Skip to main content

Welcoming the super Turing theories

  • Invited Papers
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1012))

Abstract

This paper reasons about the need to seek for particular kinds of models of computation that imply stronger computability than the classical models. A possible such a model, constituting a chaotic dynamical system is presented. This model, which we term as the analog shift map, when viewed as a computational model has super-Turing power and is equivalent to neural networks and the class of analog machines. This map may be appropriate to describe natural physical phenomena.

I thank Allen Ponak from the university of Calgary, Jermey Schiff from Bar-Ilan university, and Shmuel Fishman from the Technion for helpful comments.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Grebogi, E. Ott, and J. A. Yorke. Chaos, strange attractors, and fractal basin boundaries in ninlinear dynamics. SCIENCE, 238:632–637, October 1987.

    Google Scholar 

  2. R. L. Devaney. Dynamics of simple maps. In Proceedings of Symposia in Applied Mathematics, pages 1–24, 1989.

    Google Scholar 

  3. H. T. Siegelmann and E. D. Sontag. Analog computation via neural networks. Theoretical Computer Science, 131, 1994. 331–360.

    Google Scholar 

  4. R. Penrose. The Emperor's New Mind. Oxford University Press, Oxford, 1989.

    Google Scholar 

  5. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: Np completeness, recursive functions, and universal machines. Bull. A.M.S., 21:1–46, 1989.

    Google Scholar 

  6. H. T. Siegelmann and E. D. Sontag. On computational power of neural networks. J. Comp. Syst. Sci, 50(1):132–150, 1995. Previous version appeared in Proc. Fifth ACM Workshop on Computational Learning Theory, pages 440–449, Pittsburgh, July 1992.

    Google Scholar 

  7. J. L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity, volume I and II. Springer-Verlag EATCS Monographs, Berlin, 1988–1990.

    Google Scholar 

  8. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.

    Google Scholar 

  9. J. Hertz, A. Krogh, and R. Palmer. Introduction to the Theory of Neural Computation. Addison-Wesley, Redwood City, 1991.

    Google Scholar 

  10. H. T. Siegelmann and E. D. Sontag. Turing computability with neural nets. Appl. Math. Lett., 4(6):77–80, 1991.

    Google Scholar 

  11. P. Koiran, M. Cosnard, and M. Garzon. Computability with low-dimensional dynamical systems. Theoretical Computer Science, 132:113–128, 1994.

    Google Scholar 

  12. J. L. Balcázar, R. Gavaldà, H.T. Siegelmann, and E. D. Sontag. Some structural complexity aspects of neural computation. In IEEE Structure in Complexity Theory Conference, pages 253–265, San Diego, CA, May 1993.

    Google Scholar 

  13. H. T. Siegelmann. On the computational power of probabilistic and faulty neural networks. In S. Abitebul and E. Shamir, editors, Lecture notes in Computer Science, 820: Automata, Languages and Programming, pages 23–33. Springer-Verlag, Jerusalem, 1994.

    Google Scholar 

  14. V. I. Arnold and A. Avez. Ergodic Problems of Classical Mechanics. Benjamin, New York, 1968.

    Google Scholar 

  15. J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, 1983.

    Google Scholar 

  16. C. Moore. Unpredictability and undecidability in dynamical systems. Physical Review Letters, 64:2354–2357, 1990.

    PubMed  Google Scholar 

  17. C. Moore. Generalized shifts: unpredictability and undecidability in dynamical systems. Nonlinearity, 4:199–230, 1991.

    Google Scholar 

  18. H. T. Siegelmann. On nil: The software constructor of neural networks. Parallel Processing Letters, 1995. to appear. Previous version appeared in Proc. of the 12th AAAI conference, Seatle, August 1994, pages: 887–882.

    Google Scholar 

  19. J. P. Keating, Hannay, J. H. Dealmeida and A. M. O. Dealmeida. Optical realization of the bakers tranformation. Nonlinearity, 7(5):1327–1342, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Miroslav Bartosek Jan Staudek Jirí Wiedermann

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siegelmann, H.T. (1995). Welcoming the super Turing theories. In: Bartosek, M., Staudek, J., Wiedermann, J. (eds) SOFSEM '95: Theory and Practice of Informatics. SOFSEM 1995. Lecture Notes in Computer Science, vol 1012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60609-2_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-60609-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60609-3

  • Online ISBN: 978-3-540-48463-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics