Skip to main content

Using a chemical metaphor to implement autonomous systems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 992))

Abstract

The aim of this paper is to outline a planning system architecture which allows robots to exhibit varying degrees of autonomous behaviour. While several systems have been developed to cope with specific classes of robot tasks, a litte effort has been made towards the autonomy itself. Looking at the behaviour of animals from the ethological point of view we can suppose that even robots need to exibit a wide variety of specific behaviours. Starting from Brooks and Rosenschein's approach we can think of an autonomous system as a vertical composition of its basic behaviours, or instincts, to produce the overall emergent activity. The key point, however, is how to really obtain it considering that robot actions require to be planned in some way to complete thenmission. In this paper we propose an analternative way to design and build an autonomous system introducing the metaphor of a chemical machine. We th ink of the whole system as a set of behaviours, each implementing a specific response to incoming environmental stimuli, equipped with appropriate receptors which can be inhibited if a behaviour is not currently requested. Such an inhibitor schema is directly driven by the system itself using sensor data and the knowledge it has about its state. The advantage of this robot design lies in its ability to make explicit the adaptive capabilities of the system during its implementation.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Brooks. A robust layered control system for a mobile robot. IEEE J. Robotics and Automation, RA-2:14–23, 1986.

    Google Scholar 

  2. R. A. Brooks. Elephants don't play chess. Robotics and Autonomous Systems, 6:3–15, 1990.

    Google Scholar 

  3. A. D'Angelo. Automatic and reactive planning: a perspective of integration. In Workshop Italiano sulla Pianificazione Automatica, Roma (I), 1993.

    Google Scholar 

  4. A. D'Angelo. Un sistema di navigazione reattiva per un robot mobile. Technical Report UDMI/15/93/RR, Dipartimento di Matematica e Informatica, Université di Udine (I), 1993.

    Google Scholar 

  5. A. D'Angelo. Behaviour-based distributed systems. In Workshop Italiano sull'Intelligenza Artificiale, Parma (I), 1994.

    Google Scholar 

  6. D. Chapman E. Agre. What are plans for? Robotics and Autonomous Systems, 6:17–34, 1990.

    Google Scholar 

  7. G. Boudol G. Berry. The chemical abstract machine. In International Conference on Principles of Programming Languages, pages 81–93, 1990.

    Google Scholar 

  8. C. A. R. Hoare. An axiomatic basis for computer programming. Comm. of ACM, 12:576–583, 1969.

    Google Scholar 

  9. S. J. Rosenschein L. P. Kaelbing. Action and planning in embedded agents. Robotics and Autonomous Systems, 6:35–48, 1990.

    Google Scholar 

  10. N. Nilsson R. Fikes. Strips: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2:189–208, 1972.

    Google Scholar 

  11. E. Sacerdoti. A Structure for Plans and Behaviour. Elsevier-North-Holland, New York, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marco Gori Giovanni Soda

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

D'Angelo, A. (1995). Using a chemical metaphor to implement autonomous systems. In: Gori, M., Soda, G. (eds) Topics in Artificial Intelligence. AI*IA 1995. Lecture Notes in Computer Science, vol 992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60437-5_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-60437-5_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60437-2

  • Online ISBN: 978-3-540-47468-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics