Skip to main content

Hybrid control of a robot — a case study

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 999))

Abstract

An experiment with a distributed architecture to support a hybrid controller for a robot is described. For a desired trajectory, the controller plans a schedule for switching between a fixed set of control functions. Initial results indicate that the proposed architecture is better at achieving a desired trajectory than conventional control algorithms. The experiment also illustrates a division of concerns between software engineering and control engineering. Development of controlling realtime state machines and their mapping to processors and network is the task of software engineering, while the control engineer must identify plant phases, switching conditions and relevant control laws. These define algorithms for a planner and for the control functions. The format of schedules produced by the planner and the algorithms constitute the interface to software developers.

Supported by the Danish Technical Research Council under the Co-design and IMCIA projects. This paper was written while Anders P. Ravn was visiting professor at Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel, Germany, supproted by the German Research Council.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. Antsaklis, J. A. Stiver, and M. Lemmon. Hybrid systems modeling and autonomous control systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of LNCS, pages 366–392, 1993.

    Google Scholar 

  2. A. Back, J. Guckenheimer, and M. Myers. A dynamical simulation facility for hybrid systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of LNCS, pages 255–267, 1993.

    Google Scholar 

  3. F. Conrad et al. On mechanical design and digital adaptive control of the fast tud-hydralic test robot manipulator. In ASME WAM'91, volume 91-WA-FPST-9. American Society of Mechanical Engineering, 1991.

    Google Scholar 

  4. F. Conrad et al. Transputer control of hydralic actuators and robots. IEEE Trans. on Industrial Electronics, October 1995.

    Google Scholar 

  5. D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8:231–274, 1987.

    Google Scholar 

  6. Jifeng He, C. A. R. Hoare, M. Fränzle, M. Müller-Olm, E.-R. Olderog, M. Schenke, M. R. Hansen, A. P. Ravn, and H. Rischel. Provably correct systems. In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors, Formal Techniques in Real-Time and Fault-Tolerant Systems, volume 863 of LNCS, pages 288–335, 1994.

    Google Scholar 

  7. M. Holdgaard, T. J. Eriksen, and A. P. Ravn. A distributed implementation of a mode switching control program. In Proceedings of 7th Euromicro Workshop on Real-Time Systems. IEEE Computer Society Press, 1995.

    Google Scholar 

  8. M. Lemmon, J. A. Stiver, and P. J. Antsaklis. Event identification and intelligent hybrid control. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of LNCS, pages 268–296, 1993.

    Google Scholar 

  9. O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In J. W. de Bakker, C. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real-Time: Theory in Practice, REX Workshop, volume 600 of LNCS, pages 447–484, 1992.

    Google Scholar 

  10. Z Manna and A. Pnueli. Verifying hybrid systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of LNCS, pages 4–35, 1993.

    Google Scholar 

  11. S. Nadjm-Tehrani and J.-E. Strömberg. From physical modelling to compositional models of hybrid systems. In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors, Formal Techniques in Real-Time and Fault-Tolerant Systems, volume 863 of LNCS, pages 583–604, 1994.

    Google Scholar 

  12. Simin Nadjm-Tehrani. Reactive Systems in Physical Environments. PhD thesis, Dept. Comp. and Inf. Science, Linköping University, Sweden, May 1994. Linköping Studies in Science and Technology, Dissertation no. 338.

    Google Scholar 

  13. A. Nerode and W. Kohn. Models for hybrid systems: Automata, topologies, controllability, observability. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of LNCS, pages 317–356, 1993.

    Google Scholar 

  14. A. Nerode and W. Kohn. Multiple agent hybrid control architectures. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of LNCS, pages 297–316, 1993.

    Google Scholar 

  15. R. Piché, S. Pohjolainen, and T. Virvalo. Design of robust controllers for position servos using H theory. Journal of Systems and Control Engineering, 205, 1991.

    Google Scholar 

  16. A. Pnueli. Development of hybrid systems (extended abstract). In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors, Formal Techniques in Real-Time and Fault-Tolerant Systems, volume 863 of LNCS, pages 77–85, 1994.

    Google Scholar 

  17. A. P. Ravn and H. Rischel. Requirements capture for embedded real-time systems. In Proc. IMACS-MCTS'91 Symp. on Modelling and Control of Technological Systems, volume 2, pages 147–152. IMACS, May 1991.

    Google Scholar 

  18. A. P. Ravn, H. Rischel, and K. M. Hansen. Specifying and verifying requirements of real-time systems. IEEE Trans. Software Engineering, 19(1):41–55, January 1993.

    Google Scholar 

  19. Jan-Erik Strömberg. A mode switching modelling philosophy. PhD thesis, Dept. El. Eng., Automatic Control Group, Linköping University, Sweden, October 1994. Linköping Studies in Science and Technology, Dissertation no. 353.

    Google Scholar 

  20. Xinyao Yu, Ji Wang, Chaochen Zhou, and P. K. Pandya. Formal design of hybrid systems. In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors, Formal Techniques in Real-Time and Fault-Tolerant Systems, volume 863 of LNCS, pages 738–755, 1994.

    Google Scholar 

  21. Zhou Chaochen, A. P. Ravn, and M. R. Hansen. An extended Duration Calculus for hybrid real-time systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of LNCS, pages 36–59, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Panos Antsaklis Wolf Kohn Anil Nerode Shankar Sastry

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ravn, A.P., Rischel, H., Holdgaard, M., Eriksen, T.J., Conrad, F., Andersen, T.O. (1995). Hybrid control of a robot — a case study. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds) Hybrid Systems II. HS 1994. Lecture Notes in Computer Science, vol 999. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60472-3_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-60472-3_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60472-3

  • Online ISBN: 978-3-540-47519-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics