Skip to main content

Inductive modeling: A framework marrying systems theory and non-monotonic reasoning

  • Conference paper
  • First Online:
Hybrid Systems II (HS 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 999))

Included in the following conference series:

Abstract

This article develops a framework for inductive modelling that works at the input/output level of system description. Rather than attempt to construct a state-space model from given observed data, an inductive modeler can employ non-monotonic logic to manage a data base of observed and hypothesized input/output time segments. Also, some basic criteria are established to guide the evaluation of the inductive modeler's performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Asahi and B.P. Zeigler. “Behavioral characterization of discrete-event systems”. In AI, Simulation and Planning in High-Autonomy Systems, pages 127–132, Tucson, AZ, Sept 1993. IEEE/CS Press.

    Google Scholar 

  2. P. Besnard. An Introduction to Default Logic. Springer-Verlag, New York, 1989.

    Google Scholar 

  3. D. Bobrow. Special Volume on Non-Monotonic Reasoning. Artificial Intelligence, 13(1–2), 1980.

    Google Scholar 

  4. G. Brewka. Nonmonotonic Reasoning: Logical Foundations of Commonsense. Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  5. F. E. Cellier. Continuous System Modeling. Springer-Verlag, New York, 1991.

    Google Scholar 

  6. E. Davis. Representation of Commonsense Knowledge. Morgan Kaufmann, San Mateo, CA, 1990.

    Google Scholar 

  7. J. de Kleer. “An assumption based truth maintenance system”. Artificial Intelligence, 28(2):127–162, 1986.

    Google Scholar 

  8. A.P. Dempster. “A generalization of bayesian inference”. Journal of the Royal Statistical Society, Series B, 30(2):205–247, 1968.

    Google Scholar 

  9. J. Doyle. “A truth maintenance system”. Artificial Intelligence, 12(1):231–272, 1979.

    Google Scholar 

  10. P.A. Fishwick. Simulation model design and execution. Department of Computer Science and Information Sciences, University of Florida, November 1993.

    Google Scholar 

  11. K.D. Forbus and J. de Kleer. Building Problem Solvers. MIT Press, Cambridge, 1993.

    Google Scholar 

  12. M. Genesereth and N.J. Nilsson. Logical Foundations of Artificial Intelligence. Morgan Kaufmann, 1987.

    Google Scholar 

  13. M.L. Ginsberg. Essentials of Artificial Intelligence. Morgan Kaufmann, San Mateo, CA, 1993.

    Google Scholar 

  14. S. Grossberg. Neural Networks and Natural Intelligence. MIT Press, 1988.

    Google Scholar 

  15. S.I. Hayakawa and A.R. Hayakawa. Language in Thought and Action, Fifth Edition. Harcourt Brace Jovanovich, Publishers, Orlando, Florida, 1990.

    Google Scholar 

  16. J.R. Hobbs and R.C. Moore, editors. Formal Theories of the Commonsense World. Ablex Publishing Corporation, Norwood, New Jersey, 1985.

    Google Scholar 

  17. D. Kirsh. Special Volume on Foundation of Artificial Intelligence. Artificial Intelligence, 47(1):1–346, 1991.

    Google Scholar 

  18. G.J. Klir. Architecture of Systems Problem Solver. Plenum Press, New York, 1985.

    Google Scholar 

  19. R.G. Laha. Probability Theory. John Wiley and Sons, New York, 1979.

    Google Scholar 

  20. M.L. Ginsberg M. Reinfrank, J. de Kleer and E. Sandewall, editors. 2nd International Workshop on Non-Monotonic Reasoning, New York, June 13–15 1988. LNCS 346, Springer-Verlag.

    Google Scholar 

  21. J.L. Mackey. The Cement of the Universe: A Study of Causation. Oxford University Press, 1974.

    Google Scholar 

  22. V.W. Marek and M. Truszcynski. Nonmonotonic Logic: Context-Dependent Reasoning. Springer-Verlag, New York, 1993.

    Google Scholar 

  23. J.P. Martin and M. Reinfrank, editors. Truth Maintenance Systems, Stockholm, Sweden, August 6 1991. ECAI-90 Workshop, Springer-Verlag.

    Google Scholar 

  24. D.A. McAllester. An outlook on truth maintenance. Technical Report AIM-551, MIT, 1980.

    Google Scholar 

  25. J. McCarthy. Formalizing Common Sense. Ablex Publishing Corporation, Norwood, New Jersey, 1990. Collected Papers of John McCarthy on Commonsense Reasoning, edited by V. Lifschitz.

    Google Scholar 

  26. J. McCarthy and P. Hayes. “Some philosophical problems from the standpoint of artificial intelligence. In B. Meltzer aad D. Michie, editors, Machine Intelligence, volume 4, pages 463–502. Edinburgh University Press, 1969.

    Google Scholar 

  27. D. McDermott and J. Doyle. “Non-monotonic logic I”. Artificial Intelligence, 13(1–2):41–72, 1980.

    Google Scholar 

  28. M.D. Mesarovic and Y. Takahara. Abstract System Theory. Springer-Verlag, New York, 1989.

    Google Scholar 

  29. W. Marek A. Nerode and J. Remmel. “Nonmonotonic rule systems I”. Annals of Mathematics and Artificial Intelligence, 1:241–273, 1990.

    Google Scholar 

  30. N.J. Nilsson. Principles of Artificial Intelligence. Tioga, Palo Alto, CA, 1980.

    Google Scholar 

  31. N.J. Nilsson. “Logic and artificial intelligence”. Artificial Intelligence, 47(1–3):31–56, 1991.

    Google Scholar 

  32. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, CA, 1988.

    Google Scholar 

  33. J.L. Pollock. Knowledge and Justification. Princeton University Press, Princeton, New Jersey, 1975.

    Google Scholar 

  34. P.L. Falk R.E. Kalman and M.A. Arbib. Topics in Mathematical System Theory. McGraw-Hill, New York, 1969.

    Google Scholar 

  35. R. Reiter. “A logic for default reasoning”. Artificial Intelligence, 13(1–2):81–132, 1980.

    Google Scholar 

  36. H.S. Sarjoughian. Inductive Modeling of Discrete-event Systems: A TMS-based Non-monotonic Reasoning Approach. PhD thesis, University of Arizona, April 1995. Department of Electrical and Computer Engineering.

    Google Scholar 

  37. G.A. Shafer. Mathematical Theory of Evidence. Princeton University Press, Princeton, New Jersey, 1979.

    Google Scholar 

  38. Y. Shoham. Reasoning About Change: Time and Causation from the Standpoint of Artificial Intelligence. MIT Press, Cambridge, 1988.

    Google Scholar 

  39. H.S. Stone. Discrete Mathematical Structures and Their Applications. Science Research Associates, Inc., Chicago, 1973.

    Google Scholar 

  40. P. Suppes. A Probabilistic Theory of Causation. North-Holland, 1973.

    Google Scholar 

  41. D. Weld. “Reasoning about model accuracy. Artificial Intelligence, 56(2–3):255–300, 1992.

    Google Scholar 

  42. W.A. Wymore. Model-based Systems Engineering: An Introduction to the Mathematical Theory of Discrete Systems and to the Tricotyledon Theory of System Design. CRC, Boca Raton, 1993.

    Google Scholar 

  43. L.A. Zadeh. “Fuzzy logic and approximate reasoning”. Syntheses, 3:407–428, 1975.

    Google Scholar 

  44. B.P. Zeigler. Theory of Modeling and Simulation. John Wiley and Sons, 1976.

    Google Scholar 

  45. B.P. Zeigler. Multi-Facetted Modelling and Simulation. Academic Press, 1984.

    Google Scholar 

  46. B.P. Zeigler. Object-Oriented Simulation with Hierarchical, Modular Models: Intelligent Agents and Endomorphic Systems. Academic Press, New York, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Panos Antsaklis Wolf Kohn Anil Nerode Shankar Sastry

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sarjoughian, H.S., Zeigler, B.P. (1995). Inductive modeling: A framework marrying systems theory and non-monotonic reasoning. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds) Hybrid Systems II. HS 1994. Lecture Notes in Computer Science, vol 999. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60472-3_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-60472-3_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60472-3

  • Online ISBN: 978-3-540-47519-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics