)))))) 

; C(seqi, s) = < S2(seqi, s), ~(lastseq(seqi), S2(seqi, s)) > 
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(prove~lemma equiv-C-list-S2-psi-bis (rewrite) 
(implies (and (sequp seqi) (not (equal seqi (empty)))) 

(equal (C (revseq seqi) s) 
(list ($2 (revseq seqi) s) 

(psi (first seqi) ($2 (revseq seqi) s))))) 
((use (equiv-C-list-S2-psi (seqi (revseq seqi)))))) ; hint 

; C(revseq(seqi), s) = < S2(revseq(seqi), s), 

; ~(first(seqi), S2(revseq(seqi), s)) > 

(prove-lemma equiv-C-list-S-psi (rewrite) 
(implies (and (sequp seqi) (numberp time) 

(equal (sizeseq seqi) (addl time))) 
(equal (C (revseq seqi) s) 

(list (S seqi time s) 
(psi (first seqi) (S seqi time s))))) 

((use (equiv-C-list-S2-psi-bis) (equiv-S-S2 (stateO s))))) ; hint 
; C(revseq(seqi), s) = < S(seqi, time, s), 

; ~(first(seqi), S(seqi, time, s)) > 

(prove-lemma equivalence ( ) 
(implies (and (sequp seqi) (numberp time) 

(equal (sizeseq seqi) (addl time))) 
(equal (C (revseq seqi) stateO) 

(list (S seqi time stateO) (0 seqi time stateO))))) 
; C(<I(O) ..... I(t-l),I(t)>, sO) = < S(<I(t), I(t-l) ..... I(O)>, t, sO), 

; O(<I(t), I(t-l) ..... I(O)>, t, sO) > 

The use of a theorem prover gives a higher level of confidence w.r.t, the correctness of 
this proof than a hand-proof can give. Human errors can be made when encoding the 
original problem, but the prover might usually detect them. In fact, during this 
mechanical verification, we discovered a small error in the manual verification (we 
assumed a wrong intermediate result, but the way we used it made the proof succeed. 
Nqthm helped us discovering that this result was wrong). Moreover, in the hand-proof, 
we used one more intermediate representation and associated extra lemmas, and the 
mechanical proof revealed the uselessness of this intermediate function. In conclusion, 
this Nqthm proof is more safe and elegant than the former manual proof. The total 
CPU time is about 7 seconds on a SUN SPARCclassic. 

IV. PRACTICAL COMPARISON WITH THE BCD CODE RECOGNIZER. 

For this practical comparison, we consider a second possible implementation of the 
BCD code recognizer, also taken in [Di,78], and given by Figure 2 below. This circuit, 
that will be referred to as BCD 2, is an optimization of the first one, in the sense that 
there are only 3 registers S 1, S 2 and S 3, that have to be initialized to false. 

IV.1 First  representat ion.  

The function CBCD2 which corresponds to the first model of this device is : 

CBCD2 ( I ) ( 0  = < < S 1 ( l ) ( t )  , S 2 (I)( t )  , S 3 (I)( t )  >, 0 (1)(t) > 

with 

$1(I)(0 =def if t = 0 then false 
else (not I (t-l) and Sl(I)(t-1) and $3(I)(t-1)) 

or (not I (t-l) and $2(I)(t-1) and not $3(I)(t-1)) 
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S2(1)(t) =def if t = 0 
then fa lse  
else (not S l(I)(t-1) and not S2(I)(t-1) and not S3(I)(t-1)) 

or (I (t-l) and not Sl(1)(t-1 ) and not $3(I)(t-1)) 

$3(I)(0 =def if t = O 
then fa lse  
else $2(I)(t-1) or (I (t-l) and Sl(I)(t-1) and $3(I)(t-1)) 

0(I)(0 =def not (I (t) and not $1(I)(0 and not S2(l)(t) and $3(I)(0) 

1" 

O 

Figure 2 : Second implementation of the BCD code recognizer 

In the Nqthm format, the input function I(t) is represented by the list of its successive 
values, i.e. a bit sequence denoted i. The function S-BCD2 is the global expression of 
S 1, S 2, and S 3, and O-BCD2 is associated with O : 

(defn O-BCD2 (i) 
(if (bitvp i) 

(if (equal i (btm)) 
f 
(not (and (bit i) (not (S-BCD2 'sl i)) 

(not (S-BCD2 's2 i)) (S-BCD2 's3 i)))) 
f) ) 

(defn S-BCD2 (flag i) 
(if (bitvp i) 

(if (equal flag 'sl) 
(if (equal i (btm)) 

f 
(if (equal (vec i) (btm)) 

f ; initial value of sl 
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(or (and (not (bit (vec i))) (S-BCD2 'sl 
(S-BCD2 's3 (vec i)) ) 

(and (not (bit (vec i))) (S-BCD2 's2 
(not (S-BCD2 's3 (vec i))))))) 

(if (equal flag 's2) 
; .... similarly for $2 
(if (equal flag 's3) 

; .... similarly for $3 
f))) 

(vec i)) 

(vec i)) 

f) ) 

IV.2 Second representation. 

The function C'BCD2 below expresses this circuit according to the second model : 

C'BCD2 (i, < s 1, s 2, s 3 >) =def 

i f  length (i) = 1 
then < s 1, s2; s 3, not  (head (i) a n d  no t  s I a n d  not  s 2 a n d  s3) > 

else C'BCD2 ( tail ( i) ,  
< (not head (i) and  s I a n d  s 3) or 

(not head (i) and  s 2 a n d  not  s3), 

(no t  s I a n d  no t  s 2 a n d  no t  s 3) o r  
(head (i) a n d  no t  s I a n d  not  s3), 

s 2 or (head (i) and  s I and  s3) > ) 

and it is true that 

C'BCD2 (< I (0), I (1) . . . . .  I (t) >, < false ,  false ,  f a l se  >) = CBCO2(I)(t) 

Its Nqthm formulation is the function C2-BCD2, where "length(i) = 1" is translated by 
the condition (equal (voc i) (btm)).  Like in the case of the first implementation 
of this BCD code recognizer, this function only returns the value of the output O. 

(defn C2-BCD2 (i sl s2 s3) 
(if (bitvp i) 

(if (equal i (btm)) 
f 
(if (equal (vec i) (btm)) 

(not (and (bit i) (not sl) (not s2) s3) ) 

(C2-BCD2 (vec i) 
(or (and (not (bit i)) sl s3) 

(and (not (bit i) ) s2 (not s3) ) ) 
(or (and (not sl) (not s2) (not s3) ) 

(and (bit i) (not sl) (not s3))) 
(or s2 (and (bit i) sl s3) ) ) ) ) 

f )  ) 

IV.3 Verification process, 

Our goal is the verification of the equivalence of the implementations of Figures 1 and 
2. In other words, we prove the functional equivalence of O-BCD1 and O-BCD2 on the 
one hand, and of C2-BCD1 and C2-BCD2 on the other hand. Of course, this is an 
academic example that has been chosen here for its simplicity, but it is clear that a 
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specialized FSM equivalence checker should be more efficient than Nqthm on this 
particular benchmark. 

Each of the proposed circuits analyzes a four-bit sequence, outputs a significant result, 
and must be ready to analyze the next four-bit sequence. It means that the circuit must 
re-initialize its registers to the correct initial values at the right time. Therefore, our 
proof process also includes the verification of this initialization. 

�9 First, the theorem equivalence-of-BCD1-BCD2 below states that the functions O- 
BCD1 and O-BCD2 give the same result, for any 4-bit sequence i : 

(prove-lemma equivalence-of-BCDi-BCD2 (rewrite) 
(implies (and (bitvp i) (equal (size i) 4)) 

(equal (O-BCDI i) (O-BCD2 i) ) )) 

The presence of the "flags" (i.e. enumerated values) in the function definitions, implies 
that Nqthm generates a lot of sub-cases, and thus we have a CPU time of 250 seconds 
for this proof (on a SUN SPARCstation 2). 

Then, to verify that the re-initializations are correctly done before each analysis cycle, 
we prove that the registers S 3 and S 4 of BCD 1, and the registers of BCD 2 become 

false after 5 time units. For instance, for the register S 3 of the first circuit : 

(prove-lemma init-s3-BCDl (rewrite) 
(implies (and (bitvp i) (equal (size i) 5)) 

(equal (S-BCDI 's3 i) f))) 

The total CPU time for the initialization verification (five lemmas) is about 160 
seconds on a SUN SPARCstation 2. 

�9 Now, let us apply the same procedure to the second model. The following lemma 
verifies the equivalence of C2-BCD1 and C2-BCD2, provided that states variables are 
correctly initialized : 

(prove-lemma equivalence-of-C2-BCDi-BCD2 () 
(implies (and (bitvp i) (equal (size i) 4) 

(boolp sl) ; sl and s2 of BCD 1 can take any 

(boolp s2)) ; boolean values 
(equal (C2-BCDI i sl s2 f f) (C2-BCD2 i f f f))))) 

In that case, we do not deal with enumerated types, and the proof only takes 2__/2 
seconds, on a SUN SPARC station 2. 

Now, we verify that re-initializations are correctly done before the next cycle. For 
instance, the correct initialization of the register S 3 of BCD1 is verified by the 
following theorem : 

(prove-lemma init-s3-BCDl () 
(implies (and (bitvp i) (boolp sl) (boolp s2) 

(equal (size i) 5)) ; after 5 time units 
(equal (C2-BCDI-s3 i sl s2 f f) f))) ; s3 equals false 

where the function C2-BCDI-s3 is built on the same pattern as C2-BCD1 but only 
returns the final value of S 3. 
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The re-initializations of the other registers are validated accordingly. The total CPU 
time for these verifications (five theorems) is 70 seconds on a SUN SPARCstation 2. 

In both cases, the proofs are completely automatic, without intermediate lemmas. We 
can already draw a conclusion from this example : the difference between CPU times 
can be significant; this is due in particular to the flags of the first form which represent 
enumerated values and which make the system examine every possible combination. 

V. PRACTICAL COMPARISON WITH THE FACTORIAL CIRCUIT. 

Now, we propose a comparison using another kind of benchmark. We will reason at 
the arithmetic level, and we will also see the generalization problem that may arise in 
that case. Figure 3 depicts an implementation of a synchronous sequential device which 
iteratively computes the factorial of an integer I [Ca,87]. The duration of the 
computation cycle is I time units, and then O holds the result. 

m u x  

[ zcrotest 
I 

1 

[ I mux ] 

~decr  { [~!ili!! il;!i~iiii! !iiiii:i i [ [ 

r o 

mult [ 

where : mux(c,il,i2,o) <---> o = ifc then il else i2, 
zerotest(i,o) ~ o = (i=0), 

decr(i,o) ~ o = i-I 
mult(il,i2,o) ~ o = il*i2 

Figure 3 : Implementation of the factorial function 

We can verify that this circuit really computes I!, provided that the registers J and R are 
initialized respectively to 0 and 1. As a high-level specification, we use the following 
function that implements the simplest version of the factorial algorithm : 

factorial (i) =clef if  i=O then I else i *factorial (i-1) 

V.1 Circuit descriptions. 

The function Cfact which expresses the structure of this device according to the first 
model is : 

Cfact(I)(t ) = < <J (1)(t), R (1)(t)>, 0 (l)(t) > 
with 
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J(I)(t) =def / f t  = 0 then 0 else (if  J(I)(t-1) = 0 then I(t-1) else J(I)(t-1) -1) 

R(1)(t) =def / f t  = 0 then I else (if  J(I)(t-1) = 0 then I else R(I)(t-1) * J(I)(t-1)) 

0( I ) (0  =def R(I)(O 

Since it has been possible to prove, before the verification of this circuit, that bit-level 
realizations of the components Mux, Mult, Decr and Zerotest respectively implement 
the arithmetic-level functions If, *, -1 and =0, we replace them by these functions. 

In fact, we can remark that the value of the input I can be unchanged during a compu- 
tation cycle, since it is not significant. Its next value is given before the next cycle 
(when the registers are re-initialized), for the next computation. Thus, there is no need 
to introduce the input history, and we can simplify the model by considering a simple 
variable i, and the time t. The representation above then becomes : 

Cfact (i, t) = < < J (i, t), R (i, t) >, 0 (i, 0 > 
with 

J(i, t) =def / f t  = 0 then 0 else (i f  J(i, t- l)  = 0 then i else J(i, t - l )  -1) 

R(i, t) =def / f t  = 0 then 1 else (if  J(i, t- l)  = 0 then I else R(i, t- l)  * J(i, t-I))  

O(i, t) =def R(i, t)- 

Considering this remark and using the second model, we get the following function : 

C'fact (i, t, < j, r >) =def 
i f t = O  
then < <j, r>,  r >  
else C'fact (i, t-l, < i f  j = 0 then i else j -1, i f  j = 0 then I else r * j >) 

and we have 
C'fact (i, t, < O, 1 >) = Cfact (i, t) 

For the first representation, the Nqthm implementation is composed of two functions 
S - f a c t  and o - f a c t ,  where s - f a c t  is the global expression of J and R and o - f a c t  is 
associated with O. 

(defn S-fact (flag i time) 
(if (numberp i) 

(if (numberp time) 
(if (equal flag 'j) 

(if (equal time 0) 
0 
(if (equal (S-fact 'j i (subl time)) O) 

i 
(subl (S-fact 'j i (subl time ))))) 

(if (equal flag 'r) 

o) 

(if (equal time O) 1 
(if (equal (S-fact 'j i (subl time)) O) 1 

(times (S-fact 'r i (subl time)) 
(S-fact 'j i (subl time))))) 

0)) 

o)) 
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(defn O-fact (i time) 
(if (numberp i) 

(if (numberp time) 
o)) 

(S-fact 'r i time) 0) 

And as far as the tail-recursive model is concerned, the Boyer-Moore implementation 
corresponds to the function c 2 - f a c t  below, which only returns the final value of O 
(that is the only interesting one with respect to the "observational" validation of the 
circuit). 

(defn C2-fact (i time j r) 
(if (zerop time) 

r 
(C2-fact i (subl time) (if (equal j O) i (subl j) ) 

(if (equal j O) 1 (times r j) ) ) ) ) 

V.2 Ver i f icat ion  process .  

We want to verify the correctness of this device with regard to its high-level 
specification, that has the following Nqthm interpretation : 

(defn factorial (i) 
(if (zerop i) 1 (times i (factorial (subl i))))) 

More precisely, we can prove that o - f a c t  and f a c t o r i a l  on the one hand, and c2 -  
f a c t  and f a c t o r i a l  on the other hand give the same result after i time units. These 
statements correspond to the theorems c o r r e c t n e s s - o f - o - f a c t  and c o r r e c t n e s s -  
o f - e 2 - f a c t  below : 

(prove-lemma correctness-of-O-fact 
(implies (numberp i) 

(equal (O-fact i i) 
(factorial i)))) 

(prove-lemma correctness-of-C2-fact () 
(implies (numberp i) 

(equal (C2-fact i i 0 i) 
(factorial i))))) 

Unfortunately, neither the first lemma nor the second one can be proved by induction 
unless we generalize it. This is due to the presence of the initial values 0 and 1 for the 
registers. This aspect will demonstrate another advantage of the second model : genera- 
lization is much more easy with that model. 

Before achieving the proof of correctness-of-O-fact, the three intermediate lemmas 
below must be verified : 

; j(i,t)= if t=O then 0 else (i-t)+l provided that t <_ i : 

(prove-lemma generalization-of-j (rewrite) 
(implies (and (numberp i) (numberp time) (leq time i)) 

(equal (S-fact 'j i time) 
(if (equal time O) 

0 
(addl (difference i time) )) ) ) ) 
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; ((i-t)+l) * r(i,t) = i * r(i-l,t) provided that t~0, i~0 and t_<i 

(prove-lemma generalization-of-r-i (rewrite) 
(implies (and (numberp i) (numberp time) 

(not (equal time 0)) (not (equal i 0)) (leq time i)) 
(equal (times (addl (difference i time)) 

(S-fact 'r i time)) 
(times i (S-fact 'r (subl i) time ))))) 

; 2 * r(t+l,t) = (t+l) * r(t,t) provided that t~0 : 

(prove-lemma generalization-of-r-2 (rewrite) 
(implies (and (numberp time) (not (equal time 0) ) ) 

(equal (times 2 (S-fact 'r (addl time) time)) 
(times (addl time) (S-fact 'r time time) )) ) 

((use (generalization-of-r-i (time time) (i (addl time)))))) 

As for the proof of correctness-of-c2- fact, the theorem generalization- for- 
C2-fact ,  which generalizes both j and r, suffices : 

(prove-lemma generalization-for-C2-fact (rewrite) 
(implies (and (numberp i) (numberp j) (numbexp x)) 

(equal (C2-fact x j (addl j) i) 
(times i (times (addl j) (factorial j)))))) 

With this simple and short example, we can see that the generalization problem is of 
valuable help for comparing the approaches. We can imagine what could be, for a larger 
device, the difficulty of producing the intermediate theorems associated with the first 
model. Here, the analysis of the proof tracing was sufficient to find out the reasons of 
the proof failure and to deduce the appropriate lemmas, but it took several man hours. 
This approach is not feasible with a long and complicated proof. Moreover, this 
technique cannot be mechanized, even for small circuits. 

Conversely, this mechanization is feasible with the tail-recursive form. We have 
proposed an automatic generalization algorithm for iterative arithmetic circuits 
described using this second model [Pi,91a]. Thus, there is no need for designers to have 
a deep understanding of the translation and proof processes, since they only have a 
minor (questions/answers) interaction with the system. The recursive function which 
models the implementation is automatically produced from the VHDL description, and 
the generalization tool generates the appropriate lemma. 

VI. CONCLUSION. / 

We have defined two functional models for representing synchronous devices in the 
Boyer-Moore logic. We have also given a mechanical proof of their equivalence. The 
purpose of this study was to determine the most appropriate one for formal reasoning 
with Nqthm. From a practical point of view, the following conclusions can be drawn : 

we could have foreseen that the first model will not be very satisfying w.r.t. 
Nqthm which supports neither higher-order logic nor mutual recursion. The use of 
a system such as HOL should probably be more recommended in that case. 

the second benchmark has shown that generalization can be less tedious with tail- 
recursive functions. 
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- with the first example, we have seen that there can be a great difference between 
the proof CPU times. This is not so clearly evident with the factorial example 
(times vary between 3 and 5 seconds). 

Finally, the Nqthm version of the tail-recursive model is syntactically the simplest 
one, and translation to functions of that form is rather straightforward. It suffices to 
produce, for each state variable and output, its associated expression (by functional 
composition, starting from this element, up to primary inputs and state variables) and 
to put it at the fight place in the function template. The translation principles are 
described in [Pi,91b] for the CASCADE language, they are quite similar for our 
synchronous VHDL subset. 

For all these reasons, one can easily be convinced that this model is preferable as far as 
Nqthm is concerned. In fact, we have used this representation since the beginning of 
our work on synchronous systems, but it was an intuitive choice, without 
justification. In this paper, we have compared it with a more expressive one, we have 
proved that they are equivalent, and we have explained why our intuitive preference was 
the right one despite the better clarity of  the pure recursive model. This study also 
demonstrates that Nqthm can be as useful as another proof tool for reasoning about 
synchronous systems. The choice of the theorem prover is not as important as the 
choice of the corresponding modelling strategy. 
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