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Abstract

Active databases must support rules triggered by complex patterns of
composite temporal events. This paper proposes a general method for
specifying the semantics of composite event specification languages. The
method is based on a syntax-directed translation of the composite event
expressions into Datalogis, whose formal semantics is then used to de-
fine the meaning of the original event expressions. We show that the
method is applicable to languages such as ODE, Snoop and SAMOS that
are based respectively on the formalisms of Finite State Machines, Event
Graphs and Petri Nets. The proposed method overcomes various prob-
lems and limitations affecting such formalisms.

1 Introduction

A new generation of database systems supports active rules for the detection of
events occurring in the database and the triggering of induced actions. In many
applications, the simple-event detection mechanisms found in commercial sys-
tems, such as Ingres, Oracle or Sybase, are not sufficient; complex sequences of
events must instead be detected as the natural precondition for taking actions
and firing rules [9]. Sophisticated research prototypes have in fact been imple-
mented recently to provide this capability— an incomplete list of such systems
includes [9, 13, 10, 4]. These systems feature composite event detection mecha-
nisms, which are based on formalisms such as Finite State Automata [12], Petri
Nets [11], or Event Graphs [3].

The problem of formally specifying the semantics of active rules remains
largely unsolved. Indeed, giving a formal semantics to active database behavior
presents a challenge even when only simple events are involved. For composite
event expressions, this problem becomes even more complex, inasmuch as the
issues of temporal databases and active rule languages are now combined and
intertwined [17]. This issue must be resolved if trustworthyness is expected
from systems incorporating this advanced capability.

In this paper we propose a general method for defining the semantics of com-
posite event specification languages. The method is based on a syntax-directed
translation of the composite event expressions into Datalog;s, whose formal
semantics is then used to define the meaning of the original event expressions.
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We first demonstrate the method by giving a complete definition of the
Event Pattern Language (EPL). EPL, the language of an active database sys-
;em designed and implemented at UCLA provides the capability of detecting,
reasoning and acting upon complex patterns of events that evolve over time.
Then, we explain how our method can be applied to ODE [13], Snoop [4] and
SAMOS [10], in order to formally define the intuitive and /or operational seman-
tics of the composite event specification languages of these systems. Further-
more, we point out their differences along with some problems and limitations
of theirs, which often follow from their implementation frameworks.

The method proposed in this paper matches and surpasses the capabilities
of the formalisms used in the past, in terms of (a) defining precisely the intu-
itive semantics of different language characteristics, including event attributes,
negation, stmultaneous evenis and parameter coniezts, and (b) ease of map-
ping to correct execution semantics. Therefore, we obtain a general method for
defining the semantics of such languages, and a useful tool for comparing their
constructs and their expressive power.

Because of space limitations, explicit time events are not discussed in this
paper. However, these can also be incorporated in our method using the ap-
proach discussed in [15].

2 The EPL Language

In the rule-based syntax of EPL, sequences of goals specify sequences of events;
each goal can correspond to either (i) a basic event, or (ii) a (possibly negated)
basic event qualified by condition predicates, or (iii) a composite event con-
structed using sequences, repetitions, conjunctions, disjunctions and negations
of other (possibly composite) events. EPL is implemented as a portable front-
end to active relational databases supporting simple event detection. Two
versions of EPL have been developed, the first in LDL++ [1] and the second
in CLIPS [16].

2.1 EPL Programs

An EPL program is organized in modules, which can be compiled and enabled
independently. The events declaration section of a module defines the set of
relevant basic event types, monitored by the module. A basic event type is
denoted as :

insert(Rname), delete(Rname), update(Rname),

where Rname is the name of a database relation.

EPL rules are specified in a module’s rules section. Each rule has a name,
which is unique within its module. A rule’s body (head) corresponds to an
event (action). Example 1 demonstrates an EPL module with one rule. In all
examples, we use the following bank accounts relation.

ACC(Accno, Owner, Type, Balance)
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Example 1 An EPL module with a rule that keeps track of large withdrawals
from savings accounts.

begin AccMonitor
monitor insert(ACC), update(ACC), delete(ACC);
LargeWithdrawal:
update( ACC(X),
X.Type = "Savings', X.old_Balance-X.new_Balance > 100000 )
-> write( "Large withdrawal from account %d at time %s \n",
X.Accno, asctime( X.evtime) ).
end.

The AccMonitor module keeps track of all the modifications in the ACC
relation. Rule LargeWithdrawal specifies a gqualified basic event. Such an
event has the form:

evtkind( Rname(X), < condition — expression > ),

where X denotes the tuple of relation Rname, that has been inserted, deleted
or updated. For update events, EPL makes available to the programmer both
the new and the old contents of the updated tuple. The prefixes new and old
are used to distinguish between them. When no prefix is specified, the new
contents are assumed. )

The attribute evtime, which is attached to a basic event's tuple variable
contains the time the event occurred. The < condition-expression > is built

using the standard arithmetic and comparison operators and the logical con-
nectives AND, OR and NOT.

Actions: There are three kinds of actions : (a) Write actions, (b) SQL com-
mands and (c¢) Operating system calls.

In all cases, the format of the action specifier is similar to that of the printf
statement in the C language. The action’s arguments are taken from tuple
variables defined by basic events in the rule’s body.

Negated Events: A (qualified) basic event may be negated. Consider for
instance the following rule, as part of the module AccMonitor:

NoUpdateOn00201:
! update( ACC(X), X.Accno = 0020% )
=> write("any event but an update on 00201")

This negated qualified basic event will be satisfied by the occurrence of any
basic event of the types monitored by the AccMonitor (including possible in-
sertions and deletions), except for an update of account 00201.

2.2 EPL Language Constructs

So far, we have been concerned with basic events, which may be qualified or
negated.

The power of EPL follows from its ability to specify composite events. We
distinguish between event ezpressions (also called event types) and event in-
stances. An event expression E is specified using the EPL language, where an
event instance of E consists of a sequence of basic events that participated in
the satisfaction of E. In the sequel, we will refer to events when the distinction
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is clear from the context. We will also use the term event occurrence, to refer

to the time instant when an event expression is satisfied (an instance of this
event expression is completed).
Composite event expressions are defined as follows:

Definition 1 Let Ey, Ey, ..., E,, n > 1, be EPL event ezpressions (maybe com-
posite themselves). The following is also an EPL event ezpression :

1. (Ey, Eq, ..., E,) : a sequence consisting of an instance of E|, immediately
followed by an instance of Eq, ..., immediately followed by an instance
of En.

2. x: E : a sequence of zero or more consecutive instances of E.

3. (Ey & E2 & ... & E,) : A conjunction of evenls. It occurs when all

events E,, ..., E, occur simultaneously.
4. {E\,Es,...,E,} : A disjunction of events. It occurs when at least one
event among F,, ..., E, occurs.

5. \E : It occurs when not any instance of E occurs.

A number of additional (derived) constructs may be defined in terms of the
basic ones (see also [12]). Some of these are :

e any = The disjunction of all basic events (of the types monitored). It
occurs every lime such an event occurs.

o [E1,E2, ... E) = (Ey, *:any, Ea, x:any, ..., *:any, E,). Relazed
sequence. [t consists of an instance of E,, followed later by an instance
of Eq, ..., followed later by an instance of E,,.

e prior(Ey, E2) = [E1, any] & E2. An occurrence of Ey follows an occur-
rence of Ey (i.e., an instance of E, is completed prior to the completion
of an instance of E3)

o first(E) = (E & |[E, any)): It occurs, when the first instance of E occurs.

Note that in an instance of [Eq, E5], the first basic event in the instance of E5
must follow an occurrence of E4, where in prior(Eq, Eo), this is not required.

In addition to the above, a composite event may have attributes, which are
derived from the attributes of its component basic events. Attribute semantics
and scope rules are described in the next section. Examples of EPL composite
events follow.

Example 2 Report transfers of large amounts, from a customer’s savings ac-
count to his/her checking account.

LargeTransfer:
( update(ACC(X),
X.Type = "Savings", X.ocld_Balance-X.nev_Balance > 100000),
update (ACC(Y),
Y.Type = "Checking", Y.Owner = X.Owner,
Y.nev_Balance-Y.old_Balance = X.old_Balance-X.new_Balance) )
-> write("Large Transfer of %s \n", X.Owner)

We assumed here, that ‘a transfer transaction results in an immediate se-
quence of updates. The condition expression of the second update can refer to
the tuple variables of both basic events.
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Example 3 Report the cases where two large deposits are made to an account,
without any intervening withdrawal from it.
Good Customer:
( update(ACC(X), X.nev_Balance-X.old_Balance > 100000),
*:! update(ACC(Y),
Y.Accno = X.Accno, Y.new_Balance < Y.old_Balance),
update(ACC(Z),
Z.Accno = X.Accno, Z.new_Balance-Z.cld_Balance > 100000)
-> write("Good Customer: %s \n", X.Owner)

Example 4 (Relazed Sequence) Identify cases of customers who opened a Sav-
ings account, after they had closed another one before.
WellcomeBack:
[ delete(Acc(X), X.Type = Savings),
insert (Acc(Y), Y.Type = Savings, Y.Owner = X.Owner) ]
=> write("Customer %z is back \n", X.Owner)

Quite often, we need to find the first instance of an event F following an
instance of another event E. Below, we express such an event pattern using the
definition of the first derivative construct. This demonstrates the negation
of a composite event and a conjunction.

Example 5 If an account’s balance drops to zero, report the next deposit to i,
as well as the time elapsed.
ActiveAgain:
£ update(ACC(X), X.Balance = 0) ,
( update(ACC(Y), Y.Accno = X.Accno, Y.Balance > 0) &
! [update(ACC(Z), Z.Accno = X.Accno, Z.Balance > 0), any] ) ]
-> write("Account %d is active again, after so much time: %s \n",
X.Accno, asctime(Y.Time - X.Time) )

3 Semantics of EPL

We first introduce the notion of event histories, against which the EPL expres-
sions are evaluated. The global event historyis a series of basic events, that is or-
dered by time of occurrence (timestamp) and can be obtained from a system log.
It can be represented by the relation hist(EventType, RelName, TimeStamp),
where each tuple records a basic event occurrence and contains its type (insert,
delete, or update), the name of the relation upon which it occurred, and the
time of the occurrence.

Since an EPL expression is evaluated with respect to a particular module,
a separate event history must be obtained for each such module. Focusing now
on one module, we assume that a relation evt_monit(EventType, TableName)
is kept for it, that records the basic event types the module monitors. Then,
our module’s event history is defined by the following stratified Datalog rules:

hist monit(nil, nil, 0000,0.)
hist monit(E,R,T2,8(J)) « histmonit(_ _, T1,J),
‘ hist(E,R, T2), evt monit(E,R),
—between(T1, T2).
between(T1,T2) —  hist(E,R,T), evtmonit(E,R), T1< T, T< T2.
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In this way, an event history can be defined for each module of interest. For

nstance, the following table contains a brief example event history for module
iccMonitor:

hist_monit | EventType TableName TimeStamp Stage
nil ni 0000 0
upd ACC 1423 1
upd ACC 1425 2
ins ACC 1430 3
ins ACC 1502 4

Observe that a sequence number, called stage has been introduced. The
stage sequence defines an ordered structure on the distinct timestamps, that
allows us to express properties of composite events that are based on the relative
order of occurrence of their component basic events, as opposed to absolute time
properties. Thus, the stage is the unit of time (chronon) in our model. Absolute
time properties of events can also be expressed using their timestamps.

Different event occurrence granularities can be handled. At the “smallest
database operation” granularity, every new insertion, deletion, or update cre-
ates a new stage. However, if “transaction boundaries granularity” is assumed,
then each committed transaction creates a new stage, and all the basic events
that occurred within this transaction are recorded in its stage, timestamped
with the transaction’s commit time. Basic events that share a sequence (stage)
number are called simultaneous and are further discussed in Section 3.5.

Using this model, the fundamental concept of an immediate sequence of
basic events corresponds to the occurrence of such events at successive stages.

These ohservations lead naturally to the use of Datalog;s as a formal basis
for defining the semantics of EPL rules. Datalog,s [2] is a temporal language
that extends Datalog, by allowing every predicate to have at most one temporal
argument (constructed using the unary successor function s), in addition to the
usual data arguments. The temporal argument in our case is the stage column
in the event history.

As most active relational databases do, we further assume that for each DB
table, there are three relations accumulating the inserted, deleted and updated
tuples, together with their timestamps. For inserts into ACC for instance, we
have the relation ins_ACC(Accno, Owner, Type, Balance, Timestamp).
The del_ACC table has a similar format, while for updates, we must record both
the old and new values:

upd.ACC(Accnoold, Accnonew, Owner.old, Owner.new, ... Timestamp)

3.1 Event Satisfaction

We can now define the meaning of arbitrary EPL event expressions, through
the notion of satisfaction of such expressions.

We start with qualified basic events. For instance, the satisfaction of the
event E = ins(ACC(X), X.Type = "Savings") is defined as follows:

ins_ACC{Accno,Owner, Type,Bal, Time, J) —
hist monit(ins, “ACC”,Time, J),
insertedACC(Accno,Owner, Type, Bal, Time).
satg(Accno, Owner, Type,Bal, Time, J) —
ins_ACC(Accno, Owner, Type,Bal, Time,J), Type = “Savings”.
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The predicate ins_ACC describes the history of occurrences of insertedAcc;
for each occurrence of this event type, ins ACC contains a tuple with its at-
tribute bindings and the stage of the occurrence. _

In general, a qualified basic event is represented as E = evtkind(R(X), q(X)),
where q denotes the event’s condition expression, which can refer to the at-
tribute values of tuple variable X. The rule template for the satisfaction predi-
cate of such an event is:

satg(X,J) « evtkindR(X,J), q(X)

The concept of “an event immediately following another event” can also be
expressed. Take for instance, the immediate sequence of Example 2, which is
represented as:

F = (upd(ACC(X), q1(X)), upd(ACC(Y), qp(X,Y)) )
Its semantics is defined by the following three Datalog;s rules (from now
on, unless otherwise indicated, variables will denote tuples):
satq(X,J) — upd-ACC(X, J), qq(X).
Example 6 sata(X,Y,s(J)) «— updACC(Y,s(J)), satq(X,J), qo(X,Y).
satp(X,Y,J) — sato(X,Y,J).

The first qualified basic event occurs at stage J, if an update on relation ACC
is recorded at this stage and condition gy is satisfied. The second update on
ACC must then occur at the next stage s(J) and condition q must be satisfied
(observe that qo can refer to the tuple variable X defined by the first basic event,
in addition to Y). The third rule is a copy-rule, inasmuch as the satisfaction of
composite event F coincides with that of saty.

There exists a natural mapping from EPL expressions to Datalog;s. Thus,
to formally define the meaning of an EPL expression, we only need to define
a procedure which derives an equivalent set of Datalog,s rules for that ex-
pression. The resulting set of rules has a well-established formal semantics
(model-theoretic and fixpoint-based) [2]. To formalize the translation, we rep-
resent EPL expressions by their parse trees, using the following prefix notation:

1. seq(E;, E;) = (E;, E;)!
*seq(E',-, Ej) = (*E;, Ej).z
and(E.', Ej) = F; & Ej.
OT’(E,', Ej) = {E,‘, EJ'}.
neg(E) = |E.

Example 7 The EPL ezpression
{upd(A(X),qa(X)), *:(:ins(B(Y),qp(X,Y)), del(C(Z},qc(X,Z))), upd(B(V),q4(X,V))

The parse tree for the expression of Example 7 is shown in Figure 1. The
nodes of the tree are numbered according to the postorder traversal sequence.
Each node i corresponds to a subevent E;, and the satisfaction predicate
of Ej is denoted as sat;. For a subevent expression, its satisfaction predicate
contains one tuple for each distinct (in terms of variable bindings and stage)
occurrence of this subevent.
YE, E,..., En_1,En) = seq(Ey, seq(E,,.. 18¢q{En_1,En)...}). Similarly for the re-
laxed sequence, the conjunction and the disjunction constructs.
2We use the binary construct *seq in place of the »: EPL construct, so that the represen-

tation is more compact and easier to follow. This is not restricting, since = : E = xseq(E, ¢),
where € = no event.

OV e
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seq ()
upd(A(X). ga(X)) (1)
upd(A(X), qa(X)) (1) *seq (6)
ins(B(Y), gd(X.Y)) (2}
dcl{C(Z), qe(X.2)) (3)
*seq (4) Upd(D(v)-. qd(x‘v)) 6] -
upd(D(V), qd(X.V)) (5)
ins(B(Y), ¢b(X.Y)) (2) del(C(2), qe(X.Z)) (3)

Figure 1: An EPL expression with Immediate and Star Sequences

3.2 The Translation Procedure

As demonstrated by the last translation example, for a composite EPL expres-
sion, the Datalog;s rules must model (i) the transmission of variable bindings
according to the scope rules of the various constructs, so that variables can
be matched and conditions can be checked, and (ii) the temporal precedences
among the various subevents.

Table 1 describes how this information is derived for each basic EPL con-
struct (formally it defines a simple attribute grammar for syntax-directed trans-
lation).

| EvtType E | PPS l EVar(E) | IVar |
evi(R(X)) — X —
seq(F,G) PPS(F) = PPS(E) EVar(F) U | IVar(F) = IVar(E}
PPS(G) = F EVar(G) IVar(G) = IVar(E) U
EVar(F
xseq(F,G) | PPS(F) = FU PPS(E) | EVar(G) IVar(F) = IVarg(é)
PPS(G) = FU PPS(E) IVar(G) = IVar(E)
or(F.C) PPS(F) = PPS(E) ] TVar(F) = IVar(E)
PPS(G) = PPS(E) [Var(G) = IVar(E)
and(F,G) PPS(F) = PPS(E) EVar(F)U | [Var(F) = IVar(E)
PPS(G) = PPS(E) | EVar(G) | IVar(G) = IVar(E)
neg(F) PPS(F) = PPS(E) ¢ IVar(F) = IVar(E)

Table 1: An attribute grammar for syntax-directed translation from EPL to
Datalog s.

For each subevent Q of an EPL event E, the second column in Table 1
defines the Possible Predecessors Set of Q, denoted as PPS(Q). A subevent P
is a possible predecessor of Q within E, if in an instance of E, the satisfaction
of P can immediately precede the first basic event of an instance of Q (i.e., the
instance of Q can begin at the next stage). Because of disjunctions and the star
operator, a particular subevent may have many possible predecessors.

For example, consider the immediate sequence event: E = seq(F,G). F is
the only possible predecessor of G; but the set of possible predecessors of F de-
pends on which events may precede E—i.e., F inherits E’s possible predecessors.
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The remaining two columns of Table 1 describe the scope rules for variables
in EPL. The third column shows the set of ezported vartables of an EPL ex-
pression. These are variables defined in the expression (variables appearing in
basic events within this expression), whose scopes extends past the satisfaction
of the expression. The fourth column contains for each subevent Q of an EPL
expression, the set of variables imported into Q (variables defined outside Q,
whose scopes extends to Q).

Again, for E = seq(F,G), the set of variables exported from E is the union of
the variables exported from F and G. On the other hand, E might have imported
some variable names from previous events and if so, these are also passed down
to F and G. In addition to variables inherited by E, variables imported into G
include those exported from F.

r Fvent Type £ | Datalog,s Rule Templates J
Qual. Basic Fvent for each P € PPS(E)
evt(R(X), Cond) | satg(IV, X, s(J)) — evt-R(X,s(J)), satp(IV,-J),
Cond(IV, X)
seq(F(X),G(Y)) satg(1V, X, Y, J) — satg(IV, X, Y, J)
xseq(F(X),G(Y)) satg(1V,Y,J) — satg(IV, Y, J)
or(F(X),G(Y)) satg(1V,J) — satp(IV, X, J)

satp(1V,J) — satc(IV, Y, J)
and(F(X),G(Y)) satp(X,Y,1V,J) — satp(IV, X, J), satg(I1V, Y, J
for each P € PPS(E)

neg(F(X)) satg(IV,s(J)) « any(s(J)), satp(IV, ., J),
'ﬂsatp(-, S(J))
€ for each P € PPS(E), satg(IV,J) « satp(IV,_, J)

Table 2: Datalog s rule templates for the basic constructs of EPL.

Using the information of Table 1, the generation of the actual rules is simple
as shown in Table 2. Observe that except for basic events, X and Y denote sels
of exported variables defined in various subevents, where IV denotes the set of
imported variables into a particular event type E. The anonymous variable _
has replaced all variables that must be kept local.

The first row of this table deals with qualified basic events having some
possible predecessors (the case of a basic event with no possible predecessors
is trivial). Such an event E is satisfied at stage s(J), when: (1) a possible
predecessor of E was satisfied at stage J, (2) E occurs at stage s(J), and (3)
The condition of E is satisfied. Example 6 illustrates this translation.

The rules for disjunction and conjunction are apparent. Observe that in a
conjunction, all the variables defined in its conjuncts are exported, where in a
disjunction, none of the variables defined in its disjuncts is exported. The rule
for negated events is explained in Section 3.6.

Note also, that the variables of a satisfaction predicate consists of the union
of its exported variables, plus the variables imported into it.

3.3 Immediate and Star Sequences

Having illustrated how immediate sequences are handled, we move on to the
case of star sequences, which is somewhat more complicated.
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Consider e.g., the EPL expression E = (F, G, *:H, K). Obviously, PPS(G)
= {F}. However, because of the star operator, an instance of H might immedi-
ately follow either an occurrence of G, or a previous occurrence of H. Therefore,
PPS(H) = {G,H}. Similarly, an instance of X may immediately follow either
an occurrence of G (zero instances of H after G), or the last occurrence of H
and thus, PPS(K) = {G,H}. Variables defined in a star subexpression are not
exported to subexpressions that follow. The fourth row of Table 1 provides the
formal details.

Example 7 shows a more complicated case, where star subexpressions are
nested. Referring to Figure 1 and using Table 1, we get:

PPS(7Ty = @

PPS(1)= PPS(T) = @

PPS(G) = {1}

PPS(4) = {4}u PPS5(6) = {1,4)
PPS(5) = {4}u PPS(6) = {1,4}
PPS(2)= {2}u PPS(4) = {1,2,4}
PPS(3)= {2}UPPS4) = {1,2,4}

The variable scopes for this example have been visualized in Figure 1 using
contours. Basic events are listed in order of their appearance in the EPL
expression and all basic events in the same star subexpression are enclosed
within the same contour. The condition of a basic event E can refer to all
variables whose scopes extends to this event. Using this information and the
PPS sets of the basic events, the following Datalog,s rules are derived for
Example 7:

satq(X,J) — upd.A(X,J), qa(X).

saty(X,Y,s(J)) — ?ns..B(Y, (7)), saty1(X,J), qp(X,Y).
saty(X,Y,8(J)) — ins.B(Y,s(J)), sato(X,,J), qp(X, ¥).
satp(X,Y,s(J)) — insB(Y,s(J)), satq(X,-,3), qp(X,Y).
sat3(X,2,s(J)) «— delC(Z,s(J)), saty(X,J), qc(X,2).
sat3(X,Z,8(J)) «— del C(Z,s(J)), sato(X, 1), qc(X, Z).
sat3(X,Z,8(J)) — del.C(z,s(J)), saty(X,-J), qc(X, Z)
saty(X,Z,3) — sat3(X,Z,J).

satg(X,V,s(J)) — updD(V,s(J)), satq(X, I}, qq(X,V).
satg(X,V,s(J)) — upd.D(V,s(J)), satg(X,-,J), qq(X,V).
satg(X,V,J) — satg(X,V,J).

satgp(X,V,J) — satg(X,V,J).

Consider for instance Ep = ins(B(Y), qu(X,Y)). This basic event may im-
mediately follow an occurrence of basic event E4, or another occurrence of Eo
(because of the innermost star), or an occurrence of a star subsequence E4
(because of the outermost * iteration).

The satisfaction predicates for the seq and *seq nodes are defined through
copy-rules. These predicates are not needed, unless such a node is a possible
predecessor of some basic event, as is the case of E4. However, we have included
them in our presentation for clarity reasons.

As demonstrated in this example, EPL scope rules are implemented, by
passing variables through the satisfaction predicates, to the conditions of all
the basic events within the scope of the variables.
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3.4 Any and Relaxed Sequences

In section 2.2, EPL derivative constructs such as any, prior, and relaxed
sequences were defined in terms of the basic constructs. Thus, a translation
into Dataleg,s need not be given explicitly. Yet, a direct translation is often
desirable, as it leads to much more efficient implementation. For instance, any
need not be defined as the disjunction of all basic events in the module of
interest, but can be simply derived as follows:

any(J) < histmonit(., - -,J)

A relaxed sequence is treated similarly to an immediate sequence; e.g. the
rules of Table 1 for an immediate sequence remain intact in the case of a relaxed
sequence. The only difference is that in [F,G], an instance of G may start at
some stage later, but not necessarily immediately after an occurrence of F. By
using an auziliary predicate has_satq, the relaxed sequence

E = [ upd(ACC(X), q4(X)), upd(ACC(Y),q2(X,Y)) ],
can be translated into the following rules:

sat{(X,J)) — upd-ACC(X, J), q4(X)

has_satq(X,J) — satq(X,J)

has_satq(X,s(J)) — any(s(J)), has_satq(X,J)

sato(X,Y,s(J)) — upd ACC(Y,s(J)), has_saty(X,J), qa(X,Y)

8.5 Conjunction and Simultaneous Events

A conjunctive event E = (F & G) occurs at a stage where both F and G occur.
The instances of F and G that cause E to be satisfied may have different starting
stages. F and G are evaluated independently of each other (in parallel).

Using the conjunction construct, we can express sequences based on event
occurrences, as opposed to event instances that follow each other. An example
is the definition of prior, which is repeated here (variables are included):

E(X,Y) = priox(F(X),G(Y)) = ( [F(X),any] & G(Y) )

Assuming that the rules for F(X) and G(Y) have been generated and that an
auxiliary predicate has_satp is defined as in the previous section, the satisfac-
tion predicate of E is defined as:

satg(X,Y,s(J)) — satg(Y,s(J)), hassatp(X,J)
Conjunction can also be used to handle simultaneous events. Consider e.g.
E = ( upd(A(X)), ( ins(B(Y)) & del(C(2)) } ),

This composite event occurs when the first basic event is immediately fol-
lowed by the simultaneous occurrence of the last two basic events. Its transla-
tion follows:

satq(X,J) upd-A(X, J)

satq(X,Y,J) — ins B(Y,s(J)), saty(X,7J)
sata(X,Z,J) —  delC(Z,s(J)), saty(X,7J)
satg(X,Y,2,J) — sato(X,Y,J), sat3(X,Z,7J)

Eventhough simultaneous events have not been discussed in previous ap-
proaches, there are many cases where this functionality is desired. As dis-
cussed in the beginning of section 3, this is necessary when transaction bound-

aries granularity must be modeled. Simultaneous events may also occur in a
distributed or multiprocessor environment.
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seq (8)
upd( A(X) ) (1) seq (7)
neg (5) upd( D(V)) (6)
or|(4)
upd( B(Y). gb(X.Y)) (2 ins( C&(2). qe(X.Z}) (3)

Figure 2: An EPL expression with a negated subevent

3.6 Negation

Handling negation of arbitrary composite events has been problematic in most
of the previous approaches, which therefore support only limited forms of nega-
tion.

Using Datalog,s, the semantics of general negation can be easily defined.
For instance, for the negated qualified basic event
E = tins(ACC(X), X.Type = "Savings"), we have (using domain variables):

satp(Accno, Owner, Type, Bal, Time, J)—
ins_ACC(Accno, Owner, Type,Bal,Time, J), Type = “Savings”
satg(J) « any(J), -satp(-, - - - -, J).

The second rule expresses the fact that E occurs at every stage where some
basic event occurs, but F does not occur. Referring to the hist_monit table, E
occurs at every stage, except stage 3, where an insertion of a savings account
1s recorded.

As these rules show, the variables defined inside a negated event are not ex-
ported outside it. This restriction ensures the safety and domain-independence
of EPL expressions.

The general case is similar. The second rule above can still be used for the
negated event E = !F, where F is an arbitrary event. Note that at every stage
that satg is satisfied, we have the occurrence of a different instance of E, and
thus, every such instance has single stage duration.

The following example illustrates how negated composite events are han-
dled. This example also demonstrates a disjunctive event.

Example 8 The EPL expression for Figure 2.
( upd(A(X)), ! {upd(B(Y),qp(X,Y)), ins(C(Z),qc(X,2))}, upd(D(V)) )

The satisfaction of the negated event Eg (at a stage where neither Eo, nor
E3 occur) must intervene the occurrences of basic events Eq and Eg.

Since a negated event instance has single stage duration, negated events are
treated similarly to basic events, as far as ordering is concerned. Namely, one
rule of the form shown in Table 2 is created for each of the possible predecessor
of a negated event. In this example, the only possible predecessor of the negated
event Eg is Eq.

The Datalog, s rules for Example 8 follow:
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satq(X,J) « upd_A(X, J).

saty(X,Y,s(J)) — updB(Y,s(J)), satq(X,J), gqp(X,Y).
sat3(X,2,8(J)) — ins._C(Z,s(J)), saty(X,J), qc(X,2).
satq(X,J) — sato(X, Y, 7).

satg(X,J) — sat3(X,Z,7J).

satg(X,s(J)) — any(s(J)), satq(X,J), —satg(_, s(J)).
satg(X,V,J) — upd D(V, s(J)), satg(X,J).
sat7(X,V,J) « satg(X,V,J).

satg(X,V,J) — sat7(X,V, J).

The rule for Eg expresses the fact that Eg occurs at the stage immediately
following E4’s occurrence, if neither E5, nor E3 occur at this stage.

Eq 1s considered to be a possible predecessor of E5 and E3 as well. Generally,
in a sequence expression of the form (F, !G), the subexpression G is evaluated
with respect to the basic event history starting right after the satisfaction of F.
Using Table 1, we get for instance:

PPS(2) = PPS(4) = PPS(5) = PPS(7) = {1}

4 Application to Other Systems

One of the most appealing characteristics of the proposed method is its gener-
ality, whereby it can be used for the formal definition of the concepts appearing
in previous systems.

For the case of ODE, this is straightforward, since most of the language
constructs in EPL and ODE are the same. The most important difference
is that, in ODE, the relazed sequence is a basic construct and the immediate
sequence is a derivative one. Thus, the semantics of ODE can be defined by a
syntax-directed translation from ODE expressions into Datalog; s rules, similar
to that used for EPL. 2

Such translation procedures can also be defined for Snoop and SAMOS’s
language, that have a somewhat different flavour from EPL and ODE. One of
their differences is that the meaning of the sequence of two events E{ and Eq
1s equivalent to the meaning of prior(Ey,E5) in EPL and ODE.

Because of space limitations we cannot be exhaustive and in our discussion,
we focus instead on concepts which are fundamental and distinguishing. Specif-
ically, for Snoop, we focus on its novel concept of parameter contexts and we
exemplify how this can be incorporated in our method. For SAMOS, we give
a very detailed example of how we can formally define the execution semantics
of Petri Nets, which have been used for its implementation. For an extended
treatment of Snoop and its parameter contexts, the reader is referred to [15].

4.1 Parameter Contexts

The parameters contezts introduced in Snoop can be used to detect and com-
pute the parameters of composite events in different ways, and thus, they can be
very useful in precisely matching the semantics of a wide range of applications

3The definition of disjunction in ODE seems to be problematic. In [12], only conjunction
is defined as a primitive construct, while disjunction is defined through negation, via De
Morgan's law. This i~ a problem in the presence of variables and also when disjunctions with
multiple-stage duration are concerned (a negative event has always single stage duration).
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[4]. The general semantics of EPL and ODE correspond to the unrestricted
contezt of Snoop.

For two of Snoop’s parameter contexts, we show how to extend our method,
in order to adopt them. We use a relazed sequence example, since the var-

lous parameter contexts arise essentially by different interpretations of such
sequences.

Example 9 The EPL ezpression E(X,Y,Z) = [A(X),B(Y),C(2Z)], and the
event history: ..., A(1),...A(2),...,B(1),...C(1),...B(2),...C(2),
where A,B,C denole basic events with parameters X,Y,2Z respectively.

In the unrestricted contezt, all the instances of E are detected. These are:
[A(1), B(1),C(1)], [A(2), B(1),C(1)], [A(1), B(1),C(2)),
[A(2), B(1),C(2)], [A(1),B(2),C(2)], [A(2),B(2),C(2)).

* Recent Context. In this context, at each stage of the history, only the
most recent occurrences of the events (primitive or composite) are con-
sidered. The following instances of E are detected in the recent context:

[A4(2), B(1), C(1)] and [4(2), B(2), C(2)].

We can enforce this parameter context by defining a predicate

last_satp(X, J), for each Snoop subexpression F(X). In the last_satp,
for a particular stage J, X denotes the set of parameter bindings of the last
occurrence of F, before or at this stage. The following stratified Datalog,s
rules define the semantics of our example EPL expression, in the recent

context:

sat{(X,J) — A(X,3)

last.saty(X,J) — sat4(X,J)

lastsaty(X,s8(J)) « any(s(J)), last_saty(X,J), -satq(.,s(J))
sato(X,Y,8(J)) — B(Y,s(J)), last_satq(X,1J)

last.saty(X,Y,J) —  sato(X,Y,J)
last saty(X,Y,s(J)) « any(s(J)), last_saty(X,Y,J), -sats(., -, 8(J))

satg(X,Y,2,s(J)) —  ¢(Z,s(J)), last.sato(X,Y,J)

o Chronicle Context. In the chronicle context, when a composite event
E is satisfied, its parameter bindings are obtained from the oldest unused
occurrences of its component events, that satisfy the precedence require-
ments of E ( unused implying that the same basic event occurrence can
participate in at most one instance of a particular composite event ).

Thus, the two instances of E that would be detected in the chronicle
context are: (A(1); B(1); C(1)) and (A(2); B(2); C(2)).
A way to express the chronicle context semantics using Datalog,s is il-

lustrated in the next section, since as it is explained there, the execution
semantics of Petri Nets correspond to this parameter context.

4.2 SAMOS and Petri Nets

The most distinguishing feature of SAMOS is its event detection mechanism,
which is based on coloured Petri Nets [6]. A coloured Petri Net is an extended
version of a classical Petri Net, that allows the flow of parameter bindings
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G

Figure 3: The Petri Net for the expression E = (F ; G).

through it. In this way, the parameter passing within a composite event in-
stance can be modeled. For a detailed description of how Petri Nets can be
used for the detection of composite events, the reader is referred to [11]. Here
we focus on the example of Figure 3 borrowed from {10}, which illustrates the
basic concepts. The figure shows the initial state of the Petri Net, where a
token is contained in the auziliary place H.

This Petri Net accepts as input the occurrences of events F and G. Every such
occurrence corresponds to a new token inserted into the Petri Net; this token
contains the parameter bindings of the event occurrence. An output token is
created when an occurrence F(x)} is matched with an appropriate occurrence
G(y). The output token containing the parameter bindings (x,y) is deposited
into the output place E and a new occurrence of E is signaled. Right after that,
this output token is removed from the Petri Net.

At a particular point in time, the tokens of the unmatched occurrences of
F are contained in places F and FF. In particular, FF contains the token of the
oldest among these occurrences, where F contains the tokens for the rest of
them. These different tokens are distinguished by their colours. Specifically, a
token corresponding to an occurrence of F is coloured with an integer denoting
the order of this occurrence among all the occurrences of F in the event history
(this can be obtained by a method similar to that defining the stage of a basic
event in the event history).

An occurrence of G is ignored, if there is not any token (occurrence) in
FF to be matched with; observe how this is achieved by using the auziliary
place H. However, an occurrence G(y) that finds a token F(x) in FF is matched
with it (this is achieved by firing the gate t3) and the occurrence of E(x, y) is
then signaled. After that, H becomes active again (it contains a token) and if
there are any tokens in F, the token of the oldest unmatched occurrence of F
is passed to FF (through the firing of gate t1), so that it can be matched with
the next occurrence of G. Note that this behaviour corresponds to the chronicle
parameter context discussed in the previous section. The execution semantics
of our Petri Net is best illustrated by an example, such as the one of Table 3.

Since, places F and FF are coloured, the colours (order numbers) of their
tokens are shown as well. Place H is also coloured and the colour of its token
is N+1, if N occurrences of E have been signaled so far (and thus, the first N
occurrences of F have been used).

In coloured ordinary Petri Nets there is not inherent measure of time, or
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Table 3: An execution sequence of the Petri Net in Figure 3.

model of time flow. Thus, ordinary Petri Nets make it possible to describe
what happens, but not when it happens [6]. Aiming at resolving this issue, an
extension of ordinary Petri Nets, called synchronized Petri Nets, has recently
been proposed. They enable the modeling of systems whose evolutions are time
dependent and where the succession of system states must be clearly and de-
terministically described. The state of a Petri Net is defined by the assignment
of tokens to places.

In a synchronized Petri Net, gate firings are synchronized to external events
and they obey a particular partial order defined by the structure of the Petri
Net. An external event triggers a sequence of gate firings that occur in one or
more steps, until the Petri Net reaches a stable state. This is exemplified in
Table 3.

We now demonstrate how Datalog;s can be used to capture the execution
semantics of a synchronized Petri Net. We assume that the occurrences of
basic events are non-simultaneous, as required by Petri Nets (this is in fact a
limitation of theirs). The following Datalog,s program defines the execution
semantics of the Petri Net in Figure 3.

inF(X,N,J) —
in F(X,N,s(J)) —

F(X, N, J)
any(s(J)), inF(X,N,J), -t{(X,N,s{]))

in_H(1,0)

in H(N,s(J)) — any(s(J)), in H(N,J), -t41(-,N,8(J)), —to(-,N,s(J))
in (¥, 3) t2(o N, 9)

inB(N+1,3)—  t3(,_NJ)

in G(Y, J) — G(Y, )

in G(Y,s(J)) —
in FF(X, N, J)

in FF(X,N,8(J)) —

satp(X,Y,J) —

ti(x, N, S(J)) —
to(Y, K, 5(J)) —

ta(X,Y,N,5(J)) —

a'ny(s(']))1 in G(Y, J)! ﬂtQ(Y,_,S(J)), _‘t3(-»Y"‘vS(J))

t1(X,N, 1)

any(s(J)), inF(X,N,7J), -t3(X,_, N,s(J))

t3(x,Y,_, J)

in F(X,N,J), in_H(N,J)

inG(Y,J), in.H(N,J)

in FF(X,N,J), inG(Y,J)
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An order parameter N for the occurrences of basic event F has been intro-
duced. A different predicate is defined for each place and each gate.

Consider for instance the rules for place F. The first rule says that the token
for the N-th occurrence of F is deposited into the place of F, at the stage of that
occurrence. The second rule says that the token of colour N (corresponding to
the N-th occurrence of F) is contained in place F at stage s(J), if it is contained
there at stage J and gate t1 is not enabled at stage s(J), which would cause
that token to be removed.

On the other hand, the rule for a gate expresses the fact that if all its inputs
become active at stage J, then the gate is enabled at stage s(J). An output
token is created from information passed from the inputs of gate t3 and it is
deposited into the place for E — see the rules for t3 and satg.

The component by component translation described above can produce a
lengthy set of rules. Moreover, note that we have lost the direct correspondence
between basic event occurrences and stages, which we have assumed in the
previous sections.

We can solve these problems by providing a much simpler set of Datalog, s
rules, that still models precisely the execution semantics of our example Petri
Net and also maintains the one-to-one correspondence between external basic
events and stages. This is achieved by folding the sequence of stages (states)
in Table 3 into the one in Table 4.

In the new table, each external basic event creates only one new stage. This
stage is defined by (a) the tokens residing at the regular places F and FF, at the
end of the sequence of firings originated by the basic event, and (b} the token
(if any) deposited into the output place E, during this sequence of firings.

L Event | F | FF I E I
G(Yu) " - -
F(xa4) - (xq,1) -
F(xb) (xbsQ) (Xa,l) -
G(ys) - (x8,2) (Xays,1)
G(yc) - - (bec;Q)

Table 4: The simplified stage sequence for the execution sequence of Table 3,

The following Datalog; s rules defines the sequence of stages in Table 4:

inF(X,N,s8(J)) « F(X,N,s(3)), inFF(, ., J)
in F(X,N,s(J)) any(s(J)), in.F(X,N,J), —inFF(X, ¥,s(J))
in FF(X,N,s(J)) — F(X,N,s(J)), ~in_FF(. ., J)

in FF(X,¥+1,8(J)) «~ inF(X,N+1,7J), satg(-,.,N, s(J))
satg(X,Y,N,3(J)) — G(Y,s(J)), inFF(X,N,J)

Note that no predicate is needed for auxiliary place H. Also, no predicate is
needed for G, since an occurrence of G is either immediately matched with an
occurrence of F, or it is “dumped”. As a result, we obtain a much simpler set

of rules that still defines precisely the execution semantics of our example Petri
Net.
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Eventhough these rules are not stratified, they are locally stratified and XY-
stratified [19]; therefore they can be evaluated in an incremental and efficient
manner. To see that, observe that the computation of the contents of inF
and in FF at stage J can be followed by the computation of the contents of
in_FF at stage s(J), which can then be followed by the computation of the
contents of in_F at stage s(J). This order of evaluation (prescribed by the XY~
stratification of the program) leads to an efficient fixpoint, which is triggered
by each basic event occurrence and terminates in a fixed number of steps.

5 Related Work

There has been no generally accepted approach to the definition of semantics
and to the implementation of event detection mechanisms for composite event
specification languages; each system employs a different formalism.

We consider first the familiar model of Finite State Machines (FSMs), which
is the implementation framework of ODE. Eventhough FSMs provide an easy-
to-understand model that is suggestive of efficient implementation, they suffer
from two major limitations, as follows:

1. FSMs do not support variables. It is suggested in [12] that parameter-
ized events are handled by creating several instances of an FSM, one
for each set of partial variable bindings of the composite event that the
FSM implements (detects). The resulting model surrenders the initial
simplicity and intuitive appeal of FSMs, without providing a fail-proof
formalism. In particular, the semantics of negation when attributes are
involved remains a problem.

2. Since FSMs are inherently sequential, simultaneous events cannot be han-
dled, unless transitions based on combinations of events are allowed. But
even if simultaneous events are disallowed, constructs such as conjunction
can only be modeled by an exponentially increasing size of states in an
FSM. This is because the FSM for E = Eq AEj is built by constructing
the cross-product of the FSMs for Ey and E4 [14]. Instead, in EPL, the
fact that the two conjuncts are evaluated tn parallel and independently
from each other leads to the generation of a number of rules that equals
the sum of the numbers of rules generated for the two conjuncts, plus an
extra rule for the conjunction condition.

Petri Nets solve the problem of exponential blow-up in FSMs, by allow-
ing concurrent processing. Also, coloured Petri Nets cater for the handling of
parameterized composite events. However, there are still some limitations. Si-
multaneous events cannot be handled. Also, it is not clear how the semantics of
general negation (as defined in EPL) can be captured by Petri nets. The com-
posite event detection mechanism of Snoop, which is based on Event Graphs,
[3] suffers from these limitations as well.

Another concept, whose formal definition is missing in previous approaches
is that of event histories and the succession of states in the system. This be-
comes necessary when introducing simultaneous events. Finally, all previous
approaches are limited to operational specifications, where our logic-based ap-
proach has a declarative nature.

Our method has similarities to Chomicki’s work on the efficient detection
of violations of dynamic integrity constraints [5], which is not however directly
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related to general active database systems. Integrity constraints are expressed
in Temporal Logic. Another difference of [5] from our work is that condition-
action rules are used, which are re-evaluated at each stage, in an incremental,
history-less way. This is contrasted to our event-driven rules.

6 Conclusions and Future Work

In this paper, we have proposed a general method for the definition of the se-
mantics of composite event languages, such as those used in active temporal
databases. Whereas different formalisms were used in the past for different
languages, we have shown here that the same formalism can be used to de-
fine the concepts of every language. As a result, the task of comparing and
understanding the differences and similarities of the languages is simplified.

Besides generality, another advantage of the proposed approach is that
event histories, simultaneous events, variables and their scopes, parameter con-
texts, negation, conjunction and disjunction can all be part of the same model.
Datalog, s is a most natural tool for defining the semantics of event languages,
due to its ability to model both the temporal and logical aspects of queries.

From an implementation standpoint, the produced sets of rules can be effi-
ciently evaluated in an incremental and history-less manner.

This paper leaves several issues to further research. For instance, the issue
of comparing the expressive power of different composite event languages is
one that deserves much more attention than it has received so far. In this
respect, Datalog;s provides a sound formal basis, due to the fact that its
formal semantics is well-understood and its expressive power w.r.t. to other
languages (temporal or otherwise) has been previously characterized [2].

A related issue is to compare the effectiveness of different temporal reason-
ing formalisms in expressing the semantics of active temporal languages. For
instance, composite event expressions could also be translated into Temporal
Logic [8], or a temporal logic programming language, such as Templog [2], or
SimTL [18]. In many cases, this yields a very natural formal definition of the
semantics such expressions. For instance, the following Future Temporal Logic
formula defines the meaning of the EPL expression E = (&, #:(x:B, C), D),
which has a form similar to that of example 7:

E = A next ( (B until C) until D)

On the other hand, Datalog, s is normally more conducive to effective oper-
ational semantics than Temporal Logic formulas. Thus, one might prefer to use
Datalog, 5, or alternatively, to derive efficient operational semantics by trans-
lating Temporal Logic formulas into Datalogis, a mapping discussed in [2].
Finally, the optimization of operational semantics presents many opportunities
for significant improvements and interesting research.
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