Skip to main content

Parallel machine models: How they are and where are they going

  • Invited Papers
  • Conference paper
  • First Online:
  • 148 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1012))

Abstract

The practice of parallel computing seems to be in a crises. The parallel processing has not become a common matter and the “second computer revolution” that should have been caused by the replacement of sequential computers by parallel ones is not to happen in near future. The only hope for overcoming the parallel computing crisis lays in the development of computational complexity theory. This offers a good opportunity to survey the respective results and trends in this theory and to discuss its reactions to the changing needs, both, in theory and practice of parallel computing. To provide an adequate answer to the current parallel computing crisis, building on the top of the respective theory, the focus in computer science is currently shifting from purely theoretically motivated problems also towards more practical ones, determined by the potential of hardware technologies today. As a result, computer science is looking for the “right” model of a parallel computer — namely for such a model that would present a reasonable design framework for algorithmic problem solving, would be elegant enough from a mathematical viewpoint and, last but not least, would allow for an efficient hardware realization. Despite the rather extensive effort, only partial success can be reported thus far.

This research was supported by GA ČR Grant No. 201/95/0976 “Hypercomplex — Complexity Issues in High Performance Computing”

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, M.-Byers, J.W.-Karp, R.M.: Scheduling Parallel Communication: The h-Relation Problem. Proc. 20th International Symposium MFCS'95, LNCS Vol. 969, Springer Verlag, Berlin, 1995, pp. 1–16

    Google Scholar 

  2. Bertoni, A.-Mauri, G.-Sabadini, N.: Simulations Among Classes of Random Access Machines and Equivalence Among Numbers Succinctly Represented. Ann. Discr. Math., Vol. 25, 1985, pp. 65–90

    Google Scholar 

  3. Billardi, G.-Preparata, F. P.: Horizons of Parallel Computing. Universita di Padova, TR No. CS-93-20, May 1993

    Google Scholar 

  4. Birge, R.R.: Protein-Based Computers. Scientific American, March 1995, pp. 66–71

    Google Scholar 

  5. Brassard, G.: A Quantum Jump in Computer Science. In: Current Trends in Computer Science, J. van Leeuwen, Editor, LNCS Vol. 1000, Springer Verlag, Heidelberg, 1995

    Google Scholar 

  6. Chandra, A.K.-Kozen, D.C.-Stockmeyer, L.J.: Alternation. J. Assoc. Comp. Mach., Vol. 28, 1982, pp. 114–133

    Google Scholar 

  7. Chazelle, B.-Menier, L.: A Model of Computation for VLSI with Related Complexity Results. JACM, Vol. 32, 1985, pp. 573–588

    Google Scholar 

  8. Chlebus, B. S.-Czumaj, A.-Gasieniec, L.-Kowaluk, M.-Plandowski, W.: Parallel Alternating-Direction Access Machine. Proceedings of Abstracts of ALTEC IV International Workshop, Charles University, Prague, March 1995

    Google Scholar 

  9. Cook, S. A.: Towards Complexity Theory of Synchronous Parallel Computation. L'Enseignement Mathématique, Vol. 27, 1980, pp. 99–102

    Google Scholar 

  10. Cook, S.-Reckhow, R.A.: Time Bounded Random Access Machines. J. Comput. Syst. Sci., Vol. 7, 1973, pp. 354–375

    Google Scholar 

  11. Culler, D.-Karp, R.-Patterson, D.-Sahay, A.-Schauser, K.E.-Santos, E.-Subramonian, R.-von Eicken, T.: LogP: Towards a Realistic Model of Parallel Computation. Proc. 4th ACM PPOPP, May 1993, California, USA

    Google Scholar 

  12. Czumaj, A.-Meyer auf der Heide, F.-Stemann, V.: Hashing Strategies for Simulating Shared Memory on Distributed Memory Machines. Proceedings of Abstracts of ALTEC IV International Workshop, Charles University, Prague, March 1995

    Google Scholar 

  13. Dassow, J.-Hromkovič, J.-Karhumäki, J.-Rovan, B.-Slobodová, A.: On the Power of Synchronization in Parallel Computations. Proc. 12-th Internat. Symp. MFCS'89, LNCS Vol. 739, Springer Verlag, Berlin, 1989.

    Google Scholar 

  14. Dymond, P.: Simultaneous Resource Bounds and Parallel Computation. Ph.D. Thesis, Uni. of Toronto, Dept. of Comp. Sci., 1980

    Google Scholar 

  15. Feldman, Y.-Shapiro, E.: Spatial Machines: a More Realistic Approach to Parallel Computing. CACM, Vol. 35, No. 10, 1992, pp. 61–73

    Google Scholar 

  16. Flynn, M.J.: Some Computer Organizations and Their Effectiveness. IEEE Trans. Comput., Vol. C-21, 1972, pp. 947–960

    Google Scholar 

  17. Furht, B.: Parallel Computing: Glory and Collapse. COMPUTER, November 1994, pp. 74–75

    Google Scholar 

  18. Goldschlager, L.G.: A Universal Interconnection Pattern for Parallel Computers. J. Assoc. Comput. Mach., Vol. 29, 1982, pp. 1073–1086

    Google Scholar 

  19. Hromkovič, J.: Synchronization. Unpublished Manuscript, 1986

    Google Scholar 

  20. Johnson, D.S.: A Catalog of Complexity Classes. Handbook of Theoretical Computer Science (Edited by Jan van Leeuwen), Vol. A, Elsevier Science Publishers B.V., 1990

    Google Scholar 

  21. Karp, R.M.-Ramachandran, V.: Parallel Algorithms for Shared-Memory Machines. Handbook of Theoretical Computer Science (Edited by Jan van Leeuwen), Vol. A, Elsevier Science Publishers B.V., 1990

    Google Scholar 

  22. Katajainen, J.-Penttonen, M.-van Leeuwen, J.: Fast Simulation of Turing Machines by Random Access Machines. SIAM J. Comput, Vol. 17, 1988, pp 77–88

    Article  Google Scholar 

  23. Mead, C.-Conway, L.: Introduction to VLSI Systems. Addison-Wesley, 1980

    Google Scholar 

  24. Mehlhorn, K.-Vishkin, U.: Randomized and Deterministic Simulations of PRAMs by Parallel Machines with Restricted Granularity of Parallel Memories. Acta Inf. Vol. 21, 1984, pp. 339–374

    Google Scholar 

  25. Papadimitriou, Ch. H.: Computational Complexity. Addison-Wesley, New York 1994

    Google Scholar 

  26. Parberry, I.: Circuit Complexity and Neural Networks. The MIT Press, Cambridge, Mass., 1994, 270 p

    Google Scholar 

  27. Pietracaprina, A.-Pucci, G.: Improved Deterministic PRAM Simulation on the Mesh. Proc. ICALP'95, LNCS Vol. 966, Springer Verlag, 1995, pp. 372–383

    Google Scholar 

  28. Pratt, V.-Stockmeyer, L.J.: A Characterization of the Power of Vector Machines. J. Comput. Syst. Sci., Vol. 12, 1976, pp. 198–221

    Google Scholar 

  29. Savitch, W.J.-Stimson, M.J.: Time Bounded Random Access Machines with Parallel Processing. J. Assoc. Comp. Mach., Vol. 26, 1979, pp. 103–118

    Google Scholar 

  30. Schönhage, A.-Grotefeld, A.F.W.-Vetter, E.: Fast Algorithms — A Multitape Turing Machine Implementation. Wissenschaftsverlag, Mannheim, 1994, 297 p.

    Google Scholar 

  31. Siegelmann, H.: Neural Networks as a Computational Model. In: Current Trends in Computer Science, J. van Leeuwen, Editor, LNCS Vol. 1000, Springer Verlag, Heidelberg, 1995

    Google Scholar 

  32. Slot, C.-van Emde Boas. P.: The Problem of Space Invariance for Sequential Machines. Inf. and Comp., Vol. 77, 1988, pp. 93–122

    Google Scholar 

  33. Stegwee, R.A.-Torenvliet, L.-van Emde Boas, P.: The Power of Your Editor. Rep. IBM Research, RJ 4711 (50179), May 1985

    Google Scholar 

  34. Valiant, L.G.: A Bridging Model for Parallel Computation. CACM Vol. 33, No.8., 1990

    Google Scholar 

  35. Valiant, L.G.: General Purpose Parallel Architectures. Handbook of Theoretical Computer Science (Edited by Jan van Leeuwen), Vol. A, Elsevier Science Publishers B.V., 1990

    Google Scholar 

  36. Valiant, L.: Circuits of the Mind. Oxford University Pres, New York, 1994, 237 p.

    Google Scholar 

  37. van Emde Boas, P.: Machine Models and Simulations. Handbook of Theoretical Computer Science (Edited by Jan van Leeuwen), Vol. A, Elsevier Science Publishers B.V., 1990

    Google Scholar 

  38. van Leeuwen, J.-Wiedermann, J.: Array Processing Machines: An Abstract Model. BIT Vol. 27, 1987, pp. 25–43

    Google Scholar 

  39. Vitányi, P.: Locality, Communication and Interconnect Length in Multicomputer. SIAM J. Comput., Vol. 17, No. 4., 1988, pp. 659–672

    Google Scholar 

  40. Vitányi, P.: Multiprocessor Architectures and Physical Laws. Proc. PhysComp94, IEEE Computer Society Press, 1994

    Google Scholar 

  41. Vitányi, P.: Physics and the New Computation. Proc. 20th International Symposium MFCS'95, LNCS Vol. 969, Springer Verlag, Berlin, 1995, pp. 108–130

    Google Scholar 

  42. Vitter, J. S.-Simons, R.A.: New Classes for Parallel Complexity: A Study of Unification and Other Problems Complete for P. IEEE Trans. on Computers, Vol. C-35, No. 5, May 1986

    Google Scholar 

  43. Wiedermann, J.: Deterministic and Nondeterministic Simulation of the RAM by the Turing Machine. In: R.E.A. Mason, Ed., Information Processing '83, Proceedings of the 9-th IFIP World Computer Congress, Paris 1983. North-Holland, Amsterdam, 1983, pp. 163–168

    Google Scholar 

  44. Wiedermann, J.: Parallel Turing Machines. TR RUU-CS-84-11, Dept. of Comp. Sci., Utrecht University, Utrecht, 1984

    Google Scholar 

  45. Wiedermann, J.: On The Power of Synchronization. J. Inf. Process. Cybern. EIK Vol. 25, 1989, pp. 499–506

    Google Scholar 

  46. Wiedermann, J.: Normalizing and Accelerating RAM Computations and the Problem of Reasonable Space Measures. Proceedings of ICALP'90, LNCS Vol. 464, Springer Verlag, Berlin, 1990, pp. 125–138

    Google Scholar 

  47. Wiedermann, J.: Weak Parallel Machines: A New Class of Physically Feasible Parallel Machine Models. Proc. Math. Found. of Comp. Sci., LNCS Vol. 629, Springer Verlag, Berlin, 1992, pp. 95–111

    Google Scholar 

  48. Wiedermann, J.: Fast Sequential and Parallel Simulation of Nondeterministic Computations. Computers and Artificial Intelligence, Vol. 13, No. 6, 1994, pp. 521–536

    Google Scholar 

  49. Wiedermann, J. Complexity Issues in Discrete Neurocomputing. Neural Network World, No.1, 1994, pp. 99–119

    Google Scholar 

  50. Wiedermann, J.: Five New Simulation Results on Turing Machines. Technical Report V-631, Institute of Computer Science, Prague, 1995

    Google Scholar 

  51. Wiedermann, J.: Quo Vadetis Parallel Machine Models. In: Current Trends in Computer Science, J. van Leeuwen, Editor, LNCS Vol. 1000, Springer Verlag, Heidelberg, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Miroslav Bartosek Jan Staudek Jirí Wiedermann

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wiedermann, J. (1995). Parallel machine models: How they are and where are they going. In: Bartosek, M., Staudek, J., Wiedermann, J. (eds) SOFSEM '95: Theory and Practice of Informatics. SOFSEM 1995. Lecture Notes in Computer Science, vol 1012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60609-2_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-60609-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60609-3

  • Online ISBN: 978-3-540-48463-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics