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Abstract. In this paper, we consider hybrid systems containing both stochastic 
and non-stochastic 3 components. To compose such systems, we introduce a gen- 
eral combinator which allows the specification of an arbitrary hybrid system in 
terms of elementary primitives of only two types. Thus, systems are obtained 
hierarchically, by composing subsystems, where each subsystem can be viewed 
as an "increment" in the decomposition of the full system. The resulting hybrid 
stochastic system specifications are generally not "executable", since they do not 
necessarily permit the incremental simulation of the system variables. Such a 
simulation requires compiling the dependency relations existing between the sys- 
tem variables. Another issue involves finding the most likely internal states of a 
stochastic system from a set of observations. We provide a small set of primitives 
for transforming hybrid systems, which allows the solution of the two problems 
of incremental simulation and estimation of stochastic systems within a common 
framework. The complete model is called CSS (a Calculus of Stochastic Systems), 

and is implemented by the SIG language, derived from the SIGNAL synchronous 
language. Our results are applicable to pattern recognition problems formulated 
in terms of Markov random fields or hidden Markov models (HMMs), and to 
the automatic generation of diagnostic systems for industrial plants starting from 
their risk analysis. A full version of this paper is available [1], omitted proofs can 
be found in this reference. 

Keywords : stochastic systems, hybrid systems, belief functions, communi- 
cating processes, simulation, estimation. 

3 Throughout this paper, we use the word "non-stochastic" to refer to systems which have no 
random part. In control science or statistics, such systems would be called "deterministic" as 
opposed to "stochastic"; however this name would be misleading in computrr, science, where 
"deterministic" vs. "nondeterministic" has a totally different meaning. This is Why we decided 
to use the word "non-stochastic" here. 
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1 I n t r o d u c t i o n  a n d  m o t i v a t i o n  

This paper proposes a general framework for the specification and use of probabilistic 
models in applications of large computational complexity. To serve as reference in our 
subsequent discussion, we now describe several real applications which either employ, 
or could benefit from the use of probabilistic methods. 

- Queuing networks, performance evaluation, and risk analysis typically require a 
number of tools for the specification and simulation of systems, and to compute 
statistics of interest. The modelling and simulation tasks usually require modular 
models, which are often variations of stochastic Petri nets [2]. The computation of 
statistics relies on the underlying Markov chain associated to the Petri net specifi- 
cation. 

- Patternrecognitionapplications, dependingonwhethertheyfocusonone-dimensional 
signals, such as for speech recognition, or multidimensional ones, as in image anal- 
ysis and understanding, frequently rely on hidden Markov models (HMM) [3] or 
Markov random fields [4, 5]. Both classes of models have proved quite succes- 
ful in their respective application areas. In particular, the best speech recognition 
systems currently available are based on HMMs. The n'onintrusive appliance load 
monitoring problem described recently in [6] represents another interesting pattern 
recognition problem, where one seeks to determine which appliances switch on 
and off in an individual household, based on measurements of the total load power. 
In this context, appliances can be modeled in terms of communicating stochastic 
automata. 

- Model based monitoring and diagnostics procedures for complex systems rely of- 
ten on a blend of statistical approaches [7] for numerical systems, and symbolic 
techniques of artificial intelligence for systems of a combinatorial nature. However, 
somewhat surprisingly, while models play a significant role in the development 
of monitoring schemes, risk analysis considerations are usually not included. Risk 
analysis is mainly used to assess the safety margins of designs, but does not seem 
to enter the synthesis of on-line monitoring and diagnostics systems, even though 
such an inclusion would be highly beneficial. 

Such applications require the following functions : 

- System specification is a first issue for complex systems. Because most of the ap- 
plications we have described, such as toad appliance monitoring, or the monitoring 
and diagnostics of large-scale systems, involve a mixture of random and nonrandom 
phenomena, a hybrid stochastic/non-stochastic form of modelling is desirable. Sev- 
eral other key features that would need to be included are modularity, i.e. the ability 
to specify large subsystems from small interacting modules, ease of modification, 
and the possibility to reuse subsystems in new applications. 

- The ability to simulate systems, as well as evaluate statistics of interest is also a 
necessity. Again, modularity would be desirable in this context, although it may 
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be less critical than for system specification. As for simulation, an important chal- 
lenge is the fast simulation of rare events of interest, such as for fault-tolerance 
applications. 

- Pattern recognition and diagnostics applications require the estimation of hidden 
quantities of interest, such as spoken words in speech recognition, appliance loads 
for the nonintrusive appliance load monitoring application, or the origin and assess- 
ment of faults in failure diagnostics. Modularity would again be welcome in this 
context. 

There exists a vast literature on the application of statistics and probability to the 
modelling, estimation, identification [8], and diagnostics [7] of dynamical systems. 
Unfortunately, modularity issues are almost never addressed by either statisticians or 
control engineers, and as a consequence, probabilistic and statistical techniques are 
used only rarely in the analysis of large scale systems (except in the area of performance 
evaluation, see below). 

Stochastic Petri net models [2, 9] are often used to specify stochastic systems, in 
applications such as queing networks with synchronization, or fault-tolerance studies. 
They are commonly employed to evaluate statistics of interest in performance evalua- 
tion. However, such computations rely on the underlying Markov chain of the Petri net 
model, so that Petri nets by themselves do not simplify the computation of statistics. 
In [10, 11], however, particular structures of the transition matrix associated to certain 
Markov chains are used to decompose the statistical analysis of the system under con- 
sideration. Clearly, many real applications have been tackled by employing approaches 
developed within the Petri net community, and software products are available. 

In a different area, probabilistic communicating process algebras and related log- 
ics have been studied in theoretical computer science [12, 13]. The common approach 
to such studies consists in enriching with probability available models of communi- 
cating process algebras, such as CCS, CSP, etc., and related kinds of temporal logics 
[14, 15, 16]. Expressive power and system equivalence are analyzed, as well as the 
decidability of related logics. These approaches benefit from the fundamental advances 
achieved by this community to handle modularity, communication, and interaction be- 
tween processes. However, to our knowledge, no real application has been reported 
based on such approaches, and no service is really provided beyond modelling. 

This paper proposes a new and flexible form of calculus, called CSS, for the spec- 
ification, simulation, and hidden state estimation of hybrid stochastic/non-stochastic 
systems. The model of hybrid stochastic/non-stochastic systems that we employ is in- 
troduced in Section 2.1. Hybrid stochastic/non-stochastic systems interact via a single 
combinator that we call the composition and denote by " I ". The combination of 
hybrid systems with I yields again hybrid systems, and I is both associative and 
commutative. When applied to purely non-stochastic systems, the composition operator 
I behaves like the conjunction of systems of relations in mathematics. The shared 

variables of the two systems provide the only mechanism for system interaction. On 
the other hand, when two purely probabilistic systems with no shared variables are 
combined, we obtain two statistically independent systems. Also, combining a purely 
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stochastic system with a purely non-stochastic one, viewed as a constraint, gives the 
conditional distribution of the original stochastic system, given that the constraint is 
satisfied ; this provides a very simple mechanism to specify conditional distributions. 
The combination of purely non-stochastic and stochastic building blocks with [ al- 
lows the specification of arbitrary hybrid systems. A concrete syntax based on the SIG 
minilanguage is provided to implement the operations of CSS. Note that we restrict our 
attention here to systems with only a finite number of variables. Dynamical systems, 
i.e., systems defined over infinite index sets, have been examined in [ 17], and their study 
raises a number of technical issues that will be tackled elsewhere. Also, throughout the 
paper, only finitely or countably valued variables are considered. Although our results 
hold in more general situations, such as for the case of linear Gaussian systems which 
is examined in detail in [ 18], a precise description of such cases will not be attempted 
here. 

Section 3 examines the simulation of hybrid stochastic/non-stochastic systems. Sim- 
ulation is operational in nature. In contrast, the system specification provided by CSS is 
nonoperational, since it relies on relations. We are therefore confronted with the issue 
of converting a system specification into a simulation. Since many of the applications 
we have in mind are of a real time nature, we would like to perform simulations incre- 
mentally, in order to ensure their efficiency. For instance, Markov chains or stochastic 
automata are naturally simulated by using the Kolmogorov chain rule, so that states 
are generated incrementally. The Bayes rule p(x,  y) = p(y[x)p(x) provides a way to 
simulate incrementally the random variables (X, Y) with joint distribution p(x, y). We 
only need to draw X according to the distribution p(x) and then, for X given, draw Y 
based on the conditional distribution p(yIX). We generalize the notions of marginal and 
conditional distributions to hybrid systems, and use them to extend Bayes rule to these 
systems. The primitives implementing the marginal and conditional are introduced in 
SIG and are used to derive graph transformation rules which can be used to convert a 
compound system to an equivalent form which admits an incremental simulation. 

The maximum likelihood (ML) estimation of hybrid stochastic/non-stochastic sys- 
tems is also considered in [1], we outline this topic here. Consider a triple (X, Y, Z) 
of random variables, where Z is observed, and the two unknown random variables X 
and Y admit the conditional distribution p(x,  y[z). The ML estimate, also known as 
the maximum a posteriori (MAP) estimate, of (X, Y) given Z is given by (~, ~') = 
arg max=,u p(x,  y I z). To find these estimates incrementally, we can first compute the 
so-called "generalized likelihood" function pc(xlz) = maxy p(x,  y]z). Next, com- 
pute the conditional likelihood pL(y[x, z) = p(x,  ylz)/pL(xlz) of Y given X and 
Z, so that the following factorization holds: p(x,  y) = pz:(ylx)pL(x). Then, the de- 
sired ML estimates can be generated sequentially from ~" = argmax= pc(x lz  ) and 
~" = argmaxy Pz:(YI~, z). This incremental estimation procedure, which is called the 
Viterbi alborithm in the HMM literature [3, 19], just corresponds to a simple case of 
dynamic programming. We extend the notions of generalized likelihood and conditional 
likelihood, which now take the form of primitives, to hybrid systems, and show that the 
above dynamic programming procedure can be generalized accordingly. These primi- 
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tives are implemented in SIG, and simple graph manipulations can be used to convert 
the given system to a form which can be incrementally estimated. In fact, the graph 
transformations applied for both simulation and estimation turn out to be identical. 

Finally, Section 4 contains some conclusions and perspectives. 
It was not until recently, through discussions with A. P. Dempster, that we became 

aware that the work reported in this paper is in fact closely related to the Dempster-Shafer 
theory of belief functions [20, 21, 22] and belief networks [23, 24, 25, 26] in statistics 
and artificial intelligence. Although our work has independent origins, several aspects 
are common with belief network theories. First, like the Dempster-Shafer model of be- 
lief functions, the hybrid systems we consider are not fully probabilized, and combine 
both random and unknown types of uncertainties. However, while the Dempster-Shafer 
approach relies on an axiomatic different from probability theory, we achieve compara- 
ble results by blending probabilistic methods with constraint analysis. The composition 
we employ for building complex systems from simpler ones takes a form analog to 
Dempster's "product-intersection" rule [21] for combining belief functions. Also, our 
incremental simulation scheme is similar in nature to the fusion/propagation mechanism 
of [24, 25]. However, there exists an important difference between the partly directed, 
partly undirected graphs that we use to compile the dependency relations existing be- 
tween the variables of a compound system, and the standard viewpoint of artificial 
intelligence, where directed branches encode "subjective causality." Our graphs encode 
"objective causality" according to the terminology of [24], since they are used to "direct 
and activate the data flow in the computations . . . "  [24]. In addition, while artificial 
intelligence emphasizes Bayesian estimation, we show that similar ideas can be applied 
to the solution of ML estimation problems. Finally, the practical implementation of our 
model has the syntactic form of a data flow programming language, which differs from 
the network formalism of artificial intelligence. 

2 CSS and the SIG mini- language 

The CSS model relies on a formal definition of hybrid stochastic/non-stochastic systems, 
which is then used to express the composition rule I  9 

2.1 CSS 

Model of hybrid stochastic/non-stochastlc systems. The hybrid systems we consider 
are described by a quadruple 

7r = {X, ~2, W , p }  (2.1) 

where 

- X = {X1 , . . . ,  Xv} denotes a finite set of variables whose values are written as 
x = (Xl , . . . ,  xv). The variables are the observable objects of our model. The 
domain of each variable Xi is denoted as Vxl, so that the domain of the vector X 
can be expressed as V X = I-[i Vx~. 
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- W = { W I , . . . ,  Wq} denotes a finite set of random variables or simply randoms 
for short. Values of Wj are written as wj, and we refer to the complete set of values 
w = (wl , . . . ,  wq) as a random experiment. The domain of Wi (resp. W )  is denoted 
by Vw~ (resp. VW). Randoms are hidden, i.e., not visible from outside the system. 
The reason for this property will become clear below. W models the random part 
of the system, so that if W is empty, the system is completely non-stochastic. 

- p constitutes an unnormalized probability distribution for W 4. Specifically, we only 
require p > 0 and 0 < )-]~ p(w) < c~. 

- 12 denotes a relation on the pair (X, W) .  We shall sometimes write it more explicitly 
as 12(X1, . . . ,Xp  ; W l , . . . ,  Wq). 

A system 7r = {X, 12, W ,  p} is observable only through its variables. Randoms cannot 
be seen, but transfer their behaviour to the system variables X through the relation 12. 
In doing so, some predicates over the variables become random, namely those which 
are completely expressible in terms of W .  In the purely non-stochastic case, we may 
consider that V W consists of a single point wtfiv, with p(wt~iv) = 1 and p(0) = 0. 

The unique system for which X = ~ is called NIL. Finally, given an arbitray system 
7r = {X, 12, W ,  p}, the system obtained by replacing its distribution p by a uniform one, 

say equal to one, is denoted by FLAT(Tr), so that we have FLAT(Tr) ~ {X, 12, W,  1 }. 

EXAMPLES : 

1. The above hybrid systems contain as a subclass purely non-stochastic systems 
described by a set of relations, without any randoms. Another subclass corresponds 
to purely stochastic systems, for which we have X = W ,  and where the relation 12 
is defined by Xi = W~ for all i, so that all randoms are observed as variables. 

2. A system 7r = {(X1, X2), W,/2, p}, with 12 : f(Xl, X2) = W for some function 
f ,  is a system 'with two variables. For instance, take X I  + X2 = w .  In this case, 
each variable X~ cannot be viewed as random since its probability distribution is not 
defined, but the sum X1 + Xz is random. For a general function f ,  not all predicates 
on (XI, X2) are random, only those which involve f (Xl ,  X2). 

3. For a system 

7r = {X, (W1, W2), 12, p} with 12 : X = f(W1, W2) (2.2) 

where f is a non injective function, the variable X is random. However, because f 
is not injective, there are "too many" randoms ; for instance, if f depends only on 
W1, we can remove W2. This operation, called "compression," is described below 
in Sec. 3.1. 

4 Handling unnormalized distributions may seem unusual, but has several advantages. It sim- 
plifies the definition of the composition I and the specification of conditional probabilities, 
and significantly decreases the computational cost of incremental simulation and estimation. 
Furthermore for many applications where the space Vw has a very large cardinality, such as 
for the study of Markov random fields in statistical mechanics [27, 28, 29], the computation of 
the normalizing constant (the partition function) which transforms p into a true probability is 
often unnecessary. 
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4. The class of linear Gaussian hybrid stochastic/non-stochastic systems of the form 
EY = AX + BW was studied in detail in [18]. For such systems, E, A, B are 
matrices of suitable dimensions, W is a Gaussian random vector with zero mean 
and unit covariance matrix, and the variables correspond to the vector pair (X, Y). 

Our model of hybrid systems is closely related to the one employed by Dempster 
and Shafer [20, 21, 22] to formulate their theory of belief functions. Like the systems 
examined here, Dempster's belief functions are specified by a quadruple consisting of a 
probability space (V W ,  p), which is not directly visible, and a pair (V X, F)  formed by 
a set of system configurations, and a mapping/7 associating to each element w C V w 
a set F(w) C V X. For our model, the set-valued mapping F is specified implicitly by 
the relation/2, which associates to each random w the set 

F(w) = {x : ~?(x;w)}, (2.3) 

of variables x which, together with w, satisfy the relation/2. 
Let us examine the modelling implications of the hybrid system specification ~r -- 

{X,/2, W ,  p}. First, observe that by eliminating the randoms W from the relation/2, 
we obtain a family of hard constraints for the variables {X1,  9  9 Xv}. These constraints 
are often called "parity checks" in the failure detection lit6rature [7]. The subset Vj~ 
of V X satisfying these constraints can be used to test the validity of the model 7r, by 
checking whether the visible variables belong to this set. 

Next, we note that each set B C_ V w of random experiments admits the prior 
probability 

P(B)  - ~ , ~ B  p(w) (2.4) 

Eliminating the variables X from the relation/2 yields hard constraints that must be 
satisfied by the randoms { W l , . . . ,  Wq}. Let V,~r be the set of w's satisfying these 
constraints. The posterior probability on the randoms, given the set V~ r of allowable 
configurations, takes the form 

~wcBnY~ p(w) P(B  n V,~r 
P ~ ( B )  = Y~,~ey~r p(w) - P(V~r)  = P ( B  I V@) .  (2.5) 

H 

The posterior probability P ~  is the result of the interaction of the relation /2 with 
the prior distribution p in the system specification ~- = {X,/2, W,  p}. Unfortunately, 
this new probability cannot be transferred to the variables X because, since /2 is a 
relation, the sets .P(w) specified by (2.3) are not singletons, and may not be disjoints 
for different w's. This is just a manifestation of the fact that, because projection is 
a monotonic operator on sets, but is not additive, projecting a probability from one 
space onto another does not yield a probability, but a different object, called a Choquet 
capacity [30]. On V x ,  this capacity provides a partial probabilistic knowledge which 
was described by Dempster [20, 21] in terms of upper and lower probabilities for the 
subsets of V x .  These upper and lower probabilities provide bounds describing the 
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limits of our information concerning predicates of the X variables. In this paper, instead 
of adopting the Dempster-Shafer upper/lower probability framework, we shall remain 
within the realm of standard probability theory by considering exclusively probabilities 
over the set V w of randoms. 

T h e "  [ "sys tem combinator. The composition of hybrid systems can be performed 
in the same manner as the combination of belief functions described in [20]. The 
main aspect of the combination operation is that different systems are allowed to share 
common variables, which describe their interaction, but not randoms. In other words, 
randoms are always private, and do not play a role in the combination of systems. 
For two systems 7rl ~ {Xl, f2i,Wl,p~} with i = 1, 2, the combinator 7rl I 7r2 = 
{X, f2, W,  p} is defined as 

X -- X1 U X2 (2.6a) 
W = W l  x W2 (2.6b) 

p(o./j) ___~ p(zo1, Z02) _____ Pl  (Wa) X p2(z02) (2.6c) 
= ~1 A ~'22~ (2.6d) 

where O1 A $2z denotes the conjunction of relations ~2~ and (22, which is the usual 
way of defining systems of equations in mathematics. The expressions (2.6b) and (2.6c) 
indicate respectively that variables may be shared, but not randoms. 

The identities (2.6a-2.6d) show that systems interact only through their shared 
variables. The NIL system is a neutral element for the combinator" [ " 

EXAMPLES : 

1. Consider two systems 7rl = {Xi,~'~i,Wi, Pi} with i = 1,2, where 7q is purely 
stochastic, so that Xl and W l  have same cardinality and ~21 : X1 = W1,  9  9 X p  = 
W v, and rr2 is purely non-stochastic, i.e., Wz -- ~, with the nontrivial rela- 
tion 02. Assume also that XI = X2. Then, it is easy to check that 7r~ I 7r2 = 
{XI, (~21 A J22), W l ,  Pl}. The combined system 7rl [ 7r2 has still the feature that 
randoms are visible through the variables, since $21 : X1 = W1, . . . ,  Xp = Wp. 
However, the variables X l , . . . ,  Xp behave now according to the conditional dis- 
tribution p a2 of Pl based on the constraint I22. Thus the composition [ provides 
a simple mechanism for specifying conditional probabilities, which will be used 
extensively in the STG examples presented below. 

2. Let 7ri = {Xi, I2i, Wi ,  p i}  with i = 1 ,2  be two systems which do not interact, so 
that X1 N X2 = 0. Then, in the combination 7rl ] 7r2, the randoms W l  and W2 are 
independent. 

2.2 The SIG mini-language 

We now proceed to decribe a syntax, in the form of the langage SIG, which implements 
both the modelling format and composition rule of CSS. 



157 

The primitives of SIG. The SIG language has the following primitives : 

(i) R(xl ..... xp) 
(ii) potential U(xl ..... xp) 

(iii) P I Q 

They admit the following informal interpretation. 

(i) R ( x l  . . . . .  xp)  specifies a relation among the variables x l  . . . . .  xp. The corre- 
sponding system in the sense of (2.1) admits the x i ' s  as variables, has no randoms, 
and 12 is the relation R. Thus, R ( x l  . . . . .  xp)  is a purely non-stochastic system. 

(ii) p o t e n t i a l  U ( x l  . . . . .  x p ) ,  where U is a function taking values over the line 
( - o  o, +oc], specifies random variables with unnormalized joint distribution 

e x p - U ( x i , . . . , x p ) .  (2.7) 

The corresponding system in the sense of (2.1) has x l  . . . . .  xp  as variables, 
its randoms W = (W1, . . . ,  Wp) have the distribution exp -U(wl , . . . ,  wv), and 
12 relates variables and randoms via the relations x l  = W1, . . . ,  x p  = Wp. Thus, 
p o t e n t i a l  U ( x l  . . . . .  xp)  is a purely stochastic system. 

(iii) P [ Q denotes the application of the"  [ "combinator to systems p and Q. 

Specifying systems with SIG. A system in the sense of CSS and definition (2.1) can 
be declared as shown below, where we omit variable type declarations of the form 
" i n t e g e r " ,  etc : 

system PI = 
{ variable X,Y,Z } % declaration of variables 
(I potential U(X,Y) % distribution of (X,Y) 
I Z = f(X,Y) % constraint on (X,Y,Z) 

l) 
end 

Several examples of SIG programs are now presented. To generate a hidden Markov 
model (HMM) of the type discussed in [3, 18], we can employ the following program: 

system HMM 0 = (integer N) 
variable X[i] i=0 to N, Y[i] i=l to N ] 
I x[0] : 0 
I loop i=l to N 

(I potential U(X[i-l],X[i]) 
I potential V(X[i-l],X[i],Y[i]) 

I) 
end 

) 
end 

The first constraint fixes the initial condition, and the 1 oop  statement specifies the joint 
density of the internal states X{ and outputs Y~. The resulting system HMM0 is a HMM 
with state X and output Y. It has 0 for initial state, and its state transitions and outputs 
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are specified by the interactions u and v, so that 
N 

p ( x 0 , . . . ,  xN ; Y l , - - . ,  fiN) o(~0(x0) exp -- E [U(xi-l' xl) 2V V(xi- l '  xi' Yl)] 
i=1 

(2.8) 
where (x denotes "proportional to", and 6o(x) = 1 if x = 0, = 0 otherwise. If  we want 
to consider the same HMM given that thefinal condition X IN] = X._~X also holds, 
one needs only to add the final constraint to the previous SIG program, thus yielding 

system HMM = (integer N) 
{ variable X[i] i:0 to N, Y[i] i=l to N } 
( x[0] = 0 

x [N] = X_MAX 

loop i=l to N 
(I potential U(X[i-l],X[i]) 
I potential V(X[i-l],X[i] ,Y[i]) 

J) 
end 

) 

end 

To explain the interest of this simple trick, suppose x models the occupation level of a 
buffer, which behaves according to HMM_0. Assume X 1 ~ X  corresponds to a critical 
level, and we want to know the conditional distribution of the buffer evolution given 
that level X MAX is reached at instant N. Then we only need to include the conditioning 
event X IN] = XMAX as an additional constraint in our original program HIvIZ 0 in 
order to obtain the desired behavior HMM. This mechanism can be employed whenever 
one seeks to concentrate on the set of experiments satisfying a condition of interest. 
Note for example that a common technique of risk analysis involves tracking cascades 
of events leading to a specific failure. 

3 Simulation 

We now turn to the simulation of hybrid systems. Simulation is operational in nature. 
In contrast, the system specification provided by CSS relies on relations, which are' 
intrinsically nonoperational. This raises the issue of converting a system specification 
into an equivalent simulation. In this context, since we naturally wish to generate 
efficient simulations, we restrict our attention to incremental simulations. For instance, 
Markov chains or stochastic automata can be simulated incrementally by employing the 
Kolmogorov chain rule to generate the states one at a time. Such a feature is obviously 
mandatory for real-time applications. 

Consider a pair (X, Y) of standard random variables with joint distribution p(x, y). 
These two random variables can be simulated incrementally by employing the following 
procedure. 

1. Compute the marginal 
p(x) = E p ( x , y )  (3.1) 

y 
of p with respect to X.  
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2. Compute the conditional distribution p(ylx) = p(x, y)/p(x) of Y given X, so that 
we obtain the following factorization, also known as Bayes rule: 

p(z, g) = p(vlx)p(x).  (3.2) 

3. Draw X at random following the marginal p(x), and then, for a given X, draw Y 
at random according to the conditional distribution p(ylX). 

We now generalize this technique to the case of hybrid systems. 

3.1 Compressing the random part of a system 

Since randoms are hidden, only their visible effect upon the system variables is of 
interest. But as we have already seen in example (2.2), the domain Vw of all randoms 
may include too many details. For example, consider a pair (W1, W2) and assume that 
W1 is visible but not W2. The corresponding CSS model has a single variable Xl and 
constraint Xl = W1. Since W2 is unneeded, it can be removed from the original system 
by computing the compressed distribution pet(w1) : ~02  P( z~ w2), which for this 
simple case reduces to the marginal distribution with respect to Wl. This is just an 
elementary case of the compression operation we now introduce. 

To a system ~r, we can associate the following equivalence relation between randoms 

w ,-,,~ w' iff Vx : g2(x;w) r g2(x,w'), (3.3) 

which just indicates that two randoms w and w' are equivalent if they cannot be 
distinguished by the variables. Accordingly, a set /3 C_ Vw is visible through the 
variables if and only if it satisfies the property 

WCBw} w' w ~ ~ E B .  (3.4) 

It is natural to restrict p to the sets of randoms satisfying this condition. Note in this 
respect that the family 14; of all sets B satisfying the condition (3.4) forms a or-algebra, 
since it is closed under intersection and eomplementation, and contains the empty set. 
Hence, in order to characterize the random behavior of the system 7r, we only need to 
specify the conditional probability P(. I W) of P given W. This can be accomplished by 
constructing what we shall call the compression 7rot of 7r. The compression is obtained 
from 7r and the equivalence relation ,,~,~ in the following manner. 

1. First, we compress the set Vw of random experiments by retaining only the equiva- 
lence classes of the relation ~ .  Thus, an experiment w belongs to an equivalence 
class wet, and the set of all equivalence classes forms the compressed domain V~o. 

2. Compress the relation 12 accordingly, by setting 

g2co(X ;wet) -~ ~2(x ;w) for w E wet. (3.5a) 

3. Finally, to each equivalence class wet of randoms, we assign the probability 

peo(W~o) ~ ~ p(w).  (3.5b) 
 9 o E Woo 
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Two systems 7r and 7r r admitting the same compressed form are said to be equivalent, 
which is denoted as 

7r = 7r'. (3.6) 

Since the procedure employed to compress a system does not affect its external behavior 
as seen from the variables, we have the following result. 

Theorem 3.1 IfTri = {Xi, 12i,Wi,pl} i = 1,2 are equivalent in the sense of(3.6), 
they cannot be distinguished under simulation. In particular, they have 

1. the same variables: X1 = X2 ; 
2. the same parity checks: V21 = V22 ; 
3. the probability spaces { Vwa~ , 14;i, Pi} are isomorphic, so that there exists a one-to- 

one map qS from the a-algebra 1421 onto W2 such that VB1 C l'Pl, P2(~b(B1)) = 
PI(B1). 

The property 
71" ~ FLAT(W) [ 7r, (3.7) 

which is proved in [1], is a straightforward consequence of the notion of system equiv- 
alence. This identity generalizes to hybrid systems the idempotence of composition 
property 7r I 7r = 7r of purely non-stochastic systems. 

Although the factorization (3.2) cannot be extended directly to hybrid stochastic/non- 
stochastic systems, by employing Theorem 3.1, we develop below a general procedure 
for decomposing an arbitrary hybrid system x into marginal and conditional compo- 
nents which extends the factorization (3.2) of standard probability distributions. This 
decomposition will provide the key element required for incremental system simulation. 

3.2 Two primitives 

Consider a system lr = {X, ~2, W, p} and a subset of variables X' C X. The concepts of 
marginal and conditional distributions can be extended to hybrid systems by constructing 
the marginal and conditional systems 

Sx, (Tr) and Sx, (Tr) 

respectively, where S represents here a mnemonic for Simulation. 

The marginal. It consists of eliminating from lr the variables not in X', which gives 

Sx, (~r) = {X', D', W, p)  , (3.8) 

where I2' denotes the relation obtained by employing the existential qualifier 3 to 
eliminate from s the variables not in X', so that 

~ ' ( x ' ; w)  ~ ~x" :  s ((:~',x"); w) . (3.9) 

Note that neither the set ofrandoms W nor the density p are changed by this construction, 
which involves only tracking the effect of the projection of X onto X' in the relation g2. 
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The conditional. The conditional system has the structure 

Sx, (70 = (X, Y2, W, p"} , (3.10a) 

where the distribution p" is selected such that the factorization 

--- Sx' (-) ] Sx, (~) (3.lOb) 

holds. Note that the relation = indicates that both sides have the same compressed form. 
The decomposition (3.10b) represents the extension to hybrid systems of the factor- 
ization (3.2) of a probability distribution into marginal and conditional components. A 
constructive proof of existence of the conditional is given in [ 1]. 

Notation. In the following, it will be convenient to extend the definition of Sz (Tr) and 
Sz Qr) to the case where Z is not necessarily a subset of the variables X of 7r, by denoting 

Sz(Tr) ~ Sznx(er) , Sz(Tr) zx Sznx(~r) . (3.11) 

3.3 Properties of the primitives 

The  operations that we have just introduced admit a number of algebraic properties 
which are stated in [1]. We shall only discuss here the very nature of system interaction. 
In what follows, f o 9(z) denotes the composition of maps f (9(x) ) .  

Systems with no shared variables have no interaction, and involve independent 
families of randoms. Hence if 7rl and 7r2 have no shared variables, in order to simulate the 
composition 7rl [ 7r2, we only need to simulate 7rl and 7r2 separately. This corresponds 
to the easiest, but trivial, case of incremental simulation. But our discussion at the 
beginning of this section indicates that incremental simulation can be performed under 
more general circumstances. Specifically, the reason why the factorization (3.2) allows 
the simulation of first X followed by Y is that combining p(gla:) with p(z) does not 
modify the behavior of X. In other words, p(~tlx ) represents totally new information 
with no bearing on X. This feature leads us to introduce the notion of innovation which 
extends to hybrid systems the familiar concept of innovations process in filtering and 
detection theory. 

Definition 3.1 (innovation) Let 7ri and Xi i = 1,2 be two systems and their variables. 
If  Y denotes an arbitrary set of variables, the system 7r2 is said to be a Y-innovation of 
7h, which we denote as 

7f 2 Il y ~1  

if 
Sx, uv o Sy @2) I Sv (Tq) = Sv @1)  9 (3.12) 

Thus, 7rz represents a Y-innovation of  Trl if composing Sy (~r2) with Sv (Th) does not 
modify Sv @1). More intuitively, this means that given Y, the interaction between 7rl 
and 7r2 is oriented from 7q to 7r2. For the special case when Y is empty, we just say that 
7r2 is an innovation of  Tq, which is written as 7r2 & ~rl. 
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From the above definition and comments it is clear that the relations IIv and 
3_ are not commutative. Also the selection of  the conditioning set Y affects strongly 
whether a system constitutes an innovation of  another. For example, if X1 fq X2 C Y, 
the two relations 7rl 2-v 7r2 and 7r2 lie 7rl hold trivially. The concept of  innovation will 
form the basis for the derivation of  compilation rules for decomposing a system into 
an ordered sequence of  subsystems which can be simulated in accordance to this order. 
The compilation rules will rely on the following properties of  innovations. 

L e m m a  3.1 Given an arbitrary system 7r, and a subset X t o f  its variables, we have 

Sx, (70 3_ Sx, (70 , (3.13) 

i.e. the conditional innovates with respect to the marginal. Furthermore, i f  Tr2 3_y 7q, 
i.e. 7r2 is a Y- innovat ion o f  Trl, the following identities hold: 

Sx, uv ( Sv (~r2) } Sv  (~1) ) = Sy (7ri) 

SV (71"1 I 71"2) ~ SV (71"1) I S y  (71"2) 

SY (71"1 I 71"2) ~ SY (71"1) I SY (71"2)  9 

(3.14) 

(3.15) 
(3.16) 

3.4 Incremental system simulation 

Consider now a compound system of the form 

7r = [i~z 7ri (3.17) 

where I denotes a finite index set. We seek to develop an incremental simulation 
procedure for such a system, so as to be able to evaluate progressively the probabilities 
of  complex events. 

Graphical representation. Let 7rl and 7r2 be two systems admitting a nonempty set X 
of  common variables. For these two systems, we employ the graphical notation 

if [ 7r2 is not an innovation of  7rl, and (3.1 8a) 7r 2 
t 7ri is not an innovation of  7r2. 7q X 

Similarly, we write 

7fl 

and 

X "/7r2 if [ 7r2 is an innovation of  7r1, but (3. 18b) 
t 7rl is not an innovation of  7r2, 

X < > 71" 2 if [ 7r2 is an innovation of  7rl and (3.18c) 71" 1 < > 
t 7r1 is an innovation of  7r2. 

Obviously, it is rather uncommon that two systems should be mutual innovations, and 
still share common variables. However, this situation may occur in certain instances, 
such as when 7rl = 7r2 = 7r with 7r non-stochastic, since in this case the composition 
rule 7r [ 7r _ 7r implies 7r is its own innovation. 
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Next, consider each pair (Trl, ~rj) of components of the compound system 7r given 
by (3.17). If 7rl and 7rj share common variables, we say they are neighbors and draw a 
branch between them. The choice of branch orientation or the lack thereof depends on 
which of the three cases (3.18a)-(3.18c) holds. In this manner, we generate a bipartite 
graph, where systems and variables alternate, which we call the execution graph of 7r, 
and denote by 

EXECGRAPH (Tr) . 

This graph has the effect of visualizing all the statistical dependency relations existing 
between the variables of subsystems 7rl, i E I. 

It is worth noting that graphs of a similar nature have been introduced recently 
by a number of authors under the name of influence diagrams, or belief networks, to 
perform local computations on large networks of interconnected conditional probability 
distributions [26, 24, 25] or belief functions [23, 31]. Such networks, as well as the 
execution graphs described above, find their root in the standard graphical representation 
of Markov random fields in terms of cliques of neighbors [27]. However, while the graphs 
of Markov random fields are undirected, like the branches produced in (3.18a), the goal 
of belief networks is to perform local computations in a causal manner, which as will 
be shown below, requires a directed acyclic graph. At this stage, the execution graph 
associated to a compound system 7r of the form (3.17) is in general partly undirected, 
and partly directed. Our objective is now to develop compilation rules for transforming 
this graph into a directed one. 

Graph compilation. The structure of the execution graph of a compound system pro- 
vides all the information required to determine whether this system can be simulated 
incrementally, as shown by the following result. 

Lemma 3.2 Consider a partition I = J U j c  with J n J~ -- @, f o r  which we write 

1. We have 

. 

X j = set o f  private variables o f  Tr j 

X3  = set o f  private variables o f  Tr~j 
C OX = set o f  shared variables o f  Tr j and 7r j . 

Sxj(zr) = Sxj  (~rj [Sox(Zr}) )  . (3.19) 

Under the stronger assumption 

c c ( 3 . 2 0 )  ~rj > O X  >~rj or 7rj < > O X  < > T r j ,  

the identity (3.19) reduces to 

Sxj  (Tr) = Sxj  (~rj) , (3.21) 

which indicates that to simulate the variables X j  o f  the compound system 7r, we 
only need to simulate the subsystem 7r j .  
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Based on the above lemma, we can readily determine from the execution graph of 
a compound system 7r whether this system can be simulated incrementally. 

T h e o r e m  3 . 2  A compound system 7r of  the form (3.17) admits an incremental simula- 
tion if  and only if  EXECGRAPH (70 is an acyclic directed graph. This means that this 
graph contains no undirected branch of  the form (3.18a), and no directed cycle. When 
determining whether the graph contains cycles, all bidirectional branches of  the form 
(3.18c) can be used as "wild cards" whose orientation can be selected so as to break 
potential cycles. 

As a side remark, note that fixed-point equations of the form (3.19) can be solved 
iteratively by employing stochastic relaxation methods such as the Metropolis algo- 
rithm or the Gibbs sampler [4]. However, such schemes fall outside the scope of the 
incremental simulation procedures described here. 

Next, since most compound systems of the form (3.17) usually give rise to execution 
graphs which contain either undirected branches or cycles, it is of interest to develop 
transformation/compilation rules, which when applied to a given system 7r, will yield a 
new system which can be incrementally simulated. In doing so, we restrict our attention 
to transformations which preserve the local connectivity of EXECGRAPH (Tr). Otherwise, 
we could always aggregate all the subsystems 7r~ and their v~iables into the full 7r sys- 
tem which contains only one increment, and thus admits a trivial, but uninteresting, 
incremental simulation. Consequently, we require for the time being that the transfor- 
mations applied to 7r should preserve the structure of the interaction graph obtained by 
removing all branch orientations from EXECGRAPH (70, as well as the variables Xi of 
the subsystems forming its vertices. 

Theorem 3.3 Given a compound system 7r whose interaction graph forms a tree, we 
can transform 7r into an equivalent system 7r I such that ExECGRAPH (Tr I) is a directed 
tree, and is thus amenable to incremental simulation. 

PROOF : Since the interaction graph of 7r forms a tree, the index set I admits a natural 
distance, where for i , j  E 1, d ( i , j )  = k if the unique path linking 7rl to 7rj has k 
branches. Select now an arbitrary node i0 C I as the root of the tree. A partial partial 
order can be defined over I by considering the distance of i to i0. Thus we write i ~ j 
if i is closer to i0 than j .  Consider the following rules : 

RULE 1 : Select i E I,  and let i_ be the unique neighbour of i such that i_ -4 i, i.e. 
i_ denotes the parent of i. If 7ri and 7r~_ share variables, and 7r~ is not already an 
innovation of 7ri_, then factor 7ri as 

7ri - Sxi_ (Tri) I Sx,_ (Tri) , (3.22) 

otherwise do nothing. Here, X~_ denotes the set of variables of 7r~. 
RULE 2 : If the factorization (3.22) has been performed, reorganize the compound sys- 

tem 7r by rewriting 
7ri_ I 7ri - 7r~_ I 7r~ (3.23a) 
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with 
, zx , zx Sx~_ (Tri) . (3.23b) ~ , _  = ~'~- I ~x,_ (~-~) ~'~ = 

This reorganization clearly preserves the structure of the interaction graph of 7r, as 
well as the variables of subsystems 7ri_ and ~rl. 

The index set I can be ordered so that successive indices i are nonincreasing with 
respect to the partial order -<. By successively applying RULE 1 and RULE 2 tO this 
sequence, we find that once the transformation (3.23a)-(3.23b)has been applied to node 
i, the new system 7r' includes the branch 

! ! 7r~_ > Xi_,i > 7r i (3.24) 

' and in its execution graph, where Xi_,i represents the set of shared variables of 7ri_ 
' ' may ' Then when RULE 1 and RULE 2 are subsequently applied to system 7ri_, 7ri_ 7r i . 

change, but the orientation of the branch (3.24) remains the same. Thus, to transform 
the given tree into a fully oriented tree, we need to apply the rules only once at each 
node of the tree, by moving gradually from its extremities towards its root i0, so that 
the complexity of the compilation procedure is proportional to the cardinality of I.  Note 
that in the above procedure, the choice of root i0 is completely arbitrary. [] 

3.5 The SIG simulation compiler 
We now implement the marginal and conditional primitives in the SIG language, and 
use them to incrementally simulate compound systems. Let SYSTEM denote a system 
and X, Y be two of its variables. The two operators 

extract X,Y in SYSTEM 
given X,Y SYSTEM 

denote respectively the marginal Sx,y (SYSTEM) and conditional ,gx,y (SYSTEM). 
To illustrate the application of these operators, we consider the HMM example. As a 

first step, examine the system 

system HMM_inc = (integer N) 
( variable X[i] i=0 to N, Y[i] i=l to N } 
(I x[o] = 0 
I loop i=l to N 

(I given X[i-l] potential U(X[i-I],X[i]) 
I given X[i-l],X[i] potential V(X[i-l],X[i],Y[i]) 

"statements are used, the ZIG program 

]) 
end 

end . 

Sinceonly" given ... potential ... 

HMM_inc admits the execution graph 

71" 0 --+ X O ~  1 ---+ 71-1---.+ ~ l ~ X 2  ----> 71- 2 

~ . . . . . .  

o-1 ~  

where the subsystems appearing in the graph are defined by 

7 r N _  1 ~ X N _ I , X  N ~ 7r N 

1 
O-N 

( 3 . 2 5 )  
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PI[i] ::= given X[i-l] potential U(X[i-I],X[i]) 
SIGMA[i[ ::= given X[i-l],X[i] potential V(x[i-I] ,X[i] ,Y[i]) 

Since this execution graph is an oriented tree, according to Theorem 3.2, we can simulate 
HEM 2 n c  "on-line" for increasing values of  the index i .  On the other hand, this is not 
the case if we consider the original HMM program, even if it contains only g i v e n  . . .  
statements, because of  the presence of the two-point boundary-value condition 

(I x[0] = 0 
[ X [ N ]  = X _ m ~ :  
f) 

In fact, the execution graph of HMM takes the form 

"frO - -  X O ~ X l  - -  7 i ' 1 - -  X I ~ X 2  - -  7r2  " f N - 1  - -  X N - I ~ X N  - -  " f i N  

[ I . . . . . .  I (3.26) 
o- 1 0- 2 o- N 

It is a nonoriented tree, which can be transformed into a directed one by employing the 
two compilation rules described in the proof  of  Theorem 3.3. The algorithm proceeds in 
two phases: we first apply the rules to the vertical branches of  the tree, which model the 
HMM observations, and then perform a right to left sweep over the horizontal branches, 
which model the Markov chain dynamics. 

I. Applying RULE I, the potential V(X[i-I] ,X[i] ,Y[i] ) can be decom- 
posed as follows, where <=> means = : 

potential V(X[i-l],X[i],Y[i]) 
<=> 
(I extract X[i-i],X[i] in potential V(X[i-l],X[i],Y[i] 
I given X[i-l],X[i] potential V(X[i-I],X[i],Y[i]) 

For each index i ,  the subsystem 

SIGMA[i[ : := given x[i-l],X[i] potential V(X[i-l] ,x[i] ,Y[i]) 

is an innovation with respect to all other subsystems, and is executable as soon as 
X [ 2 - 1  ] and X [ i ] have been simulated. 

2. Applying RULE 2, define 

PI [i] : := 
(I extract X[i-l],X[i] in potential V(X[i-I] ,x[i],Y[i]) 
[ potential U(X[i-I],X[i]) 
[) 

where the boundary constraints X [ 0 ] = 0 and x [N] : X_MAX need also to be 
included for i = 1 and i = N, respectively. 

3. Recursively, for i decreasing from N to 1, 
(a) apply RULE 1 and decompose 

P I [ i ]  <=>  ([ e x t r a c t  X [ i - 1 ]  i n  P I [ i ]  
[ given x[i-l] PI[i] 
[) ; 

(b) apply RULE 2 and redefine 
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PI[i] ::= (] given X[i-l] PI[i] 

l) 
PI[i-l] ::= (l extract x[i-l] in PI[i] 

[ P i  [i-i] 
l) 

The resulting system is equivalent to the original one, and has the execution graph 
(3.25), so that it is ready for simulation. 

4 Discussion and Conclusions 

We have introduced the CSS model and associated SIG minilanguage for describing 
stochastic/non-stochastic systems. CSS is a relational model where systems are defined 
by relations and unnormalized probability densities. This feature has several advantages. 
First, it makes the definition of the composition operation" ] "relatively easy. Second, 
it provides us with a simple mechanism for specifying the conditional behavior of a 
system given that certain contraints are satisfied, which has the potential to be very 
useful when tracking cascades of events leading to system failures. 

However, the system specification provided by CSS is generally not executable, 
i.e., it does not readily lead to a system implementation. To convert it to a form which 
can be simulated, we rely on a compilation, which examines the dependency relations, 
both non-stochastic and statistical, existing between the system variables. This com- 
pilation employs two operations. The marginal S (.) and conditional S (.) extend to 
hybrid systems the standard marginal and conditional probability distributions of fully 
probabilized systems. With their help, we were able to introduce the notion of inno- 
vation, whereby 7r' is an innovation of 7r if, roughly speaking, 7r' does not influence 
7r in the composition 7r [ 7r', but 7r may influence 7r', so that the interaction between 
7r and 7r' is oriented, and 7r [ 7r' is amenable to incremental simulation. In general, 
systems interact in a non-oriented way. When the interaction graph of a system forms 
a tree, we have presented rules which can be used to convert the tree into a directed 
one while preserving equivalence of the compound system. In combination with the 
results of [26] for aggregating a triangulated graph into a tree, these rules can be used 
to compile arbitrary interaction graphs. A SIG implementation of the compilation rules 
was presented. Finally, it turns out that our simulation results can be adapted, with minor 
modifications, to the hidden state estimation of hybrid systems. We only need to replace 
the ~ by the max in performing random compression. 

Although CSS is obviously related to the theory of belief functions and belief 
networks developed in [20, 21, 22, 23], it differs from it in several respects. First, 
as mentioned earlier, unlike the Dempster-Shafer approach which relies on upper and 
lower probabilities in the space Vx of visible variables, we keep track of probability 
distributions on the random configurations. Second, through the introduction of the 
concept of innovation, which does not appear in the belief networks literature, CSS 
provides concrete solutions to basic problems such as hybrid system simulation and 
estimation. To our knowledge, no other approach offers this range of facilities. 

The research presented here can be extended in several directions, we discuss only 
two of them, see [1] for more details. 
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- A first issue involves the introduction of two features currently missing from CSS, 
namely the specification of timing information, or the absence thereof, and the ability 
to define hybrid systems over infinite time intervals. These two features are already 
present in the previously introduced SIGlCalea language [17], which represents an 
an extension of the SIGNAL synchronous real-time language [32, 33, 34]. The 
SIGN~lea language generalizes stochastic Biichi automata, Petri nets, and  our SIG 
minilanguage. But the mathematical foundations of  SICNalea in [ 17] are somewhat 
shaky and estimation is not included. Thus, generalizing CSS to SIGYalea is a high 
priority task, particularly since SIGNalea is currently under implementation. 

- Also, our results need to be tested on real applications. Two applications of SIGNalea 
are now under consideration. The first one involves the implementation for Elec- 
trict6 de France of the nonintrusive appliance load monitoring scheme proposed 
in [6], which presents strong similarities with speech recognition, and for which 
Viterbi-style estimation algorithms are expected to be successful. A second potential 
application in the area of  power generation concerns the design of a monitoring and 
diagnostic system from its risk analysis description. In this context, we would like 
to determine whether our relational model, because of its ability to track cascades 
of  events leading to specific failures, presents advantages for risk analysis. 

References 

1. A. Benveniste, B. Levy, E. Fabre, and R L. Guemic, "A calculus of stochastic systems for 
the specification, simulation, and hidden state estimation of hybrid stochastic/non-stochastic 
systems," Tech. Rep. to appear, Institut National de Recherche en Informatique et Automa- 
tique, Rocquencourt, France. 

2. N. Viswanadham and Y. Narahari, Performance Modeling of Automated Manufacturing Sys- 
tems. Englewood Cliffs, NJ: Prentice Hall, 1992. 

3. L. R. Rabiner and B. H. Juang, "An introduction to hidden Markov models," 1EEE ASSP 
Magazine, vol. 3, pp. 4-16, Jan. 1986. 

4. S. Geman and D. Geman, "Stochastic relaxation, Gibbs distribution, and the Bayesian 
restoration of images," 1EEE Trans. on Pattern Analysis and Machine Intelligence, vol. 6, 
pp. 721-741, Nov. 1984. 

5. R. C. Dubes and A. K. Jain, "Random field models in image analysis," J. Applied Stat., 
vol. 12, pp. 131-164, 1989. 

6. G. W. Hart, "Nonintrusive applicance load monitoring," Proc. IEEE, vol. 80, pp. 1870-1891, 
Dec. 1992. 

7. M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes : Theory and Applications. 
Englewood Cliffs, NJ: Prentice Hall, 1993. 

8. T. Soderstrom and P. Stoica, System Identification. Englewood Cliffs, NJ: Prentice Hall, 
1989. 

9. M. Molloy, "Performance analysis using stochastic Petri nets," IEEE Trans. Computers, 
vol. 31, pp. 913-917, Sept. 1982. 

10. B. Plateau and K. Atif, "Stochastic automata network for modeling parallel systems," 1EEE 
Trans. on Software Engineering, vol. 17, pp. 1093-1108, Oct. 1991. 

11. B. Plateau and J.-M. Foumeau, "A methodology for solving Markov models of parallel 
systems," J. Parallel and Distributed Comput., vol. 12, pp. 370-387, 1991. 



169 

12. H. Hansson and B. Jonsson, "A calculus for communicating systems with time and probabili- 
ties," in Proc. of the l l th IEEE Real-Time Systems Symposium, (Los Alamitos), pp. 278-287, 
Dec. 1990. 

13. B. Jonsson and K. Larsen, "Specification and refinement of probabilistic processes," in Proc. 
6th IEEE Int. Symp. on Logic in Computer Science, (Amsterdam), pp. 266--277, July 1991. 

14. A. Giacalone, C. Jou, and S. Smolka, "Algebraic reasoning for probabilistic concurrent sys- 
tems," in Proc. IFIP TC2 Working Conference on Programming Concepts and Methods, 
1989. 

15. S. Hart and M. Sharir, "Probabilistic propositional temporal logic," Information and Control, 
vol. 70, pp. 97-155, 1986. 

16. R. Alur, C. Courcoubetis, and D. Dill, "Model checking for probabilistic real-time systems," 
in Proc. 18th Int. Coll. on Automata Languages and Programming (ICALP), 1991. 

17. A. Benveniste, "Constructive probability and the SIGYalea language: Building and handling 
random processes with programming," Tech. Rep. 1532, Institut National de Recherche en 
Informatique et Automatique, Rocquencourt, France, Oct. 1991. 

18. B. C. Levy, A. Benveniste, and R. Nikoukhah, "High-level primitives for recursive maxi- 
mum likelihood estimation," Tech. Rep. 767, IRISA, Rennes, France, Oct. 1993. 

19. G. D. Forney, "The viterbi algorithm," Proc. IEEE, vol. 61, pp. 268-278, Mar. 1973. 
20. A. E Dempster, "Upper and lower probabilities induced by a multivalued mapping," Annals 

Math. Statistics, vol. 38, pp. 325-339, 1967. 
21. A. P. Dempster, "A generalization of Bayesian inference (withdiscussion)," Royal Stat. Sot., 

Series B, vol. 30, pp. 205-247, 1968. 
22. G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ: Princeton Univ. Press, 1976. 
23. E E Shenoi and G. Shafer, "Axioms for probability and belief function propagation," in 

Uncertainty in Artificial Intelligence (R. D. Shachter, T. S. Levitt, L. N. Kanal, and J. E 
Lemmer, eds.), vol. 4, pp. 16%198, Amsterdam: North-Holland, 1990. 

24. J. Pearl, "Fusion, propagation, and structuring in belief networks," Artificial Intelligence, 
vol. 29, pp. 241-288, Sept. 1986. 

25. M. A. Peot and R. D. Shachter, "Fusion and propagation with multiple observations in belief 
networks," Artificial Intelligence, vol. 48, pp. 299-318, 1991. 

26. S. L. Lauritzen and D. J. Spiegelhalter, "Local computations with probabilities on graphical 
structures and their application to expert systems (with discussion)," J. Royal Stat. Soc., 
Series B, vol. 50, pp. 157-224, 1988. 

27. R. Kindermann and J. L. Snell, Markov Random Fields and their Applications. Providence, 
RI: American Mathematical Society, 1980. 

28. C. Robert, ModUles Statistiques pour l'Intelligence Artificielle. Paris: Masson, 1991. 
29. B. Prum and J. Fort, Stochastic Processes on a Lattice and Gibbs Measure. Boston, MA: 

Kluwer Acad. Publ., 1991. 
30. C. Dellacherie and E Meyer, Probabilitds et Potentiels. Paris: Hermann, 1976. 
31. A. E Dempster, "Construction and local computation aspects of network belief functions," 

in Influence Diagrams, Belief Nets, and Decision analysis (R. M. Oliver and J. Q. Smith, 
eds.), ch. 6, pp. 121-141, Chichester, England: J. Wiley, 1990. 

32. E Le Gueruic, T. Gauthier, M. Le Borgne, and C. Le Maire, "Programming real-time appli- 
cations with SIGNAL" Proc. IEEE, vol. 79, pp. 1321,1336, Sept. 1991. 

33. A. Benveniste and E Le Gueruic, "Hybrid dynamical systems theory and the SIGNAL lan- 
guage," IEEE Trans. Automat. Contr., vol. 35, pp. 535-546, May 1990. 

34. A. Benveniste, M. Le Borgne, and P. Le Guernic, "Hybrid systems : the SIGNAL approach," 
in Lecture Notes in Computer Science, vol. 736, pp. 230-254, Berlin: Springer Verlag, 1993. 


