
Adaptation Using Constraint Satisfaction Techniques1

Lisa Purvis Pearl Pu
Laboratoire d’Intelligence Artificielle & Robotique

Dept. of Computer Science & Eng. Institut de Microtechnique / DMT
University of Connecticut Swiss Federal Institute of Technology (EPFL)
U-155, Storrs, CT 06269 MT-Ecublens, 1015 Lausanne, Switzerland
Fax: 203-486-4817 Fax: 42-21-693-3866
Phone: 203-230-8777 Phone: 41-21-693-6081
E-mail: purvis@cse.uconn.edu E-mail: pu@lia.di.epfl.ch

Abstract. Case adaptation, a central component of case-based reasoning, is often considered to be the most difficult part of a case-
based reasoning system. The difficulties arise from the fact that adaptation often does not converge, especially if it is not done in a
systematic way. This problem, sometimes termed the assimilation problem, is especially pronounced in the case-based design
problem solving domain where a large set of constraints and features are processed. Furthermore, in the design domain, multiple
cases must be considered in conjunction in order to solve the new problem, resulting in the difficulty of how to efficiently combine the
cases into a global solution for the new problem.

In order to achieve case combination, we investigate a methodology which formalizes the process using constraint
satisfaction techniques. We represent each case as a primitive constraint satisfaction problem (CSP) with additional knowledge that
facilitates retrieving, and apply an existing repair-based CSP algorithm to combine these primitive CSPs into a globally consistent
solution for the new problem. The run time is satisfactory for providing a quick and explicable answer to whether existing cases can
be adapted or if new cases would have to be created.

We have tested our methodology in the configuration design and assembly sequence generation domains. Analysis of
performance and results will be shown at the end of this paper.

1 Introduction

The domain of case-based reasoning (CBR) has received much attention as a viable and natural problem
solving methodology for design, because the complexities of this domain often require past design experience in
order to create effective new solutions. This past experience generally must be adapted to fit the new situation, since
it is rare that an existing case exactly matches the demands of a new problem. Moreover, it is not enough to simply
find one old case that is similar to a new situation and adapt from there. It is more likely that multiple cases
contribute information that is necessa ry for solving the new problem.

The solution to a new problem, then, results from merging the local solutions from previously solved
problems to create a globally consistent solution for the new problem. However, the merging process is difficult
since the local solutions typically exhibit conflicts when merged together. Furthermore, local solutions can be
characterized by different representations, further intensifying the difficulty of synthesizing the global solution in an
ad hoc way.

To overcome these problems, we investigate a methodology which formalizes the adaptation process using
constraint satisfaction techniques. In our framework, each existing case is represented and stored in the case base as
a solution to a primitive constraint satisfaction problem (CSP) with additional knowledge which facilitates retrieval
and matching. The solutions to the primitive CSPs are combined into a globally consistent solution for the new
problem using a repair-based CSP algorithm.

Our previous work1 showed computational advantages over traditional methods when this case-based
adaptation methodology is used to solve assembly sequence problems (ASP). The work described here further
expands the applicability of the method to a larger class of problems by incorporating dynamic constraints into the
CSP formulation and repair algorithm. This allows our adaptation process to be applied not only to static CSP’s, but
to any problem which can be described as either a static or dynamic, discrete CSP. This generalized formalism for
case adaptation helps CBR systems achieve broader applicability and a better efficiency.

The rest of the paper is organized as follows: Section 2 reviews related work on case adaptation, Section 3
details the CSP formulation of cases, Section 4 describes the adaptation process itself, followed by current results in
Section 5, and concludes with a summary and review of the key issues in Section 6.

1 This research is sponsored by the National Science Foundation grant IRI - 9208429.

2 Related Work

Adaptation can be described as the process of changing an old solution to meet the demands of a new
situation2. Three important, well known adaptation methods are substitution, transformation, and derivational
analogy methods. Substitution methods are used in the existing case-based design aids CHEF3, JUDGE4, CLAVIER5,
and MEDIATOR6. These methods choose and install a replacement for some part of an old solution that does not fit
the current situation requirements. Transformation methods use heuristics to replace, delete, or add components to an
old solution in order to make the old solution work in the new situation. Transformation methods can be found in the
case-based system CASEY7, in which transformation is guided by a causal model, and JULIA8, which uses common
sense transformation heuristics to fix the old solution for the new problem context. Derivational analogy methods,
found in ARIES9 and PRODIGY/ANALOGY10, use the method of deriving the old solution in order to derive a
solution in the new situation.

Recently researchers have become interested in applying CBR techniques to the design domain11.
Components of a design case often have strong relations among one another2, and also tend to be large and therefore
need to be decomposed to facilitate reuse12. Maher and Zhang13 use an integration of case transformation and
derivational analogies to tackle the adaptation problem in their system, CADSYN. Hua and Faltings combine
multiple cases to achieve adaptation in their system, CADRE14, where they observe that changing one feature during
the adaptation process may result in non-convergent behavior for the adaptation algorithm.

3 CSP Formulation of Existing Cases

In our framework, existing cases are stored as primitive CSPs. A CSP consists of variables, values, and
constraints. These CSP components are represented in a case as feature-value pairs. Along with the CSP variables,
values, and constraints, a case also includes other characteristics in order to distinguish it during matching. Our cases
allow not only static, but also dynamic constraints to be represented. Dynamic constraints are important in complex
domains such as design, where the set of problem variables changes dynamically in response to decisions made
during the course of problem solving.

Research on dynamic CSP can be found in the work of Bessiere15, which describes an algorithm for
computing arc-consistency for dynamic constraint satisfaction problems, Faltings16, which explores dynamic
constraint propagation in continuous domains, and Mittal and Falkenhainer17, which identifies four types of dynamic
constraints and implements them within an ATMS framework. Our research has implemented all four types of
dynamic constraints identified in Mittal’s work17 within the minimum conflicts CSP algorithm in order to extend the
applicability of our adaptation methdology to all problems which can be described as either static or dynamic CSP’s.

4 Adaptation

Adaptation is the process of changing an existing solution to fit the new context, thereby solving a new
problem. The difficulties of doing adaptation in complex domains such as design prohibit its wide use in CBR
systems. We attempt to formalize the adaptation process using CSP techniques. The general methodology for our
approach is illustrated by Figure 1.

Figure 1: Adaptation Methodology

 matched case 1 matched case 2 matched case 3

 Minimum Conflicts repair algorithm adaptation

 solution

constraints
solutions

Cases which match portions of the new problem are retrieved from the case base, by first doing a structure mapping18

using the spatial and geometrical features of each case to determine correspondences between variables of the old and
new case, and then applying the nearest-neighbor similarity metric2 to compute which of the structural matches are
most similar. The matching cases contribute their constraints and solutions to form the new problem into a CSP,
which is subsequently adapted using the minimum-conflicts adaptation algorithm to find a solution for the new
problem.

The important pieces of information that are contributed by the existing cases are the old solutions and the
constraints. Once a case has been identified as a match with the new problem, its variables and values can be used to
initialize the corresponding variables and values in the new case, thus providing guidance from past experience to
help achieve a better CSP efficiency. In addition, the newly formed CSP obtains its constraints from the matched
cases, thereby eliminating reliance on user input to determine the constraints, and reducing the significant
computational burden necessary in other approaches in order to calculate the constraints from first principles. For
dynamic design problems such as configuration design, the old cases also contribute the essential information about
what variables compose the new problem; information that would not be available without the existing cases.

To illustrate in detail how the new problem is set up as a CSP, let us consider the assembly sequence
problem of the motor shown in Figure 2.

Figure 2: Motor Assembly19

We will look at the correspondence between a subassembly of this new problem and the existing case for
the receptacle shown in Figure 3. The constraints for the receptacle are such that the stick must be placed inside the
receptacle either before the handle or before the cap is attached to the receptacle, otherwise there is no geometrically
feasible way to insert the stick into the receptacle. This same principle can be found in a subassembly of the motor
case, in that the armature must be placed inside the field assembly before either the fan end bracket or before the
commutator end bracket is attached to the field assembly, otherwise there is no geometrically feasible way to insert
the armature into the field assembly. This correspondence is found in our system by doing a structure mapping on the
mating-relationship feature-values of the old and new case.

�������� �	�	����
	 ���
	

V1

V2
V3

Figure 3:Receptacle

From the structure mapping, we find the following correspondences between the old and new case:

HANDLE ---> COMMUTATOR-END-BRACKET
CAP ---> FAN-END-BRACKET
RECEPTACLE ---> FIELD-ASSEMBLY
STICK ---> ARMATURE
V3 ---> V18
V1 ---> V19
V2 ---> V7

Now, the nearest neighbor similarity metric is applied using the correspondence information and the
features’ weights to determine whether the match is close enough to warrant using the old case as part of our new
CSP. At this point, all of the case’s features are considered, not just the mating-relationship features used during the
structure mapping process. The more detailed case features allow a more accurate similarity score to be computed.
In this example, additional case features of the receptacle case are:

(RECEPTACLE OPEN-CYLIDER 10)
(CAP BLIND-CYLINDER 10)
(HANDLE BLIND-CYLINDER 10)

Note that each of these detailed features has a weight of 10, out of a possible range from 1 to 10, indicating
that each has significant importance to the case. In this example, the computed similarity measurement is large
enough to warrant that the old case be used for the new CSP.

Now that we have found that the receptacle case is a match with part of our new problem, we take its
solution and its constraints to set up the new CSP. The correspondences found provide the mapping information
between old and new case.

Old case’s solution: (V1 1) (V2 2) (V3 3)
Old case’s constraint: (CONSTRAINT (OR (< V2 V3) (< V2 V1)))

Since V3 from the old case corresponds to V18 from the new case, the initial value for V18 in the new
problem is set to 3, which was V3’s value in the old case. Similarly, the constraints for the new case are obtained by
substituting the new variables for their corresponding variables in the old case’s constraints.

(CONSTRAINT (OR (< V7 V18) (< V7 V19)))
(V19 1)
(V7 2)
(V18 3)

In this manner, each matching case contributes its constraints and solutions to the new CSP. The minimum
conflicts algorithm is then applied to synthesize all of the primitive solutions into one globally consistent solution for
the new problem. The minimum conflicts repair algorithm is illustrated by Figure 4. The initial solution, made up of
the primitive solutions found in the matching cases, is the starting point for the algorithm. A value that violates some
of its constraints is chosen for repair from this initial solution, and repaired by finding a value for the variable which

conflicts the least with the remaining values. Conflicting variable values continue to be repaired until there are no
more conflicts, at which point we have found a solution to the new problem.

 Initial solution

 conflicting value

repair using min-conflicts heuristic

 solution

Figure 4: Minimum Conflicts Repair Algorithm

The empirical results for the algorithm showed that since the number of required repairs remains
approximately constant as n grows, the algorithm’s empirical time is approximately linear20, as opposed to the
exponential complexity of traditional constructive backtracking techniques. The effectiveness of the algorithm stems
from using information about the current assignment to guide the search that is not available to standard backtracking
algorithms. Our methodology capitalizes on the efficiency of the algorithm by providing it with a good initial
solution based on the already solved cases in the case base.

Additional flexibility in our approach comes from the incorporation of dynamic constraints into the
adaptation algorithm. We have modified the minimum conflicts algorithm in order to allow four types of dynamic
activity constraints described in Mittal17. When a value is chosen for a variable, or a new variable becomes active in
the problem, the activity constraints are tested using a forward-checking mechanism to identify any additionally
required variables, and to eliminate any variables that are no longer required. This added flexibility has not only
made the method more widely applicable, but also reduces the search space, and therefore provides a better efficiency
from the minimum conflicts algorithm, as we will show in section 5 when detailing our results.

Let us now examine how a configuration design problem can be solved using our adaptation methodology.
We will ne the car configuration domain detailed in Mittal17. Consider two existing car configurations, represented in
the case base as shown in Table 1.

FEATURES CASE #1 CASE #2
MODEL model-80 model-70
STATUS luxury standard
FUEL-EFF high medium
BODY convertible hatchback
ENGINE large small
BATTERY large large
CONVERTER cv1
AIRCOND ac2
CD-PLAYER sony
DOORS dr222
INSTRUMENT-PANEL ip228
STEREO st2
SEATS s536
CONSTRAINT C1 (and (MODEL = model-80)

 (FUEL-EFF = high))
(and (BATTERY = small)
 (ENGINE = small)
 (RN CONVERTER))

CONSTRAINT C2 (and (MODEL = model-80)
 (RV BODY))

(and (STATUS = standard)
 (BODY ≠ convertible))

CONSTRAINT C3 (and (MODEL = model-80)
 (RV ENGINE))

(and (MODEL = model-70)
 (RV BODY))

CONSTRAINT C4 (and (MODEL = model-80)
 (RV BATTERY))

(and (MODEL = model-70)
 (RV ENGINE))

CONSTRAINT C5 (and (STATUS = luxury) (and (MODEL = model-70)

 (RV AIRCOND)) (RV BATTERY))
CONSTRAINT C6 (and (STATUS = luxury)

 (RV CD-PLAYER))
(and (MODEL = model-70)
 (RV DOORS))

CONSTRAINT C7 (and (FUEL-EFF = high)
 (RV converter))

(and (MODEL = model-70)
 (RV INSTRUMENT-PANEL))

CONSTRAINT C8 (and (MODEL = model-70)
 (RV SEATS))

CONSTRAINT C9 and (STATUS = standard)
 (RV STEREO))

Table 1:Car Configuration Cases

Note that the cases include dynamic constraints: RV indicates a dynamic constraint meaning ‘require
variable’, and RN indicates a dynamic constraint meaning ‘require not’ variable. Our new configuration problem is
to configure a STANDARD, MODEL-80 car. We search the case base for cases with the requested characteristics,
finding the two existing cases shown above. Case 1 matches the requested MODEL-80 feature, and Case 2 matches
the STANDARD characteristic.

The variables and constraints related to the matched characteristics of the old case are used to set up the
new CSP. Thus, from Case 1, all constraints having to do with MODEL-80 (C1, C2, C3, C4), and all variables
encountered in those constraints (MODEL, FUEL-EFF, BODY, ENGINE, BATTERY) are added to the new CSP.
Any constraints involving the added variables are also added (C7, since it involves FUEL-EFF). Any RV variables
found in the added constraints are kept as reserve variables, in case any of the dynamic constraints later involve their
activation. Thus, CONVERTER is kept as a reserve variable for the new CSP.

Therefore, from Case 1, we have:

(MODEL MODEL-80)
(BODY CONVERTIBLE)
(FUEL-EFF HIGH)
(ENGINE LARGE)
(BATTERY LARGE)
(CONSTRAINT (C1 (AND (MODEL = MODEL-80) (FUEL-EFF = HIGH))))
(CONSTRAINT (C2 (AND (MODEL = MODEL-80) (RV BODY))))
(CONSTRAINT (C3 (AND (MODEL = MODEL-80) (RV ENGINE))))
(CONSTRAINT (C4 (AND (MODEL = MODEL-80) (RV BATTERY))))
(CONSTRAINT (C7 (AND (FUEL-EFF = HIGH) (RV CONVERTER))))
(Reserve Variable: (CONVERTER CV1))

The same process extracts the appropriate variables and constraints from Case 2:

(STATUS STANDARD)
(STEREO ST2)
(CONSTRAINT (C2 (AND (STATUS = STANDARD) (BODY ≠ CONVERTIBLE))))
(CONSTRAINT (C9 (AND (STATUS = STANDARD) (RV STEREO))))

All of the extracted variables and constraints compose the initial solution to the new configuration design
problem. The repair algorithm is now applied, finding that the dynamic constraint C7 from Case 1 is satisfied, and
thus we add the reserve variable CONVERTER, along with its value CV1 to the problem. Furthermore, the repair
algorithm finds that the value for BODY violates the constraint C2 obtained from Case 2. Thus, that value is repaired
choosing a value for BODY that conflicts the least with the remaining values. A value of HATCHBACK is assigned
to the variable BODY, resulting in a consistent final solution for the new configuration problem.

This example of a dynamic CSP illustrates how the existing cases not only provide the initial solution and
constraints for the new problem, but also formulate the problem itself, by identifying the necessary problem
variables.

5 Analysis and Results

Both configuration design using backtracking and assembly sequence generation have been characterized
as NP-hard problems. Our intuition was that if a problem is hard to solve, then don’t solve every one from scratch.
In both domains, we found strong decompositional structures in the problems which allow application of old
solutions to solve new problems. The computation time spent in adaptation is satisfactory compared to using
conventional algorithms. Pu and Reschberger21 and Pu and Purvis1 discussed results of this framework applied in the
domain of assembly sequence design. The work reported here showed that this framework can be further generalized
to any discrete and static or dynamic configuration design problems. Response times for answering the question
whether matched cases can be adapted to solve new problems are all within minutes.

To test the algorithm’s performance against constructive backtracking, we tested using the well known n-
queens problem as well as the assembly sequence design problem. These test gave us positive confirmation that the
minimum conflicts algorithm outperforms chronological backtracking, as can be seen in Figure 5.

8
qu

ee
ns

9
qu

ee
ns

10
 q

ue
en

s

15
 q

ue
en

s

20
 q

ue
en

s

co
m

pl
ex

 c
as

e

m
ot

or

m
ot

or
 /

re
c

0

100

200

300

400

500

600

N
um

be
r

of
 B

ac
kt

ra
ck

s

Constructive Backtracking

Minimum Conflicts
Algorithm

Figure 5: Difference Between Chronological BT and Min-Conflicts Algorithm

To test the hypothesis that dynamic CSP outperforms static CSP, we formulated our assembly sequence
design problems both in a dynamic representation as well as a static representation. We found that being able to
remove variables from the problem dynamically improved performance significantly, as can be seen in Figure 6.
This result corresponds to a similar result found by Mittal 17 in the configuration design domain.

complex example motor motor in receptacle

0
50

100
150

200
250
300
350
400

N
um

be
r

of
 B

ac
kt

ra
ck

s

static

dynamic

Figure 6:Difference Between Static and Dynamic Min-Conflicts Algorithm

Finally, we tested whether the initial solutions taken from existing cases provide the minimum conflicts
algorithm with more guidance than the minimum conflicts algorithm applied alone. As Figure 7 shows, the initial
solutions do indeed provide more guidance and therefore less backtracks during the problem solving process.

complex example motor motor in receptacle

0
10
20
30
40

50
60
70
80
90

100

N
um

be
r

of
 B

ac
kt

ra
ck

s

random initialization

using old solutions

Figure 7:Comparison of using old cases vs. random initialization

These experiments have confirmed the effectiveness of the minimum conflicts algorithm as a method by
which to synthesize a global solution from several primitive solutions. Adding the possibility for dynamic
constraints has improved its performance further, as well as extended its applicability, and the existing solutions from
the case base provide the algorithm further guidance during the problem solving process.

6 Conclusion

CBR is becoming widely recognized as a viable problem solving methodology. It is being applied to a wide
range of problem solving domains such as design, diagnosis, planning, customer technical support, legal reasoning,
and education. Our methodology formalizes the case adaptation process in the sense of combining multiple cases in
order to make the process applicable across varied application domains.

Our methodology uses the existing cases in order to cut down the necessary search space so that each new
CSP does not need to be solved from the beginning. Incorporating constraint satisfaction techniques provides
formalism to the approach which makes the methodology more widely applicable to any problem which can be
represented as a discrete, dynamic or static CSP. In return, the case base provides important information about
design variables, constraints, functionality, and characteristics which the CSP algorithm can capitalize on in order to
provide efficient performance. Together, the CBR and CSP formalisms combine to provide a methodology for
adaptation that will help CBR systems achieve a wider applicability and a better efficiency.

1 Pearl Pu and Lisa Purvis. Formalizing Case Adaptation in a Case-Based Design System. In Proceedings of the Third International
Conference on Artificial Intelligence in Design (AID’94), August 1994.
2 J. Kolodner. Case Based Reasoning . Morgan Kaufmann Publishers, 1993.
3 K. Hammond. CHEF: A Model of Case-Based Planning. In Proceedings of AAAI-86 , Cambridge, MA, 1986.
4 W. Bain. JUDGE. In R.C.Reisbeck, C.K.Schank, eds., Inside Case-Based Reasoning . Erlbaum Publishers, 1989.
5 D.H. Hennessy and D. Hinkle. Applying Case-Based Reasoning to Autoclave Loading. IEEE Expert, 7:21-26, 1992.
6 J.L. Kolodner and R.L. Simpson. The Mediator: Analysis of an Early Case-Based Problem Solver. Cognitive Science , 13:507-549,
1989.
7 P. Koton. Reasoning about Evidence in Causal Explanation. In Proceedings of AAAI-88 , Cambridge, MA, 1988.
8 T.R. Hinrichs. Problem Solving in Open Worlds: A Case Study in Design . Northvale Publishers, 1992.
9 J.G. Carbonell. Derivational Analogy: A Theory of Reconstructive Problem Solving and Expertise Acquisition. In Machine
Learning, Volume 1, 1986.
10 J.G. Carbonell and M.M. Veloso. Integrating Derivational Analogy into a General Problem Solving Architecture. In Proceedings:
Workshop on Case Based Reasoning (DARPA), Clearwater, Florida, Morgan Kaufmann Publishers, 1988.
11 Pearl Pu. Issues in Case-Based Design Systems. Artificial Intelligence in Engineering Design, Analysis, and Manufacturing (AI
EDAM), pages 79-85, 1993. As guest editor for a special issue on case-based design systems.
12 Eric Domeshek and Janet Kolodner. Finding the Points of Large Cases. Artificial Intelligence in Engineering Design, Analysis, and
Manufacturing (AI EDAM), 1993.
13 Mary Lou Maher and Dong Mei Zhang. CADSYN: A Case-Based Design Process Model. Artificial Intelligence in Engineering
Design, Analysis, and Manufacturing (AI EDAM), 1993.
14 Kefeng Hua and Boi Faltings. Exploring Case-Based Building Design - CADRE. Artificial Intelligence in Engineering Design,
Analysis and Manufacturing (AI EDAM), 1993.

15 C. Bessiere. Arc Consistency in Dynamic Constraint Satisfaction Problems. In Proceedings of the 9th National Conference of
AAAI, Anaheim, 1991.
16 B. Faltings, D. Haroud, and I. Smith. Dynamic Constraint Satisfaction with Continuous Variables. In Proceedings of the European
Conference on AI , Wien, 1992.
17 S. Mittal and B. Falkenhainer. Dynamic Constraint Satisfaction. In Proceedings of the 8th National Conference of AAAI , 1990.
18 D. Gentner. Structure Mapping: A Theoretical Framework for Analogy. Cognitive Science , 7, 1983.
19 W. Ewers. Sincere’s Vacuum Cleaner and Small Appliance Repair Service Manual . Sincere Press, 1973.
20 S. Minton, M. Johnston, A. Philips, and P. Laird. Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and
Scheduling Problems. Artificial Intelligence, 58:161-205, 1992.
21 Pearl Pu and Markus Reschberger. Case-Based Assembly Planning. In Proceedings of DARPA’s Case-Based Reasoning Workshop .
Morgan Kaufmann, 1991.

