Skip to main content

Object localization: Selection of optimal reference objects

  • Conference paper
  • First Online:
Book cover Spatial Information Theory A Theoretical Basis for GIS (COSIT 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 988))

Included in the following conference series:

Abstract

The quality of an object localization depends essentially on the adequate selection of a suitable reference. In most computational approaches developed so far only the distance between the located object and a potential reference object has been used as a decision criterion. However many other criteria have to be considered for a cognitive plausible selection of adequate reference points. In this paper we investigate how object and context dependent properties, like referentiality, visual salience, functional dependencies, or prior knowledge, influence the quality of a reference object. Each factor is quantitatively determined and scaled by relevance to a certain context. The scaling permits the necessary comparability of the different quality criteria. Finally, on the basis of these factors a computational model is presented which permits a context dependent determination of the optimal reference object in a particular spatial configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appleyard, D. (1969). Why buildings are known. Environment and Behaviour, 1, 131–156.

    Google Scholar 

  • Billmeyer, F. W. J. (1985). AIC annotated bibliography on color order systems. Mimeoform Service, rear, 4805 Prince George's Avenue, Bletsville, MD 20705.

    Google Scholar 

  • Boddy, M. (1991). Anytime problem solving using dynamic programming. Proc. of AAAI-91, Anaheim, CA, 738–743.

    Google Scholar 

  • Carlson-Radvansky, L. A., & Irwin, D. E. (1993). Frames of reference in vision and language: Where is above? Cognition, 46, 223–244.

    Google Scholar 

  • Carsten, I., & Janson, T. (1985). Verfahren zur evaluierung räumlicher präpositionen anhand geometrischer szenenbeschreibungen. Master's thesis, FB Informatik, Univ. Hamburg.

    Google Scholar 

  • Carter, R. C., & Carter, E. C. (1981). Color and conspicousness. Optical Society of America, 71, 723–729.

    Google Scholar 

  • Derefeldt, G. (1991). Colour appearance systems. In P. Gouras (Ed.), The perception of colour (chapter 13, pp. 218–256). Beccles and London, UK: The Macmillan Press.

    Google Scholar 

  • Downs, R. M., & Stea, D. (1973). Cognitive maps and spatial behaviour: Process and products. In R. M. Downs & D. Stea (Eds.), Image and environment. cognitive mapping and spatial behaviour (pp. 8–26). Chicago: Aldine.

    Google Scholar 

  • Ehrich, V. (1985). Zur linguistik und psycholinguistik der sekundären raumdeixis. In H. Schweizer (Ed.), Sprache und raum (pp. 130–161). Stuttgart: Metzler.

    Google Scholar 

  • Fillmore, C. J. (1975). Santa cruz lectures on deixis. Bloomington, IN: Indiana University Linguisic Club. only reproduced, first published in 1971

    Google Scholar 

  • Finkel, R. A., & Bentley, J. L. (1974). Quad trees: A data structure for retrieval on composite keys. Acta Informatica, 4, 1–9.

    Google Scholar 

  • Gapp, K.-P. (1994). Basic meanings of spatial relations: Computation and evaluation in 3d space. Proc. of AAAI-94, Seattle, WA, 1393–1398.

    Google Scholar 

  • Gapp, K.-P. (1995a). Angle, distance, shape, and their relationship to projective relations. Proc. of the 17 th Annual Conference of the Cognitive Science Society, Pittsburgh, PA. To appear.

    Google Scholar 

  • Gapp, K.-P. (1995b). An empirically validated model for computing spatial relations. Proc. of KI-95, Berlin, Heidelberg. Springer. To appear.

    Google Scholar 

  • Gapp, K.-P., & Maaß, W. (1994). Spatial layout identification and incremental descriptions. Proc. of the AAAI-94 Workshop on Integration of NL and Vision Processing, Seattle, WA, 145–152.

    Google Scholar 

  • Gärling, T., & Golledge, R. G. (1989). Environmental perception and cognition. In E. H. Zube & G. T. Moore (Eds.), Advances in environment, behaviour, and design (pp. 203–236, Vol. 2). New York: Plenum.

    Google Scholar 

  • Habel, C., & Pribbenow, S. (1988). Gebietskonstituierende prozesse. LILOG-Report 18, IBM Deutschland GmbH, Stuttgart.

    Google Scholar 

  • Herskovits, A. (1985). Semantics and pragmatics of locative expressions. Cognitive Science, 9(3), 341–378.

    Google Scholar 

  • Herskovits, A. (1986). Language and spatial cognition. an interdisciplinary study of the prepositions in english. Cambridge, London: Cambridge Univ. Press.

    Google Scholar 

  • Hirtle, S. C., & Heidorn, P. B. (1993). The structure of cognitive maps: Representation and processes. In T. Gärling & R. G. Golledge (Eds.), Behaviour and environment: Psychological and geographical approaches (chapter 7, pp. 177–189).: Elsevier Science Publishers.

    Google Scholar 

  • Hirtle, S. C., & Jonides, J. (1985). Evidence of hierachies in cognitive maps. Memory and Cognition, 13 (208–217).

    Google Scholar 

  • Holyoak, K. J., & Mah, W. A. (1982). Cognitive reference points in judgement of symbolic magnitude. Cognitive Psychology, 14, 328–352.

    Google Scholar 

  • Johansson, T. (1949). Characteristic properties of colour and colour combinations. Revue d'Optique Theorique et Instrumentale, 28, 241–246.

    Google Scholar 

  • Levelt, W. J. M. (1982). Cognitive styles in the use of spatial direction terms. In R. J. Jarvella & W. Klein (Eds.), Speech, place, and action (pp. 251–268). Chichester: Wiley.

    Google Scholar 

  • Levelt, W. J. M. (1984). Some perceptual limitations on talking about space. In A. J. van Doorn, W. A. van de Grind, & J. J. Koenderink (Eds.), Limits in perception (pp. 328–358). Utrecht: VNU Science Press.

    Google Scholar 

  • Levelt, W. J. M. (1989). Speaking — from intention to articulation. Cambridge, MA: MIT Press.

    Google Scholar 

  • Lueker, G. S. (1978). A data structure for orthogonal range queries. Proc. of the 19th IEEE Symposium on Foundations of Computer Science, 28–34.

    Google Scholar 

  • Lynch, K. (1960). The image of the city. Cambridge, MA: MIT Press.

    Google Scholar 

  • Mangold, R. (1986). Sensorische faktoren beim verstehen überspezifizierter objektbenennungen, volume 185. Frankfurt am Main: Lang.

    Google Scholar 

  • Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. Proc. of the Royal Society of London, 269–294.

    Google Scholar 

  • McNamara, T. P. (1986). Mental representations of spatial relations. Cognitive Psychology, 18, 87–121.

    Google Scholar 

  • McNamara, T. P., & LeSeur, L. L. (1989). Mental representations of spatial and nonspatial relations. The Quarterly Journal of Experimental Psychology, 15, 211–227.

    Google Scholar 

  • Miller, G. A., & Johnson-Laird, P. N. (1976). Language and perception. Cambridge: Cambridge University Press.

    Google Scholar 

  • Moore, G. T. (1979). Knowing about environmental knowing. Environment and Behaviour, 11, 33–70.

    Google Scholar 

  • Pinker, S. (1985). Visual cognition: An introduction. In S. Pinker (Ed.), Visual cognition (pp. 1–63). Cambridge, MA: MIT Press.

    Google Scholar 

  • Retz-Schmidt, G. (1988). Various views on spatial prepositions. AI Magazine, 9(2), 95–105.

    Google Scholar 

  • Rosch, E. (1975). Cognitive reference points. Cognitive Psychology, 7, 532–547.

    Google Scholar 

  • Sadalla, E., Burroughs, W. J., & Staplin, L. (1980). Reference points in spatial cognition. Journal of Experimental Psychology: Human Learning and Memory, 6(5), 516–528.

    Google Scholar 

  • Siegel, A. W., & White, S. H. (1975). The development of spatial representation of large-scale environments. In W. Reese (Ed.), Advances in child developement and behaviour (). New York: Academic Press.

    Google Scholar 

  • Stevens, A., & Coupe, P. (1978). Distortions in judged spatial relations. Cognitive Psychology, 10, 422–437.

    Google Scholar 

  • Stuart, G. W., Bossomaier, T. R., & Johnson, S. (1993). Preattentive processing of object size: implications for theories of size perception. Perception, 22, 1176–1193.

    Google Scholar 

  • Talmy, L. (1983). How language structures space. In H. Pick & L. Acredolo (Eds.), Spatial orientation: Theory, research and application (pp. 225–282). New York, London: Plenum.

    Google Scholar 

  • Taylor, H., & Tversky, B. (1992a). Descriptions and depictions of environments. Memory & Cognition, 20(5), 483–496.

    Google Scholar 

  • Taylor, H. J., & Tversky, B. (1992b). Spatial mental models derived from survey and route descriptions. Journal of Memory and Language, 31, 261–292.

    Google Scholar 

  • Treisman, A. (1988). Feature and objects: The fourteenth bertlett memorial lecture. The Quarterly Journal of Experimental Psychology, 40a (2), 201–237.

    Google Scholar 

  • Tulving, E. (1962). Subjective organization in free recall of “unrelated” words. Psychological Review, 69, 344–354.

    Google Scholar 

  • Tversky, B. (1981). Distortions in cognitive maps. Cognitive Psychology, 13, 407–433.

    Google Scholar 

  • Tversky, B. (1993). Cognitive maps, cognitive collages, and spatial mental models. Proc. of the 1 st int. Conference on Spatial Information Theory, Elba, Italy, 14–24. Springer Verlag.

    Google Scholar 

  • Wazinski, P. (1992). Generating spatial descriptions for cross-modal references. 3rd Conference on Applied Natural Language Processing, Trento, Italy, 56–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrew U. Frank Werner Kuhn

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gapp, K.P. (1995). Object localization: Selection of optimal reference objects. In: Frank, A.U., Kuhn, W. (eds) Spatial Information Theory A Theoretical Basis for GIS. COSIT 1995. Lecture Notes in Computer Science, vol 988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60392-1_34

Download citation

  • DOI: https://doi.org/10.1007/3-540-60392-1_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60392-4

  • Online ISBN: 978-3-540-45519-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics